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Abstract 
This research aims to develop seismic fragility curves for small- and medium-sized concrete bridges. Fragility curves were 

generated as a function of the probability of reaching or exceeding a specific limit state in terms of the peak ground 

acceleration (PGA) and acceleration spectral intensity (ASI). To this end, a hybrid dataset of the seismic performances of 

bridges was prepared by combining the results of numerical analyses and neural predictions. Three-dimensional finite-

element models for 1032 bridge-earthquake cases were created, considering the nonlinear behavior of critical bridge 

components. In addition, multilayer perceptron (MLP) neural networks were employed to simulate artificial earthquake-

bridge performance scenarios. The yield stress of reinforcing bars (Fy), the bridge height (H) as well as PGA and ASI, were 

considered as the input vectors of the artificial neural networks (ANN). The results of this study revealed that MLP neural 

networks are capable of simulating the seismic performances of bridges appropriately. It was also shown that providing a 

hybrid dataset of numerical results and neural predictions could lead to the fragility curves of higher correlation coefficients. 

The results also presented that the PGA-based fragility curves had better correlation coefficients comparing to ASI-based 

ones. 
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1.Introduction 
 

Bridges are essential components of transportation 

networks all around the world. According to their 

critical role in transportation, bridges should be 

serviceable during and after natural disasters such as 

earthquakes. In other words, in addition to direct 

physical loss, bridge damage may cause drastic 

indirect impacts due to traffic disruption. Note in this 

regard that relief operations after catastrophic natural 

disasters can considerably suffer from traffic jam. 

However, recent seismic events, such as the Kobe 

earthquake of 1995 in Japan, the Northridge 

earthquake of 1994 in the USA, the Bam and 

Varzaghan seismic events of Iran in 2003 and 2011 

respectively, caused different levels of damages to 

various bridges [1-4]. Hence, the seismic 

vulnerability of existing bridges has attracted several 

researchers to investigate the seismic performances 

of different types of bridges [5-10]. 

Several methods are available for evaluating the 

seismic performance of a particular structure. 

Employing fragility functions is a well-known 

approach to the seismic performance assessment of 

bridges. The fragility curves are functions that 

explain the probability of reaching or exceeding a 

specific damage state in terms of the severity of 

ground motion [11-14]. The idea of utilizing fragility 

curves was firstly developed by Whitman et al. [15] 

and implemented in structures by Veneziano et al. 

[16]. In recent decades at least four methods have 

been developed for deriving fragility functions: 

judgmental [17, 18], empirical [10, 19, 20], 

analytical [13, 14, 21-24], and hybrid [25]. All the 

methods mentioned above have their advantages and 

limitations. The developments of software and 

computing systems have led to the development of 

several analytical fragility functions for bridges 

during the recent decade. 

Analytical seismic fragility curves for bridges can be 

constructed based on various nonlinear analyses 

such as pushover, nonlinear response history, and 

incremental dynamic analysis [22, 26-34]. Nonlinear 

analyses are time-consuming and require a 
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considerable amount of computer memory. They 

may also encounter convergence problems. 

Meanwhile, to achieve a reliable fragility curve, 

remarkable numbers of nonlinear analyses are 

required. Therefore, the development of fragility 

curves using nonlinear analysis (NA) is expensive. It 

is computationally time-consuming and sometimes 

impractical, mainly when complex systems such as 

bridges are analyzed. Therefore, soft computing 

techniques such as artificial neural networks (ANN) 

seem to be proper alternatives due to their ability to 

reduce the number of analyzes in parametric studies 

[35]. Artificial Neural Networks (ANN) are 

biologically inspired mathematical paradigms. They 

can establish a mapping between input vectors to an 

output one. Artificial neural networks are 

experiment-based. Therefore, they can learn through 

examples and recognize complicated relations 

among various parameters. Hence, ANN can predict 

the quantities, which are difficult to be measured in a 

laboratory or calculated by numerical analysis. 

Different types of ANNs can be employed for 

solving a particular problem. The multilayer 

perceptron (MLP), radial basis function network 

(RBFN) [36], the probabilistic neural network 

(PNN) [37], and the learning vector quantization 

(LVQ) [38], are some of the common types of ANNs 

[39, 40]. Recently, artificial neural networks have 

been employed in various Civil Engineering trends, 

including Earthquake Engineering [41-44], 

Structural Engineering [40], and Geotechnical 

Engineering [45, 46]. Although there is a large body 

of research publication on the construction of 

analytical fragility curves for RC bridges, reported 

literature on the topic of neural network-based 

fragility analysis of such structures are very limited. 

