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Abstract 

This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) 
methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving 
fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming 
method is based on the assumption that the optimal alternative is closer to fuzzy positive ideal solution (FPIS) and at the same time, farther 
from fuzzy negative ideal solution (FNIS).An aggregating function that is developed from LP- metric is based on the particular measure of 
‘‘closeness” to the ‘‘ideal” solution.An efficient distance measurement is utilized to calculate positive and negative ideal solutions. The 
solution process is as follows: first, the decomposition algorithm is used to divide the large-dimensional objective space into a two-
dimensional space. A multi-objective identical crisp linear programming is derived from the fuzzy linear model for solving the problem. 
Then, a single-objective large-scale linear programming problem is solved to find the optimal solution. Finally, to illustrate the proposed 
method, an illustrative example is provided. 
Keywords: TOPSIS; MCDM; MODM; Multi-Objective Large-Scale Linear Programming (MOLSLP); Block angular structure. 

1. Introduction 

Decision making is the process of selecting a course 
of actionfrom among several alternatives withrespect to 
multiple criteria. In decision making problems, the best 
solution is found while satisfying the constraints. 
Moreover, inmany decision situations, problems involve 
multiple objectives. In other words, multi-objective 
problems should be optimized simultaneously during 
decision making. Some objectives relate to maximization 
of the profit and some others deal with minimizing the 
cost (Abo-Sinna&Amer, 2005; Hu et al., 2009). The 
complexity of decision making problems is related to 
thenumber of variables. In other words, there are many 
factors in objective functions and constraints in large-
scale problems. Specially, the complexity increases 
dramatically in large-scale linear programming problems. 
Furthermore, the scope of most large-scale problems is so 
wide that they can be solved through ordinary methods in 
a shorter time. But fortunately, most large-scale 
programming problems of practical interest usually have a 

special structure that can be exploited. Block angular 
structure is one of such structures that can be used to 
formulate sub-problems (Dantzig & Wolfe, 1961; Sakawa 
et al., 1995; Sakawa, 2000; Abo-Sinna&Amer, 2005; 
Heydari et al., 2010). The block angular structure 
problems are solved by a decomposition scheme 
interpreted into a lower dimension space (Dantzig& 
Wolfe, 1961; Ho & Sundarraj, 1981). This process is 
applied to solve the large-scale linear programming 
problems (Sakawa et al., 1995; Heydari et al., 2010). 
Some exact and metaheuristic approaches are proposed to 
solve multi-objective large-scale programming problems 
where the coefficients of objective functions and 
constraints are crisp (Augusto, 2012; Abo Sinna &Abou-
El-Enien, 2014). 

Recently, some compromise decision making methods 
are extended to solve MOLSLP problems. TOPSIS was 
introduced as one of the compromise solution methods by 
Hwang and Yoon for the first time (Hwang & Yoon, 
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1981;Wang et al., 2006;Tong et al., 2007). TOPSIS is 
applied to sort alternatives in a decreasing order based on 
similarity to ideal solution which has both the shortest 
distance from the positive ideal solution, and at the same 
time, the longest distance from the negative ideal solution 
(Hwang & Yoon, 1981; Celik et al., 2009; Jiang et al., 
2011). A variety of TOPSIS algorithms and applications 
has been developed in recent years. TOPSIS has been 
widely applied to evaluate the risk analysis problems 
(Chen &Tzeng, 2004; Jiang et al., 2011). TOPSIS method 
is applied to solve multi-objective dynamics programming 
problems (Abo-Sinna, 2000). An extended method is 
present based on TOPSIS to solve the inter-company 
comparison process problems (Deng et al., 2000). 
However, a large body of TOPSIS extensions is presented 
with crisp data,whereas, due to the incomplete or non-
obtainable information, the real situation decision making 
process is based on uncertainty and vagueness data. In 
other words, many attributes are imprecise rather than 
crisp. (vahdani et al., 2010; Jolai et al., 2011).  

