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Abstract 
 

This paper consists of three sections. In the first section an efficient method is used for decomposition of the canonical matrices 
associated with repetitive structures. to this end, cylindrical coordinate system, as well as a special numbering scheme were employed. 
In the second section, divide and conquer method have been used for eigensolution of these structures, where the matrices are in the 
block tri-diagonal form. In the third section a comparison of the results is presented. In order to illustrate the efficiency of the 
aforementioned methods, repetitive structures are considered in the form of barrel vault space structures. 
 
Keywords: Space structures (barrel vaults), Factor analysis, Eigenvalues and Eigenfunctions, Vibration 
 
 
1. Introduction 

 
Real symmetric eigenvalue problems frequently arise 
from scientific and engineering computations. The 
structures of the matrices and the requirements for the 
eigensolutions vary by application. For instance, many 
matrices generated from electronic structure calculations 
in quantum mechanics have strong locality properties. 
Some of them are block-tridiagonal; some are dense but 
with larger elements close to the diagonal and a decrease 
in the magnitudes of elements as they move from the 
diagonal. In many situations, the second type of matrices 
may be approximated by block-tridiagonal matrices with 
very low computational cost. In this paper two useful and 
high speed methods were compared to each other in order 
to solve the eigensolutions.[1-18,19]. 
 There are several applications of eigenproblems in 

structural mechanics. The eigenvalues and 
eigenvectors of graphs play an important role in 
algebraic graph theory and combinatorial  

      optimization. Large structural models and their 
corresponding graphs have large and sparse matrix 
representations. The factorization of these matrices  
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with arbitrary patterns requires general methods. 
special topologies the associated matrices of which 
can be transformed to particular patterns in such a 
manner that their factorizations can more easily be 
performed. Some of these matrices were previously 
studied by Kaveh and Sayarinejad [20-21], Kaveh and 
Rahami [22], and some other general eigensolution 
methods are also available in Robbe and Sadkane [23], 
Park [24], Mathias and Stewart [25] and Hasan and 
Hasan [26], among many others. There are also some 
applications of graphs spectra in nodal and element 
ordering and graph partitioning. Further information 
about these issues can be found in Gould [27], 
Straffing [28], Maas [29], and Grimes et al. [30]. 
However, despite of the efficiency of graphs spectra 
for combinatorial optimization, the calculation of 
eigenvalues and eigenvectors of large graphs and their 
corresponding structural models without considering 
patterns and the sparsity of their matrices require 
considerable memory and computational time. In this 
article, a new canonical form and its relation with 
some structural models often encountered in practice 
are presented. 
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 The block-tridiagonal divide-and-conquer algorithm 
developed by Gansterer 

    And Ward et al. [16] provides an eigensolver that 
addresses the above issues. Their algorithm computes 
all the eigenvalues and eigenvectors of a block-
tridiagonal matrix to reduced accuracy with a similar 
reduction in execution time for most applications.  

    One of the challenges is that the matrix sizes are 
usually very large and exceed the limitation of single 
processor architecture. Thus, parallel computation 
becomes necessary. The block-tridiagonal divide-and-
conquer algorithm is considered inherently parallel 
because the initial problem can be divided into smaller 
subproblems and solved independently. We are thus 
motivated to implement an efficient, scalable parallel 
block-tridiagonal divide-and-conquer eigensolver with 
the ability to compute eigensolutions to a user-
specified accuracy. 

 
2.     Block Diagonalization of Compound Matrices 
 
In linear algebra it is known that a square matrix can be 
diagonalized using the normalized eigenvectors, provided 
that all the eigenvectors are orthogonal. It is also proved 
that if the matrix is Hermitian, then it can be diagonalized 
and diagonal entries constitute the eigenvalues of this 
matrix. A matrix is Hermitian if its conjugate is the same 
as its transpose. Therefore, if a matrix is real, then 
symmetry is the only requirement to make the matrix 
Hermitian. The eigenvalues of Hermitian matrices are real 
and the eigenvectors corresponding to any arbitrary pairs 
of distinct eigenvalues are orthogonal. 
If M is a Hermitian matrix, then it can be diagonalized 
using MUU t . All what is required is the formation of an 
orthogonal matrix U. This can in fact be achieved by the 
Singular Value Decomposition (SVD) approach for 
symmetric matrices. 
 