In this research, a nonlinear response history 

analysis was utilized to develop analytical fragility 

curves for a group of existing pre-1990 continuous 

deck RC bridges. In addition, the seismic 

performance of the bridges was predicted using an 

artificial neural network trained with analytical data. 

From response history analysis outputs, 70% of data 

were randomly used for network training, and the 

remained 30% were utilized for network testing. 

After selecting the appropriate architecture and 

structure for the MLP network, 1032 new data were 

generated. Finally, a combination of nonlinear 

response history analysis and neural prediction was 

used to prepare the required dataset of fragility 

analysis. 
 

2. Specifications of the Studied Bridges 
 

In this study, six common types of highway bridges 

were selected. More details regarding the selecting 

procedure of bridges are provided by [21]. The 

bridges are of multi-span continuous RC types. It is 

worth mentioning that all of the selected bridges 

were designed and constructed before 1990 in Iran. 

The material properties and structural characteristics 

of the bridges are presented in Tables 1 and 2 and 

Fig. 1. The superstructures comprise reinforced 

concrete slabs supported with concrete girders. All 

the bridges have RC framed piers of circular cross-

sections. 

 
Table 1 

Structural properties of selected bridges  

Column  

height (H col) 

(m) 

  (bar) Mpa 
  
 (col) 

Mpa 

Longitudinal bar of 

column 

Transverse bar of 

column 

1st natural frequency 

(s)  

Bearing stiffness abutments 

(kN/mm) 

Kz Kv 

4-8 300-392 31.5 18Φ25 Φ12@20 0.36-0.73 1077 3.12 

 

 

 

 

 

Table 2 

Specifications of selected bridges  

Column  

height (H col) 

(m) 

Column diameters, (c) 

 (m) 

Total bridge length 

(m) 
Number of spans Total span width, (W) (m) Column spacing, (d) (m)  

4-8 1.0 80 4 22.5 8.64 
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(a) 

 
(b) 

Fig 1. Geometry of the bridges (a) Longitudinal direction, (b) Transversal direction 

 

 

3. Nonlinear Response History Analyses 
 

In order to evaluate the seismic performances of the 

studied bridges, three-dimensional bridge models 

were implemented with SAP2000 software to 

conduct nonlinear response history analyses [47]. 

 

3.1. Modeling 
 

In this study, frame elements were used to model 

girders, cap beams and columns. It noteworthy that 

the frame elements have six degrees of freedom at 

each node. The following equation was proposed in 

[48] for the strength parameters of confined 

concrete. 
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where f'cc is the compressive strength of confined 

concrete, f'l is the effective lateral compressive 

strength, and f'c is the compressive strength of 

concrete. Also, the maximum compressive strain of 

concrete εcc can be obtained from Eq. 2. 
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The ultimate compressive strain can be obtained 

from the following equation: 
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where ρs is the volume fraction of the confined steel, 

εsu is the steel strain corresponding to the maximum 

flexural stress, and fyh is the yield strength of the 

transverse steel. Moreover, ρs and f'l in Eqs. 3 and 1 

can be obtained from Eqs. 4 and 5, respectively.  
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(5) 

 

where Ah is the cross-sectional area of the transverse 

bar, D' is the width of the core of the confined 

concrete, s is the longitudinal distance of the hoops, 

and ke is the confinement ratio. The abutments were 

modeled by the elastic springs recommended in 

Caltrans [49] in longitudinal and transversal 

directions. The analysis of the longitudinal response 

of the abutments is expressed using a bilinear 
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approximation from the deformation-force or 

deformation-nonlinear force relationships [50]. 

Based on [49], initial stiffness Ki was assumed as 

14.35 KN/mm/m. The abutment's initial stiffness can 

be calculated proportionate to the back-wall height 

of the abutment using Eq. 6, where       and       

are the height and width of the abutment, 

respectively.  