Fuzzy concept is one of the meaningful tools to 
describe the imprecise content. Fuzzy set theory was 
proposed as a valuable tool for handling uncertainty in 
decision parameters (Zadeh, 1965). Then the fuzzy 
programming model was suggested for decisions in 
imprecise environment (Bellman &Zadeh, 1970). Fuzzy 
programming approach was developed for 
multipleobjective linear programming problems 
(Zimmermann, 1978). Some attractive methods are 
introduced for solving multi-objective large-scale 
programming problems under uncertainty (Abou-El-
Enien, 2011; Abo Sinna&Abou-El-Enien, 2011; Sultan et 
al., 2013; Teegavarapu et al., 2013). Moreover, the fuzzy 
set concept and the MCDM methods were manipulated in 
decision-making process for solving linguistic fuzziness 
problems. TOPSIS is extended for solving multi-person 
decision making problems versus multi-criteria in fuzzy 
environment (Chen, 2000).  Later, TOPSIS was extended 
to fuzzy environments for group decision making based 
on theconcepts of positive and negative ideal points 
(Chen, 2000; Mahdavi et al., 2008). TOPSIS method was 
extended for solving multi-objective decision making 
problems under fuzzy environment (Lai et al., 1994; Celik 
et al., 2009). 

In recent years, TOPSIS method is extended as a 
compromise MCDM method to find the best solution for 
large-scale multi-objective optimization problems with 
block angular structure based on the Dantzig – Wolfe’s 
decomposing algorithm (Abo-Sinna and Amer, 2005; 
Abo-Sinna et al., 2006). The Dantzig - Wolfe 
decomposing algorithm was introduced to solve large-
scale linear optimization problems (Dantzig& Wolfe, 
1961; El-Sawy et al., 2000).  Abo-Sinna and Abou-El-
Enien proposed a TOPSIS interactive algorithm to solve 
large scale multiple objective non-linear programming 
problems with crisp parameters (Abo-Sinna et al., 2008). 
The fuzzy LSMOLP problems are applied in many field 

of science but it is difficult to obtain efficient solutions for 
these problems in a short time and efficient manner. 

In this paper, a new extended TOPSIS method is 
proposedfor solving LSMOLP problems with fuzzy 
parameters. The formulation of LSMOLP problems with 
block angular structure is solved using the Dantzig–Wolfe 
decomposition method. An aggregating function that is 
developed from LP- metric is based on the particular 
measure of ‘‘closeness” to the ‘‘ideal” solution. An 
efficient fuzzy distance measurement is utilized to 
calculate fuzzy positive ideal solutions and fuzzy negative 
ideal solutions. The solution processis as follows: first, 
the decomposition algorithm is utilized to divide the large 
dimensional objective space into a two-dimensional 
space. The two objective identical crisp linear 
programming arederived from the fuzzy programming 
model for solving the problem. Then, a single-objective 
problem is solved to find optimal solution. Finally, a 
numerical illustrative example is presented to clarify the 
main results developed in this study. 

The remainder of this paper is organized as follows. 
The problem statement is presented in the next section. In 
this section, the decomposed problem is introduced and 
then the parameters and variables are described. In section 
3, the TOPSIS solution method for fuzzy MOLSLP is 
introduced. In section 4, an example is proposed to 
illustrate the process of proposed method step by step. 
The last section is devoted to conclusion. 

2. Problem Statement 

In this paper, the fuzzy MOLSLP problem with the 

block angular structure is constructed as follows. 

푃:Max	(Min)푓 (푋, 푈 ͠͠ ) 

Max	(Min)푓 (푋, 푈 ͠͠ )								                                                (1) 

. 

. 
Max	(Min)푓 (푋, 푈 ͠͠ ) 

푆. 푡.														퐹푆

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 푔 ͠ (푥 ) ≤ 퐵 ͠͠ 푚 = 1, 2,… , 푠

푔 ͠ (푥 ) ≤ 퐵 ͠͠ 푚 = 푠 + 1,… , 푠
.																																																								.																																				
.																																																								.																																				
.																																																								.																																				