Definition: The Kronecker product of two matrices A and 
B is the matrix we get by replacing the entry ij  of A by 
ij  of B, for all i  and j . 

As an example, 

 





































00
0001

11

dc
ba

dcdc
baba

dc
ba  (1)  

 

Where the entry(1,1) in the first matrix has been replaced 
by a complete copy of the second matrix. Now the main 
question is how one can block diagonalize a compound 

matrix. For a matrix M defined as a single Kronecker 
product, in the form 11 BAM  , it is obvious that if 1A  
is Hermitian, then the diagonalization leads to a block 
diagonal matrix of the form 11 BDA  . Now suppose a 
compound matrix M can be written as the sum of two 
Kronecker products: 
 

2211 BABAM   (2) 

Now we want to find a matrix P which diagonalizes 1A  
and 2A . In such a case, one should show that IPU 

block diagonalizes M, i.e., we have to show that MUU t

is a block diagonal matrix. 
From algebra we have
     t t tA B A B and A B C D A C BD      
Then: 
 
ܷܯ்ܷ = ଵܤ⨂ଵܣ)(்ܫ⨂்ܲ)  (ܫ⨂ܲ)(ଶܤ⨂ଶܣ+
= (ଵܤܫ)⨂ଵܣ்ܲ)] +  (ܫ⨂ܲ)	[(ଶܤܫ)⨂(ଶܣ்ܲ)
= (ܫଵܤ)⨂(ଵܲܣ்ܲ) +                      (ܫଶܤ)⨂(ଶܲܣ்ܲ
= (ଵܤ)⨂(ଵܲܣ்ܲ) +  (ଶܤ)⨂(ଶܲܣ்ܲ)
 

(3) 

 
Since it is assumed that P diagonalizes 1A and 2A , 
ܲ௧ܣଵܲ = ଶܲܣ஺ଵܽ݊݀ܲ௧ܦ =  ஺ଶ (4)ܦ
 
Therefore 
 

21 21
BDBDMUU AA

T   (5) 
 
Thus, U becomes block diagonalized, and in order to 
calculate the eigenvalues of M, one can evaluate the 
eigenvalues of the blocks on the diagonal. M and

tU MU  are similar matrices, since P is orthogonal, thus 
U is also orthogonal and its inverse is equal to its 
transpose. Now an important question is whether the 
assumptions made at the beginning of this section are 
feasible; i.e., can one always find an orthogonal matrix P, 
which diagonalizes 1A and 2A are feasible simultaneously. 
For a matrix to be diagonalizable, it is necessary to be 
Hermitian. However, for two matrices to be 
diagonalizable, not only should these two matrices be 
Hermitian, but these matrices should be commutative; 
i.e., 1221 AAAA    should hold. 
 
Theorem 1: Two Hermitian matrices 1A and 2A can be 
diagonalized simultaneously with an orthogonal matrix if 
and only if 
 

1221 AAAA   (6) 
 
A simple proof of this theorem can be found in [2]. 
Therefore, if 1A and 2A commute with respect to 
multiplication, then according to Eq. (2) and the Theorem 
1, 



Journal of Structural Engineering and Geotechnics, 2 (1), 19-28, Winter 2012 

21 

 

)])()(([ 2211
1

BABAeig ii

n

i
M  


  (7) 

The  ii A   for 2,1j  is a diagonal matrix 

containing all the eigenvalues of jA , and n is the 

dimension of the matrix iA . It should be noticed that the 

order of the eigenvalues in 1A and 2A is important. The 
order is the same as obtained after simultaneous 
diagonalization of the two matrices, which appear on the 
diagonal of the matrices. 
As an example, for the special case with IA 1 , it is 

obvious that IAIA 22  , and according to theorem 1 we 
have: 
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These special cases already shown in the work of Kaveh 
and Sayarinejad [1]. 
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It should be noted that here blocks are treated as numbers 
, i.e., they have the commuting property. In general, one 
can show that: 
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Comparing with Eq. (9), we have Ti   . Since