 

             (
     

   
) 

(6) 

 

 

Elastomeric bearings were modeled as springs. The 

stiffness of such springs were denoted by [51]:  
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Where    and    are the vertical and the shear 

stiffness of the bearings.   is the shear modulus of 

rubber (considers 1 MPa in this study),    is the 

gross rubber area, and    is the total rubber height. 

  is the rubber bulk modulus and   is the shape 

factor. Elastic springs were used to model the 

abutment and backfill soil, in the longitudinal and 

transversal directions [49]. Abutment longitudinal 

response analysis could be explained by considering 

a bilinear approximation of the force–deformation 

relationship [52]. The bilinear demand, which 

includes the effective abutment stiffness, is 

influenced by expansion gaps, and it includes a 

realistic value for the embankment fill response. 

Based on force-deflection results from large-scale 

abutment testing [50, 53, 54] and passive earth 

pressure, the initial stiffness Ki is considered as 

14.35 kN/mm/m based on the Caltrans 

recommendation [49]. Fig. 2 demonstrates the 3D 

model of one of the studied bridges with elements 

details in SAP2000 software [47].

 

 
Fig 2. 3D finite element model of 8 m column bridge 

 

P-delta effects were considered in two orthogonal 

directions. Newmark’s beta method was employed to 

solve dynamic equations. Rayleigh damping 

coefficients proportional to mass and stiffness were 

determined by taking into account the first two 

modal periods. Lumped plastic hinges were modeled 

at the top and the bottom of columns based on 

Caltrans recommendation [49, 50]. Fig. 3 

demonstrates the hinging mechanism of the 8-m 

bridge as a sample of the selected bridges for 

nonlinear response history analysis subjected to 

Northridge ground motion analysis with PGA= 

0.5908g. The figures are related to different steps in 

the analysis; such as steps 0, 500, 1000, 1500, and 

1800. As mentioned before, column elements were 

modeled with lumped plasticity by defining plastic 

hinges at both ends of the columns. The side pier 

was the most critical one subjected to this record.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 Fig 3. The plastic hinge mechanism of 8-m column bridge for nonlinear time history analysis in different steps: a) the critical pier in the bridge, b) step 0, c) 

step 500, d) step 1000, e) step 1500, and f) step 1800. 
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The inelastic performance is not frequent on bridge 

decks during the earthquake. In most cases, the 

inelastic performance occurs due to deck unseating 

[23]. Hence, in several past studies, the 

superstructure is considered to behave in elastic zoon 

[6, 55]. In the present study, superstructures were 

assumed to remain in the elastic range of behavior. 

This is a reasonable assumption because the seismic 

demands reached the plastic capacity of the deck in 

none of the analyses. All bridges were assumed to be 

located on hard soil. Therefore, soil flexibility at the 

bridge foundations is not considered in the analytical 

models. The models for confined and unconfined 

concrete strength parameters were considered based 

on Mander models [48]. On the basis of the 

observation of analyses obtained by the application 

of finite element modeling, Fig. 4 illustrates one of 

the selected bridge deformations by earthquake load. 

 

 

 
 

 

Fig 4. Deformation of one of the selected bridges 

 

 

3.2. Ground Motion Selection 
 

Selecting appropriate ground motions is one of the 

essential steps for the probabilistic seismic safety 

assessment of structures. The strong ground motion 

(SGM) station site condition should be compatible 

with the considered structures. Since all bridges are 

rested on hard soil, SGMs were selected within those 

recorded on relatively stiff soils having Vs ≥ 360 

m/s. Moreover, the attempt was made to select the 

ground motions of PGA>0.1g and the moment 

magnitude Mw>5.0. In this study, only far-field 

earthquakes with R< 15 Km belonging to strike-slip 

and reverse faults were considered. Forty SGM 

records, including 20 strike-slip and 20 reverse ones, 

were used. The acceleration time-histories are 

obtained from the PEER strong-motion databases 

(http://ngawest2.berkeley.edu). 

 More detail due to SGM selection is provided by 

Mosleh et al. in the following research studies [21]. 