푔 ͠ (푥 ) ≤ 퐵 ͠͠ 푚 = 푠 + 1,… , 푠

퐻 ͠ (푋) = ℎ͠ (푋 ) ≤ 퐵 ͠ 푖 = 1, 2,… , w

 

 

푓(푋,푈 ͠͠ ) = 푈 ͠͠ 퐶 푋 = ∑ 푈 ͠͠ 퐶 푋 푖 = 1, 2, … , L         (2) 
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푔 ͠ (푥푖) = 푉~ 푑 푋 ; 푖 = 1, 2,… , 푠 are the inequality 
constraint functions and 퐻 ͠ (푋)  are the common 
constraints functions on 푅  which can be constrained as: 
퐻 ͠ (푋) = ∑ 푂~ 푒 푋 푖 = 1, 2, …,	 
Where푉~ = (푣 , 푣 ,푣 ),푂~ = (표 , 표 , 표 )  , 
퐵 ͠͠ = (푏 , 푏 ,푏 ) ,  퐵 ͠ = (푟 , 푠 , 푡 ) 
Model parameters: 
L   the number of objective functions 
q   the number of sub problems 
Nthe number of variables 
푁 the set of variables of the ith sub problem,  i= 1,2,. . . ,q 
푝 ith sub problem 
Rthe set of all real numbers 
퐶 anN-dimensional row vector of fuzzy parameters for the 
ith objective function 
퐶 the crisp coefficient for the jth variableof ithobjective 
function 
푑 the crisp coefficient for the jthconstraintof ithvariable 
푒 the crisp coefficient for the ith common constraint for 
the jth variable 
푈 ͠͠ anN-dimensional row vector of fuzzy parameters for 
the ith objective function  

푈 ͠͠ the fuzzy parameters for the jth variable of 
theithobjective function 
푉~ the fuzzy parameters for the ithconstraint of the jth 
variable 
푂 ~the fuzzy parameters for the jth variable of theith 
common constraint  
푊the number of common constraints on 푅  
푆 maximum amount of index for the constraints for the ith 
variable 
퐵a͠n w-dimensional column vector of right-hand sides of 
the common constraints whose elements      are constants                         
퐵 ͠ an 푆 -dimensional column vector of independent 
constraints right-hand sides whose elements are fuzzy 
parameters for the ith sub problem, i = 1,2,. . . ,q. 
Where 푋 = (푥 , 푥 , . . , 푥 )  is the N-dimensional decision 
vector.푓(푋, 푈 ͠͠ ), i=1,2,…, Lare the objective functions. It 
is assumed that the objective functions have an additively 
separable form. Using Dantzig-Wolfe decomposition 
algorithm, the fuzzy MOLSLP problem can be 
decomposed into q sub-problems. The ith sub-problem for      
i = 1, . . , q is defined as: 

 

푃

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ Max	(Min)푓 (푋, 푈 ͠͠ ) = 푓 푋 ,푈 ͠͠

∈

= 푈 ͠͠ 퐶 푋
∈

					Max	(Min)푓 (푋,푈 ͠͠ ) = 푓 푋 ,푈 ͠͠
∈

= 푈 ͠͠ 퐶 푋
∈																																																																																																																																					.																																																																																																												

																																																																																											.																																																																				(3)
																																																																																																																																			.																																																																																																													

Max	(Min)푓 (푋,푈 ͠͠ ) = 푓 푋 ,푈 ͠͠
∈

= 푈 ͠͠ 퐶 푋
∈

푆. 푡.					퐹푆 = 	

⎩
⎪
⎨

⎪
⎧ 푔 ͠ 푋

∈

≤ 퐵 ͠͠ 푚 = 푠 + 1,… , 푠

퐻 ͠ (푋) = ℎ͠ (푋 ) ≤ 퐵 ͠ 	푖 = 1, 2,… ,푤																	

 

As shown in problem (3), the ith sub problem consists of 
L objective functions. Moreover, ℎ͠ (푋 ) = 푂~ 푒 푋  
where ℎ  is the function of jth variable in ith common 
constraint and 푈 ͠  is the coefficient of the objective 
functionand 퐵i͠s the coefficient of the right-hand side of 
constraintsin problem (3). It is pointed out that all of the 
coefficients are presented as triangular fuzzy numbers. 