 0,1,0FT  , therefore, as mentioned before, we have

1
cos2




n
i

Ti
 , where ....1 ni   

 
2.1. Stiffness Matrix Calcubation 

 
In structures similar to barrel vault shown in (fig.1), that 
whole structure is made by repetition of some elements, it 
can be seem that most of elements of stiffness matrix are 
equal, this leads to the question whether there is any 
symmetry in their mechanical property matrices. The 
answer would be positive if a suitable coordinate system 
is chosen. 

For example in barrel vault show in (fig.1), that is 
generated by repetition of one block  (one square and two 
orthogonal elements) along Y direction and about Z 
direction (Like one half cylinder).It is observed that if 
cylindrical coordinate system is considered in away that 
the origin is located on cylinder axis and this axis is 
parallel to Z axis then symmetry relationships are derived 
for various degrees of freedom.  

 

Fig.1 View of 2D and 3D from barrel vault 

 

 
Fig.2 Repetitive panel 

 
This symmetry is cited step by step as followed. At first 
step if all outer nodes DOFs are inactive, it is considered 
that position of all remained nodes in comparisons with 
outer nodes (8 nodes) is the same. with regard to this fact 
that every node is connected to the other nodes with 
structural elements, in stiffness matrix just entries related 
to one node and its surrounding nodes DOFs , are nonzero 
and the other entries are zero. So, if nodes are numbered 
as shown in (fig.1), stiffness matrix (and the other 
property matrices) would be in this way: 
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 (11) 

This is a block matrix, in this matrix index show the row 
number of nodes with active DOFs. For example 11A
show the stiffness between nodes located on the first row 
(stiffness between nodes 9 to 13) and 12A show stiffness 
between nodes located on first and second rows. (nodes 9 
to 13 with 16 to 20).It is obvious that stiffness between 
nodes on the first row and nodes on the third rows and 
above that, are equal to zero. The other entries are 
calculated with similar procedure. 
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In the next step the following symmetry relationships can 
be derived with respect to similarity among the 
corresponding nodes in various rows while direction of 
DOFs in away row is the same as the previous and the 
next rows (this condition is satisfied in cylindrical 
coordinate system, (fig.3)  
 

11 22 33

12 23 34

A A A A
A A A B
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


    (12) 

 
Therefore, the overall stiffness matrix (and any other 
property matrix) must be in the following form: 
 
 

0 0
0

0
0 0

T

T

T

A B
B A B

K B A B
B A

 
 
 
 
 
 
  









    

 (13) 

 

 

Fig. 3 DOFs of nodes in polar coordinate system 

In this case with regard to direct symmetry of two DOFs 
(Z,R) related to each other and inverse symmetry of the 
other DOFs   , the B block of this matrix is similar to 

33  block located on offdiagonal of symmetry form A . 
Therefore, 
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While with the same reasons, presented for symmetry 
form A, sub matrices G, H and I are symmetric. 
Therefore, matrix B and TB  are not equal. Their 
differen[p-ce is just in sign of some entries. In other to 
active a simpler symmetry form for whole system DOFs 

)( can be modified after converting the coordinate 

system to cylindrical coordinate system. (fig.4) 
As shown in (fig.4) if DOFs )( , in  direction, is 
inverted alternatively, symmetry among all DOFs of 
every row in cylinder direction is in direct symmetry with 
previous and next rows relative to symmetry planes, and 
matrix block B would be in following form:      
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 (15) 

So, TBB  and overall stiffness matrix (and any other 
proper t y matrix)  can  be wr i t ten  in  th is form: 
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      (16) 

Fig. 4 Modification of DOFs in direction θ to obtain perfect 
symmetry form  

 