Strong Motion Databases (Tables 3 and 4) show the 

significant characteristics of the selected 

earthquakes. Mw is moment magnitude in these 

tables, R is an epicentral distance, PGA is Peak 

Ground Motion and ASI is Acceleration Spectral 

Intensity. These horizontal orthogonal components 

are used for response history analyses. The response 

spectrum of each ground motion is calculated, 

considering the square root of the sum of the squares 

(SRSS) of the response spectrum of the two 

horizontal ground motion components. More details 

about the ASI calculation are provided in the 

following research [14]. Fig. 5 presents the response 

spectra of 5% damped SGMs for strike-slip and 

reverse records. 
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Table 3 

Some parameters of the SGMs belonging to reverse seismic sources  

Main event Year Mw R (Km) PGA (g) ASI (g*s) 

Chi-Chi 1999 7.62 101.62 0.11 0.491 

Chi-Chi 1999 7.62 63.29 0.13 0.579 

Chi-Chi 1999 7.62 37.83 0.17 0.815 

Chi-Chi 1999 7.62 47.86 0.20 0.968 

Chi-Chi 1999 7.62 39.70 0.26 0.9498 

Chi-Chi 1999 7.62 86.39 0.36 1.119 

Chi-Chi 1999 7.62 95.70 0.52 1.066 

Chi-Chi 1999 7.62 59.80 0.08 0.394 

Northridge 1994 6.69 14.92 0.21 0.760 

Northridge 1994 6.69 18.62 0.39 0.647 

Northridge 1994 6.69 39.39 0.47 0.568 

Northridge 1994 6.69 40.68 0.49 1.693 

Northridge 1994 6.69 16.27 0.51 0.890 

Northridge 1994 6.69 22.45 0.59 0.976 

Sanfernando 1971 6.61 25.36 0.30 0.619 

Whittier Narrows  1987 5.99 21.26 0.34 0.516 

Capemendocino 1992 7.01 53.34 0.17 0.568 

Capemendocino 1992 7.01 22.64 0.42 1.278 

Tabas 1978 7.40 20.63 0.35 0.767 

Tabas 1978 7.40 55.24 0.81 2.281 

 

Table 4 

Some parameters of the SGM, strike-slip fault  

Main event Year Mw R (Km) PGA(g) ASI (g*s) 

Morgan Hill 1984 6.19 30.05 0.10 0.285 

Parkfield 2004 6.00 14.50 0.47 0.447 

Parkfield 2004 6.00 14.80 0.60 0.624 

Manjil 1990 7.40 40.43 0.50 0.986 

Morgan Hill 1984 6.19 36.34 0.28 0.790 

Morgan Hill 1984 6.19 16.67 0.34 0.847 

Kobe 1995 6.90 18.27 0.71 2.794 

Imperial Valley 1979 6.53 24.82 0.18 0.580 

Duzce 1999 7.14 27.74 0.14 0.356 

Victoria 1980 6.33 33.73 0.5722 0.998 

Parkfield 1966 6.19 40.26 0.2934 0.480 

Landers 1992 7.28 27.33 0.1407 0.560 

Landers 1992 7.28 82.12 0.3733 1.100 

Kobe 1995 6.90 123.33 0.0765 0.166 

Duzce 1999 7.14 29.27 0.2101 0.479 

Duzce 1999 7.14 24.05 0.7367 0.806 

Parkfield 2004 6.00 32.10 0.2710 1.180 

Imperial Valley 1979 6.53 48.62 0.1661 0.330 

Duzce 1999 7.14 31.56 0.1174 0.297 

Duzce 1999 7.51 77.63 0.1387 0.682 
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(a) (b) 

Fig 5. Response spectra of the selected ground motions for (a): reverse and (b): strike-slip faults. 

4. Nonlinear Response History Analyses 
 

The development of analytical fragility curves 

requires large amounts of data and nonlinear 

numerical analysis. Nonlinear analyses are generally 

time-consuming and may be impossible in particular 

cases because of convergence problems. However, 

the use of soft computing techniques, such as neural 

prediction algorithms, can be promising. Artificial 

Neural Networks (ANN) are a branch of soft 

computing which often employed for data 

prediction, filtering, and clustering. Because of their 

wide applications, artificial neural networks are 

increasingly employed in various engineering 

disciplines [40, 56, 57]. ANNs are powerful 

mathematical tools to simulate complex systems for 

predicting purposes [58]. During recent decades, 

several researchers applied ANN for simulating 

complex Structural Engineering problems [25, 59-

63]. 