3. The TOPSIS Solution Method for Fuzzy MOLSLP 

In this section, the Dantzig-wolf decomposition method is 
successfully applied to decompose the original problem 

intoq independent linear sub-problems. In other words, 
the L-dimensional problem space is reduced into a one-
dimensional space by applying Dantzig-Wolfe 
decomposition algorithm. Then, the TOPSIS method is 
applied as a compromised method to aggregate the 
objectives of each sub-problem. To obtain compromise 
solution of original problem, the individual positive ideal 
solution (PIS) and negative ideal solution (NIS) are 
calculated for each objective. Applying PIS and NIS, the 
bi-objective problems are constructed for jthsub-problem. 
Afterwards, the final single-objective problem is 
constructed for each sub-problem. The mentioned single 
programming problem is solved to obtain the final 
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optimal solution. The proposed method has the following 
steps: 
Step 1.Decompose the original problem in to q sub 
problems by applying the Dantzig-wolf decomposition 

method for objective functions and constraints to reduce 
the dimension of primal problem. The ith sub problem can 
be stated as: 

 

푝

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

Max	(Min)푓 (푋,푈͠͠ ) = (푎 , 푏 , 푐 )퐶 푋
Max	(Min)푓 (푋,푈͠͠ ) = (푎 , 푏 , 푐 )퐶 푋

.

.

.
	Max	(Min)푓 (푋, 푈͠͠ ) = (푎 , 푏 , 푐 )퐶 푋

푆. 푡.							퐹푆 = 	
(푣 , 푣 , 푣 )푑 푋 ≤ (푏 , 푏 ,푏 )푚 = 푠 + 1,… , 푠
퐻͠ (푋) = ∑ 표 ,표 , 표 푒 푋 ≤ (푟 , 푠 , 푡 ) 	푖 = 1, 2, … ,푤		

                                                           (4) 

s.t .(푋 ,푋 ,… ,푋 	) ∈ 퐹푆.  

Step 2.Use a simple method to transfereach fuzzy 
programming problem in to three crisp problems. This 
method is proposed and extended to defuzing some fuzzy 
problems (Lia& Hwang, 1992; Wang & Liang, 2005; 
Torabi&Hassini, 2008). Because the coefficients of 
objective functions and constraints are assumed as 
triangular fuzzy numbers, there are three crisp objective 
functions for each fuzzy objective function.Moreover, 
each fuzzy constraint can be changed in to three crisp 
constrains. The ith sub problem is transferred as: 

푃 	: 

푃 	 :	

	Min(Max)	(푏 −푎 )퐶 푋
Max	(Min)	(푏 )퐶 푋 	

Max	(Min)	(푐 −푏 )퐶 푋 																																							(5) 

 

푃푖 	 :	
Min(Max)	(푏 −푎 )퐶 푋
Max	(Min)	(푏 )퐶 푋

Max	(Min)	(푐 −푏 )퐶 푋
																																							(6) 

 
																											.
																										.
																										.

 

푃 	 :	
Min(Max)	(푏 −푎 )퐶 푋
Max	(Min)	(푏 )퐶 푋

Max	(Min)	(푐 −푏 )퐶 푋
																																								(7) 

 

 

푆. 푡.