In order to make last concept application, it's necessary to 
modify stiffness matrix in two steps: 
 
2.1.1. Converting the Cartesian Coordinate System to 
Cylindrical Coordinate System 
 
First, to obtain the condition under it DOFs of nodes on 
consecutive rows are symmetry, DOFs of each node is 
transferred to cylindrical coordinate system while the 
axis of coordinate system is the axis of cylinder that 
barrel vault is on. In order to converting Cartesian 
coordinate system (fig.5) to cylindrical coordinate system 
(fig.3) 
Regarding fig.6, rotation matrix is defined for every 
node. As shown in (fig.6), considering the selected 
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coordinate axes (fig.1), rotation is just applied in XZ 
plane. 
Therefore, axe Z of cylindrical coordinate system is the 
same axe Y of Cartesian coordinate system and does not 
change. Beside according to fig.6 axe X is transformed to 
R and Z to   by means of a rotation that is equal to . 
The magnitude of rotation of each node's DOFs is simply 
calculated. According to these subjects the rotation 
matrix of each node's DOFs is defined as follows: 
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 (17) 

 
In this case in cylindrical coordinate system DOFs of 
each node would be R, Z,  respectively. In order to 
generate overall rotation matrix of structure, the rotation 
matrix of consecutive nodes must be calculated and 
located as block diagonal in one matrix.    It means that if 
rotation matrix of node i is equal to i , then 
transformation matrix for whole structure is: 
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Therefore, overall transformation matrix is nn 33   
matrix. (n is the number of nodes) And overall stiffness 
matrix in new coordinate system is calculated as: 
 

TK K     (19)  
 

2.1.2. Changing the Direction of DOFs 
 
After calculating stiffness matrix in cylindrical 
coordinate system as mentioned above, in order to solve 
the problem with sign in some entries of block B, it is 
necessary to change the direction of DOFs )( in some 
nodes. (fig.4) 
This purpose is achieved by multiplying third rows and 
columns of nodes that are just on even rows (or odd 
rows) by -1.The calculation of first and second steps can 
be done at once. It means that third column of 
transformation matrix X, in nodes that their sign of DOFs 

)(  must be inverted, is multiplied by -1. Therefore in 
consecutive rows the previous rotation matrix and 
aforementioned rotation matrix and next rotation matrix 
are applied.   
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Fig 5. DOFs of nodes in cartesian coordinate system 
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Fig 6. Transfer of DOFs from the cartesian coordinate system to cylindrical coordinate system
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3.    The Block Tridiagonal Divide-and-Conquer     
lgorithm 

 
In this section the Block Tridiagonal Divide-and-Conquer 
(BD&C) algorithm is briefly described. 
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(21) 

where q is the number of diagonal blocks, iB  for 

qi 1  are the diagonal blocks and iC  for 

11  qi  are the off-diagonal blocks. The BD & C 
algorithm calculates the eigenvalues of M with a give 
accuracy tolerance )( mach . 

VVM ˆˆˆ  

We calculate V̂  and ̂  such that V̂  contains 
approximations to the eigenvectors of M and the 
diagonal matrix ̂  contains approximations to the 
eigenvalues of M. 
 

 ,ˆˆˆ
22

MOVVM T   (22) 

The product TVV ˆˆ  with a small error mach  is equal to 
the unity matrix. 
 

   nOeIVV machi
T

ni
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 2,...,2,1
ˆˆmax  (23) 

 
For ni 1 , ie  is the ith column of the unity matrix. 
The three main steps of the BD&C algorithm are as 
follows: 
Problem subdivision, sub problem solution, and 
synthesis of sub solution. 
 
Singular values, singular vectors and their relationship 
 
A real positive number   is called the singular value of 
M if and only if the unit vector u  in mK  and v  in nK   
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The vectors u and v are called the left-singular and the 
right singular for  , respectively. 