 

4.1. Theoretical Background 
 

Various types of ANN are available, among which 

multilayer perceptron (MLP) networks are the most 

common. Every MLP neural network includes an 

input layer, one or more hidden layers, and an output 

layer (See Fig. 6). Each layer consists of artificial 

neurons interconnected to the neurons of the 

adjacent layer. The artificial neurons of the input 

layer get the data from the environment. Meanwhile, 

the neurons of other layers achieve the data from 

other neurons. In such neurons, the input data is the 

output of the connected neuron, which multiplies to 

a particular variable weight (so-called synaptic 

strength) [64]. Every neuron is associated with a 

function that operates on its input(s). In the present 

study, Feed Forward [59] MLP neural prediction 

approach was employed. MLP networks are the most 

typical types of neural networks, which are 

frequently applied in solving Structural and 

Earthquake Engineering problems. Neural network 

information passes from the input layer to the output 

one through hidden layer(s). Artificial neural 

networks require learning algorithms for predicting. 

The back-propagation technique is one of the most 

appropriate learning algorithms for MLP networks 

[41]. The connecting path of two particular neurons 

in neighboring layers is associated with a certain 

variable weight, so-called synaptic strength.  The 

input to a neuron is calculated by multiplying the 

output of the connected neuron by their synaptic 

strength. Finally, all the weighted inputs to the 

neuron are summed up as follows: 

     ∑      

 

   
 (9) 

Where n is the total number of input data to neuron j, 

xi is the output variable of neuron i and      is the 

synaptic strength of neurons i and j.  Every neuron is 

associated with a threshold value and squashing 

function. By exceeding netj from the threshold value, 
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the squashing function will be activated. Depending 

on the nature of the problem (e.g., the range of 

output values), different types of mathematical 

functions can be used as a squashing function. In this 

study, a sigmoidal function has been utilized. 

Therefore, the output of neuron j can be calculated 

as follows:  

    (    )  
 

             
 

(10) 

Every neural network is associated with a learning 

algorithm. In the present study, the back-propagation 

algorithm is employed. In such a network, the final 

goal of training is to calculate the synaptic strengths 

of links connecting the nodes utilizing the training 

examples set. To this end, the errors between the 

calculated outputs from the existing ones should be 

calculated and iteratively minimized. Different 

learning rules are available to specify how the 

synaptic strengths are modified in each of the 

iterations. The back-propagation technique is based 

on the modification of the synaptic strength in the 

output-input direction.  By feeding the input-output 

sets to the network, the computational error can be 

calculated based on the difference between the 

calculated output and the desired one. The synaptic 

strengths will be corrected in a susceptive way in the 

backward direction. The back-propagating procedure 

is stopped when the computational error is less than 

the predefined acceptable error. In this study, the 

Levenberg–Marquardt method [65, 66] is employed, 

which is a robust form of the back-propagation 

algorithm. 

 
Fig 6. MLP structure 

 

4.2. Structure of ANN 
 

In this study, the yield strength of reinforcing bars 

(   , the bridge column height (H), PGA and 

acceleration spectral intensity (ASI) parameters were 

considered as network input and the damage state 

(DS) of bridges was considered as the output. The 

results of numerical analyses were splited into two 

groups. 70% of the input-output sets have been used 

to train the ANN, while the remained 30% have been 

employed to validate the neural network. The most 

relatively appropriate structure of the MLP network 

was selected based on the Least Mean Square Error 

(MSE) and the maximum correlation coefficient of 

the fitting curve (   . Different structures of MLP 

networks were designed and their associated MSE 

and R2 were calculated. A structure associated with 

the least MSE and the highest R2 was selected as the 

most relatively appropriate network. It should be 

noted that MSE and R2 can be calculated using Eqs. 

11 and 12 respectively: 

    
 

 
∑  

 

 

   

 
(11) 

  

     
∑        

  
   

∑     
  

   

 (12) 

 

where   is the number of tries,   is the target value, 

  is the output value,    is the target of prediction as 

    is its corresponding neural prediction.  

After determining the proper structure for the neural 

network and network training, it is necessary to 

verify the network results. For this purpose, the 

neural network predictions were compared to the test 

samples, which were the results of numerical 

analyses.  Some of the comparisons of numerical 

results and neural predictions are presented in Figure 

7, considering different column heights, yield 

strength of reinforcing bars and seismic source. It 

should be noted that for the selected structure, 

   and     are calculated as 0.82 and 0.187, 

respectively. As shown in Fig. 7, neural predictions 

are consistent with the results of numerical analyses. 

Hence, the designed structure of the MLP neural 

network is capable of predicting new bridge-

earthquake cases. Ensuring the appropriate 

performance of the neural network, the network was 
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used to simulate new earthquake-bridge samples. 