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 푣 푑 (푥푖) ≤ 푏

푣 푑 (푥푖) ≤ 푏
푣 푑 (푥푖) ≤ 푏

푚 = 푠 + 1,… , 푠

∑ 표 푒 푋 ≤ 푟
∑ 표 푒 푋 ≤ 푠
∑ 표 푒 푋 ≤ 푡

푖 = 1, 2,… , 푤									

          (8) 

 
Step 3. Calculate the positive ideal solution (PIS) and the 
negative ideal solution (NIS) of each objective function 
with fuzzy coefficient under the given constraints. Note 
that the values of PIS and NIS are calculated through 
solving the multi-objective problem as a single objective 
using, each time, only one objective. 
PIS: 푓 ∗ = {Max	(Min)푓 푋 	(푓 푋 , ∀푏	(∀푐)}      (9) 

NIS:푓 = {Min		(Max)푓 푋 	 푓 푋 , ∀푏	(∀푐) 		(10) 

푓 푋 Benefit objective for maximization       

푓 푋 Cost objective for maximization 

Step 4.Applying PISand NISfrom the results of step 3, 
Constructthefunctions of 푑 as shorter distance from the 
PISand 푑  as farther distance from NIS for each sub 
problem. 

푑 = ∑ 푤
∗

∗∈ + ∑ 푤
∗

∗∈       (11) 

 

푑 = ∑ 푤 ∗∈ +∑ 푤 ∗∈       (12) 

 

In order to obtain a compromise solution, the following 
bi-objective problem is introduced: 
Min 푑                                                                        (13) 
Max 푑  

푋 ∈ 퐹푆  
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We can utilize a single objective instead of problem (13) 
based on a max-min decision making model. This method 
is proposed by Bellman and Zadehand extended by 
Zimmermann (Bellman &Zadeh, 1970; Zimmermann, 
1987; Abo-Sinna et al., 2008). The steps of this model are 
shown in following steps: 
Step 4-1.Construct the two membership functions 
for푑 and 푑 ,respectively. As shown in Fig. 1. 

, Fig. 2. 

The linear membership function for the negative (or푑 ) 
objective can be defined as: 
 

휇 (푥) = ( ) ( )∗

( ) ( )∗
                                                (14) 

 

 Fig. 1. The membership function of 흁ퟏ(풙) 
 

The linear membership function for the positive (or푑 ) 
objective can be defined as: 
 

휇 (푥) = ( )∗ ( )
( )∗ ( )

                                               (15) 

(푑1
푃퐼푆)*(푑1

푃퐼푆)

1

휇2(푥)

0
 Fig. 2. The membership function of 흁ퟐ(풙) 

 
Step 4-2.Construct the final single objective problem for 
each sub problem based on the membership 
functions.Then solve it to obtain the final optimal 

solution.The problem(13) is equivalent to the form of 
following problem as: 
 

max휆 

푆. 푡.		

⎩
⎪
⎨

⎪
⎧ ( ) ( )∗

( ) ( )∗
≥ 휆

( )∗ ( )
( )∗ ( )

≥ 휆

                                          (16) 

0 ≤ 휆 ≤ 1, 푋 ∈ 퐹푆  

The final compromised solution and satisfactory level are 
obtained by solving problem (16). The flowchart of 
proposed TOPSIS method based on Dantzig-wolf 
decomposition method is depicted in Fig. 3. 

4. Illustrative Numerical Example 

The proposed compromised method is demonstrated 
by an illustrative example in this paperthat has three 
objective functions. The objective functions and 
constrains are proposed as linear on 푅 where the 
coefficient of the objective functions and constraints are 
assumed as triangular fuzzy numbers. Moreover the 
weights of objective functions are samefor all sub 
problems.The linear programming example is proposed 
as: 
P: 

max푓 (푥) = (1, 2, 3)푥 + (2, 4, 6)푥 + (1, 3, 5)푥  

max푓 (푥) = (1, 3, 5)푥 − (2, 5, 7)푥 − (1, 2, 3) 푥  (17) 

max푓 (푥) = (2, 4, 6)푥 + (1, 3, 5)푥 − (3, 6, 9) 푥  

Subjectto:      

퐹푆

=

⎩
⎨

⎧
(1, 3, 5)푥 + (2, 4, 6)푥 − (1, 2, 3)푥 ≤ (4, 8, 12)

(0, 0, 0) ≤ (2, 4, 6)푥 ≤ (5, 10, 15)
(0, 0, 0) ≤ (1, 2, 3)푥 ≤ (2, 5, 8)
(0, 0, 0) ≤ (1, 3, 5)푥 ≤ (1, 5, 9) ⎭

⎬

⎫
 

 

Then Step by Step solutionof the problem is given below. 