In certain singular decomposition 
TVUM   (24) 

                                                                                                              
The diagonal entries of   are equal to the singular values 
of M, and the columns of U and V are the left singular and 
right singular vectors corresponding the singular values, 
respectively. 
 

TVUM   (25) 

Problem subdivision: The off-diagonal blocks iC  are 
approximated with lower rank matrices using their singular 
value decompositions: 
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In this way the dimension of the matrix iC  is reduced. 

Where i  is the chosen approximate rank of iC , 
iib

i RU  1 is an orthogonal matrix containing the first 

left singular value i  and iib
i RV  1 contains the first 

right singular value, i  is a diagonal matrix containing 

the largest singular value i  of iC  for 1,...,2,1  qi . 
The approximate rank of the off-diagonal blocks in the 
step corresponding to subdivision of the problem reduces 
the size of these matrices considering the prescribed 
approximation; the computational complexity of the 
calculations is decreased. 
Using the decomposition the block tridiagonal matrix M 
can be expressed as a block diagonal matrix. 
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Sub Problem Solution 

Each diagonal block iB̂  is factorized as 

qiforZDZB T
iiii ,...,2,1,ˆ   (31) 

Then we will have 

TZDZM ˆ  (32) 

Where  qZZZdiagZ ,..., 21  is vertical block diagonal 

matrix and  qDDDdiagD ,..., 21  is a diagonal  
Note that the traditional algorithms may be applied to 
compute the eigendecomposition of the diagonal blocks. 
Typically, the number of diagonal blocks q in a block 
tridiagonal matrix is much greater than 2 and the block 
sizes bi are small compared to the matrix size n. Thus, the 

Eigen-decomposition of each sub problem iB̂  in Equation 
(31), which involves only the much smaller diagonal 
block, yields better data access time pattern than traditional 
decomposition methods on the much larger full matrix 
[16]. 
 
Here, the node ordering is as the same as what was already 
described in the first section, the stiffness , mass and 
geometric stiffness matrices forms are as Equation (16) 
which by using divide and conquer algorithm can be 
solved. 
 
 
 
 
 
 
 

4.   Examples and Results Comparisons: 
 
 In this section, some examples of barrel vaults which their 
matrices after ordering the mentioned form are presented 
and the computational speed of results was compared with 
software and the related plots are presented. The obtained 
results using the mentioned method and decomposition and 
making the initial matrix smaller, are also considered. The 
before and after decomposition plots were drawn.   
For example the following two barrel vaults by using the 
mentioned algorithm in the second chapter (PBD and C), 
the ten first frequencies were calculated. Then the larger 
barrel vaults with more degree of freedom were studied 
and the obtained results after ordering by using this 
algorithm were compared with MATLAB software results. 
The results are obviously determined in the presented 
plots. 
 
Example 1: consider the following barrel vaults, the 
diameter of the barrel vaults panel is 200 cm and the nodes 
interval in x direction is 100 cm. it can be solved by using 
both methods: 

3227 /780010/1007.2 mkgcmAmkNE  
 

1. by using divided and conquers method: 

 

 
Fig7. View of 2D and 3D from barrel vault 

After ordering and calculating stiffness, mass and 
geometrical stiffness matrices in cylindrical coordinate and 
achieve to desired form and finally through using the 
presented algorithm, the ten first frequencies were be 
obtained as follow: 
 

sec/
48.147,78.129,23.124,62.110,64.106

,11.102,72.70,93.62,16.55,91.48
rad









  

sec/695.268 radMAX   
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Example 2: consider the following barrel vaults, the 
diameter of the barrel vaults panel is 200 cm and the nodes 
interval in x direction is 100 cm. by using the second 
method: 
 

3227 /780010/1007.2 mkgcmAmkNE  

 

 

 

Fig8. View of 2D and 3D from barrel vault 

After ordering and calculating stiffness, mass and 
geometrical stiffness matrices in cylindrical coordinate and 
achieve to desired form and finally by using the presented 
algorithm, the ten first frequencies were obtained as 
follow: 

sec/
37.102,23.98,05.91,66.89,90.83,52.82,

13.71,67.51,94.44,47.41,87.36,21.35
rad








  

sec/58.338 radMAX   

The above mentioned method and algorithm for different 
examples (barrel vaults with high degree of freedom) were 
studied and the results were compared with MATLAB 
results and the related plots were sketched.  