Accordingly, the neural network generated 400 new 

bridge performance data. 

 

 

 

 

  
(a) (b) 

  
(c) (d) 

Fig 7. Comparison of network prediction to the results of response history analyses (a): 8-meter bridge with           for reverse fault for 

transverse direction, (b): 8-meter bridge with            for strike-slip fault for transverse direction, (c): 4-meter bridge with           for 

reverse fault for transverse direction, (d): 6-meter bridge with           for a reverse fault along the longitudinal direction 

 

5. Fragility Analysis 
 

Fragility curves are functions, which quantify the 

seismic performance of a particular structure in a 

probabilistic platform. In other words, fragility 

curves illustrate the probability of reaching or 

exceeding a particular damage state in terms of an 

intensity measure (IM) of the ground motion (e.g., 

PGA) [24]. Hence, seismic fragility curves can be 

formulized as follows: 

             
 

 
   |     

 
13 

 

in which   is a probabilistic function,   is seismic 

demand and   is the capacity of the structure.  

5.1. Definition of Damage States 
 

Defining the proper damage states is an essential 

step to perform the fragility curves of structures. The 

seismic performance of bridges during the recent 
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earthquakes has shown that the main failure mode of 

bridges is mostly related to damage to of the piers. 

Many bridge failure modes are directly or indirectly 

dependent on column failure.  Therefore, many 

researchers employ the performance characteristics 

of the columns to calculate the damage states of the 

bridge [13, 25, 67, 68]. 

The columns of the bridge are one of the most 

vulnerable parts of the bridge that can be damaged 

during an earthquake. Although failure may occur 

elsewhere in bridges, this study aims to reduce the 

column bridge damage. There are different methods 

to classify bridge vulnerabilities ATC13 [11]. 

In the basis of HAZUS [69], five levels of damage 

states are used for bridges, ranging from no damage 

to a bridge collapse. In the present study, according 

to the Hwang method [67] four limit states have 

been defined for bridges, from slight to collapse. In 

order to quantify the defined damage states, 

displacement ductility was employed considering 

Hwang methodology [68]. The displacement 

ductility ratio is defined as: 

 

     
  

  
 

(14) 

 

in which     is the displacement ductility ratio for 

the damage state  ,    is the relative displacement at 

the top of a column at the corresponding damage 

state i and     is the relative displacement of a 

column corresponding to the first yield of 

reinforcing bars: 

 

     
 

 
     

  (15) 

 

where   is considered as the distance between the 

location of the plastic hinge to contra-flexure point 

of column and    is defined as the curvature of the 

first yield of longitudinal bars in the column as 

depicted in Fig. 8. It should be noted that for the 

transversal motion of the bridge q=1 and for in 

longitudinal response q=2.  

According to Eq.14, the displacement ductility ratio 

for the first yield of the column is      .     is 

the first damage state of bridge piers. The second 

limit state        is corresponding to the plastic 

hinge formation in columns and can be calculated as 

follows: 

 

      
 

 
 
    

 

  
 

(16) 

 

where    is the defined as a curvature corresponding 

to the yield point of a column (See Fig. 8). 

Moreover, the displacement ductility for the third 

damage state         can be achieved by the 

following equation [68]: 

 

 

      
        

              

  
 

(17) 

 

 

where    and ,     denote the length and the rotation 

of the plastic hinge respectively, and can be 

estimated as follows [51] : 

 

                                 (18) 

 

 

                    (19) 

 

  

in which    is the diameter of the longitudinal 

reinforcing bars,   is the distance from the plastic 

hinge to the inflection point and     is the effective 

yield strength of the reinforcing bars.    is the 

curvature of a column when εc=0.002 or εc=0.004 

for the columns with or without lap splices. In this 

study both of these values were considered. 

Moreover, εc is the maximum compressive strain in 

the column cross-section. Finally, according to [68], 

the last limit state, corresponded to the bridge 

collapse, is                [70]. 



A. Yazdankhah et al.  

40

 

 

 
Fig 8. Moment-curvature diagram of columns 

 

5.2. Selecting an Intensity Measure 
 

Selecting an appropriate intensity measure (IM) is an 

essential step to develop reliable seismic fragility 

curves. There is a considerable lack of studies in the 

literature regarding the selection of appropriate IM 

to perform the fragility curves of bridges. A proper 

IM for fragility analysis should be sufficient so that 

its adoption results in relatively small variations in 

the seismic response of a structure for a certain IM 

level  [71]. Moreover, the distribution of structural 

response for the selected IM should be independent 

of other parameters involved to calculate seismic 

hazard [72]. Most of the previous researchers 

utilized a single intensity measurement (IM) to 

develop fragility functions.  Peak Ground Motion 

(PGA) and Spectral acceleration (Sa) are two of the 

most frequently used IMs for fragility analysis of 

bridges as they are easier to understand and more 

comparable [25, 33, 73] 

In this study, PGA and acceleration spectral intensity 

(ASI) were used as IM for fragility analysis. It 

should be noted that for a category of structures 

where their periods ranging between Ti and Tf, ASI is 

defined as: 

 

    ∫          
  

  

 
(20) 

In order to calculate the ASI of each SGM, the SRSS 

of the Sa of both horizontal components of the 

selected record was utilized. Furthermore, for the 

selected category of bridges, T1 and T2 are 0.28 Sec 

and 0.58 Sec respectively.  

 

5.3. Development of Analytical Fragility Curves 
 

Each bridge was subjected to two orthogonal 

horizontal components of the ground motions. The 

maximum absolute ductility demand determines the 

damage limit state of the bridge column for each 

seismic record. The number of bridges that reach or 

exceed a specified damage limit state is obtained by 

subjecting the models under the seismic records with 

a certain intensity measure (PGA and ASI). The 

intensity measures consider the SRSS of the two 

horizontal components of the ground motions. 

Several researches, as well as this study, adopt the 

lognormal distribution to obtain fragility curves [2, 

74-77]. Each fragility function depends on a median 

value and an associated dispersion factor (lognormal 

standard deviation) of ground motion, which is 

represented by seismic intensity measures. To select 

the parameters of the lognormal probability density 

function, the least-squares method is applied. The 

coefficient of determination (R2) determines how 

well the fitted curve relates to the data of the 

fragility functions. This indicator, which varies 

between 0 and 1, shows how closely the lognormal 

distribution obtains the estimated points and the 

smooth curve. The closer the R2   value is to 1, the 

more reliable are the estimated fragility curves. 

Finally, fragility functions of each bridge class are 

developed for the intensity measures of PGA 

employing the procedure described before. Table 5 

indicates the typical relationship between 

displacement ductility capacity and column height. It 

shows that by increasing the column height, the 

plastic hinge enhances. However, since the rotation 

of the column end decreases, the displacement 

ductility diminishes as well, as explained by 

Priestley et al. [51]. Fig. 9 depicts the fragility curve 

for data from time histories analysis for ASI and 

PGA respectively, considering 40 selected ground 

motions due to reverse and strike-slip faults. 
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Table 5 

Limit states for integral bridges  

Column 

height (m) 
4 6 8 

Fy (Mpa) 300 392 300 392 300 392 

Lp (cm) 325 375 404 455 484 534 

   0.0029 0.0037 0.003 0.0037 
0.00

3 
0.0041 

   0.0035 0.0044 0.0035 0.0044 
0.00

35 
0.0045 

   0.0145 0.0141 0.0143 0.014 
0.01

42 
0.0121 

μd2 1.21 1.19 1.17 1.19 1.17 1.10 

μd3 2.91 2.53 2.52 2.28 2.38 1.79 

μd4 5.91 5.53 5.52 5.28 5.38 4.79 

 

  

(a) (b) 

Fig 9. The comparison of fragility curves for different damage limit states, (a): ASI, (b): PGA 

 

5.4. Development of  Hybrid Fragility Curves 
 

The accuracy and efficiency of seismic fragility 

functions are remarkably dependent on the accuracy 

and sufficiency of the available data in datasets. In 

other words, larger datasets are required to derive 

more effective fragility functions. Inadequate 

information in databases may lead to unreasonable 

scatter in the results of fragility analyses [24, 78]. 