 
Fig 9.  Eigenvalue distribution of matrix in Figure 7. 

 

Fig 10. Eigenvalue distribution of matrix in Figure 8. 

 

Fig 11. Execution time of PBD&C relative to MATLAB 
in logarithmic scale for matrices 

 

Fig12 . Logarithmic scale of execution timesversus number of processors. 
(a) Execution times of PBD&C with different tolerances; 

 matrix, n = 12,000. 
 
 

For example by using the presented method in the first 
section, we solve the bellow example and finally the 
before and after decomposition results were compared with 
each other and the plots were drawn. 
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sec/
56.235,08.235,32.232,97.225,16.219,24.213,74.209,99.201,23.199,78.198,7.198,88.192

,72.189,48.187,94.186,83.186,01.185,06.181,39.174,29.174,26.163,72.162,22.155
95.148,48.147,78.129,23.124,62.110,64.106,11.102,72.70,93.62,16.55,91.48

rad

















 

Example 3: here the first example can also be solved by 
the presented method in the first section. Indeed the 
presented desired method in this section is adequate for 
those barrel vaults whose elements are as repetitive such 
as (fig. 7). Thus according to the Eq. (7) the above barrel 
vaults frequencies can be calculated, the first 33 of which 
are cited below. 

Example 4: consider the following 2 layer barrel vault, 
the diameter of panel of upper layer is 600 cm and the 
nodes interval in x direction is 100 cm. 

3227 /780010/1007.2 mkgcmAmkNE  
 
By ordering the nodes like the following figure, the 
stiffness, mass and geometrical stiffness matrices can 
be like block tridiagonal. 
 

    

Fig13. View of 2D and 3D from 2layers barrel vault 

 

srad
srad

/66.326
/]65.147,11.146,67.138,67.133,693.123

,63.110,71.102,93.97,02.86,91.59,85.55[

max 







 

 
Fig 14.  Eigenvalue distribution of matrix in Figure 13. 

 

Fig 15. Comparison of pre - and post – decomposition 
 calculation time. (Log. Plot) 

 
 
 

As it can be seen in the above figure, the calculation time 
decreases very much. 
The comparison of the two methods (Decomposition, 
PBD&C) is illustrated in following: 
 

 

Fig 16. Comparison of calculation time of the two  
methods. (Log. Plot) 

 
5.   Conclusions 

As it was mentioned earlier in this paper, the matrices are 
made in the block three diagonal form by considering the 
nodes appropriate ordering in some of structural 
mechanics problems and, for instance, in stiffness and 
mass matrices of barrel vaults. Two methods for 
calculating the matrices eigen values are described. 50 100 150 200 250 300 350
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1. The efficiency of algebraic graph theory in 
combinatorial optimization, especially in ordering and 
partitioning of graphs is well known. However, large 
structural models and their corresponding graphs require 
considerable computational time for evaluating their 
eigenvalues and eigenvectors. In this paper, using a new 
canonical form, a highly efficient method is presented for 
the eigensolution of some special structural(Barrel 
Vaults) and finite elementmodels which are often 
encountered in structural mechanics. 
2.  A mixed data/task parallel implementation of the 
block-tridiagonal divide and-conquer algorithm is 
presented. In this implementation processors are divided 
into subgrids, and each subgrid is assigned to a 
subproblem Because of the data distribution pattern, at the 
beginning of each merging operation, matrix subblocks 
must be redistributed. The communication overhead of 
data redistribution not only depends on interconnection of 
processors, but also on the topology of processor 
subgrids, all of which were considered. At the end the 
presented algorithm was compared with the MATLAB 
software from the point of view of calculation time and 
speed and the two mentioned methods were compared 
with each other. 
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