Hence, the development of an accurate analytical 

fragility curve requires a noticeable number of 

nonlinear analyses. As an enormous number of 

nonlinear analyses is costly and sometimes 

impossible (due to convergence problems), ANN-

based simulations can be used to increase the 

number of available data. Accordingly, the neural 

predictions of the selected ANN of section 4.2 were 

added to the available database to prepare a hybrid 

dataset from neural predictions and results of 

numerical analyses. The hybrid fragility curves are 

illustrated in Fig. 10. Four limit states are identified 

in Fig. 10, including slight, moderate, extensive, and 

collapse. 
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(a) (b) 

 
 

(c) (d) 

Fig 10.  Hybrid fragility curves, a) Slight, b) Moderate, c) Extensive, d) Collapse 

 

5.5. Comparison of Analytical and Hybrid 

Fragility Curves 
 

In Tables 6 and 7, the correlation coefficient of the 

PGA-based and ASI-based fragility curves are 

tabulated for analytical and hybrid curves. As 

indicated in Tables 6 and 7, the correlation 

coefficients of damage states 1 and 2 were not 

improved in hybrid fragility curves.  On the other 

hand, for damage states 3 and 4, in which analytical 

fragility curves were associated with relatively 

unreasonable correlation coefficients, hybrid curves 

had considerably more reasonable correlation 

coefficients. The tables also show that PGA-based 

fragility curves are associated with relatively greater 

correlation coefficients than ASI-based ones. Fig. 11 

illustrates the comparison of analytical and hybrid 

fragility curves constructed in terms of PGA and 

ASI. From the results presented in Tables 6 and 7, it 

is possible to infer that neural network data 

significantly improve the fragility curves for damage 

states 3 and 4. 

 
Table 6 

The correlation coefficient of fragility curve in PGA 

Earthquake parameter state Damage state  correlation coefficient 

PGA 

Without the use of neural network production data 

 

DS1 0.93 

DS2 0.89 

DS3 0.43 

DS4 0.13 

Using Neural Network Manufacturing Data DS1 0.93 

DS2 0.83 

DS3 0.48 

DS4 0.63 
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Table 7 

The correlation Coefficient of fragility Curve Based on Seismic Spectrum 

Earthquake 

parameter 

state Damage state  correlation coefficient 

ASI 

Without the use of neural network production data 

 

DS1 0.85 

DS2 0.8 

DS3 0.33 

DS4 0.15 

Using Neural Network Manufacturing Data DS1 0.87 

DS2 0.85 

DS3 0.46 

DS4 0.61 

 

  

(a) (b) 

Fig 11. The comparison of analytical and hybrid fragility curves developed in terms of (a) PGA and (b) ASI. 

 

6. Conclusions 
 

Nonlinear analyses are time-consuming and require 

a considerable amount of computer memory. They 

may also encounter convergence problems. 

Meanwhile, to achieve a reliable fragility curve, 

remarkable numbers of nonlinear analyses are 

required. Therefore, the development of fragility 

curves using nonlinear analysis is expensive, 

computationally time-consuming and sometimes 

impractical, mainly when complex structures such as 

bridges are analyzed. Therefore, soft computing 

techniques such as artificial neural networks seem to 

be proper alternatives due to their ability to reduce 

the number of analyzes in parametric studies 

In this research, the development of fragility curves 

for a series of RC bridges was investigated. Fragility 

curves are obtained based on three-dimensional 

analytical bridge models, a set of ground motion 

records from reverse and strike faults, and a 

complete analysis of the nonlinear response history. 

For this purpose, two kinds of analytical and hybrid 

curves were developed. In order to derive analytical 

fragility curves, response history analyzes were 

employed. In addition, using a trained artificial 

neural network with analytical data, the seismic 

performance of the bridges is predicted. The yield 

stress of reinforcing bars (Fy), the bridge height (H) 

as well as PGA and ASI, were considered as the 

input vectors of the artificial neural networks 

(ANN).  To this end, 1032 data were obtained.  

From history analysis outputs, 70% of data were 

used for network training and the remained (30%) 

were employed for network testing. Finally, using 

400 artificial neural network data in a wide variety 

of bridges of this study, network performance and 

results from data in the development fragility curve 

were investigated. The results revealed that neural 

prediction is an appropriate procedure for predicting 

the bridges studied in this study. Furthermore, 
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reducing the number of required response history 

analyses is proper to come by a precise fragility 

function. 

Furthermore, the efficiency of the neural prediction 

in the development of fragility curves for damage 

stats 3 and 4 (extensive and collapse) was 

considerably better than that for damage stats 1 and 

2 (slight and moderate). In other words, neural 

network simulation can efficiently improve fragility 

curves with notable scattered data. This study also 

showed that the PGA-based fragility curves were 

associated with higher correlation coefficients 

compared to ASI-based ones. 
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