Fig. 1. The membership function of 휇 (휒) 

Fig. 2. The membership function of 휇 (휒) 
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Step 1.Decompose the original programming problem in 
to three sub problems, because the programming problem 

is introduced on 푅 . The decomposed sub 
problems푃 , 푃 and푃  are proposed as: 

푃: 

푃 : 
max푓 (푥) = (1,2, 3)푥  

max푓 (푥) = (1,3, 5)푥 (18) 
max푓 (푥) = (2, 4, 6)푥  

 

퐹푆 = (1,3, 5)푥 + (2,4, 6)푥 − (1, 2, 3)푥 ≤ (4,8, 12)
(0, 0, 0) ≤ (2, 4, 6)푥 ≤ (5, 10, 15)  

푃 : 

max푓 (푥) = (2,4, 6)푥 (19) 
max푓 (푥) = −(2,5, 7)푥  
max푓 (푥) = (1,3, 5)푥  

 

퐹푆 = (1,3, 5)푥 + (2,4, 6)푥 − (1,2, 3)푥 ≤ (4,8, 12)
(0, 0, 0) ≤ (1,2, 3)푥 ≤ (2,5, 8)  

푃 : 

max푓 (푥) =(1, 3, 5)푥  
max푓 (푥) = −(1,2, 3) 푥 (20) 

max푓 (푥) = −(3,6, 9)푥  
 

퐹푆 =
(1,3, 5)푥 + (2,4, 6)푥 − (1,2, 3)푥 ≤ (4,8, 12)

(0, 0, 0) ≤ (1,3, 5)푥 ≤ (1,5, 9)  

 

Step 2.UsingEqs. (5)–(8), Transfereach fuzzy 
programming problem in to three crisp problems.Because 
the coefficients of objective functions and constraints are 
assumed as triangular fuzzy numbers, Sub 
problems 푃 , 푃 and푃 are transferred in to three crisp 
objective functions programming problems. The sub 
problem 푃  can be transfer as follow: 

푃 : 

푃 :min 푓 (푥) = 푥  

max 푓 (푥) = 2푥  

max 푓 (푥) = 푥  

Subject to: 

											푋 ∈ 퐹푆 (21) 

푃 :min 푓 (푥) = 2푥  

max 푓 (푥) = 3푥  

max 푓 (푥) = 2푥  

Subject to: 

										푋 ∈ 퐹푆 (22) 

푃 :min 푓 (푥) = 2푥  

max 푓 (푥) = 4푥  

max 푓 (푥) = 2푥  

Subject to: 

											푋 ∈ 퐹푆 (23) 

Similar to first problem, the second problem can be 
transfer in to three crisp sub problems as:  

푃 : 
푃 :min 푓 (푥) = 2 푥  

max 푓 (푥) = 4푥  

max 푓 (푥) = 2 푥  

Subject to: 

		푋 ∈ 퐹푆 (24) 

푃 :min 푓 (푥) = −3 푥  

max 푓 (푥) = −5푥  

max 푓 (푥) = −2 푥  

Subject to: 

			푋 ∈ 퐹푆 (25) 

푃 :min 푓 (푥) = 2 푥  

max 푓 (푥) = 3푥  

max 푓 (푥) = 5 푥  

Subject to: 

	푋 ∈ 퐹푆 (26) 

 

Fig. 3. The flowchart of proposed TOPSIS solution method 
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The following crisp sub problems are transferred from 

third fuzzy sub problem as: 

푃 : 
푃 :min 푓 (푥) = 2푥  

max 푓 (푥) = 3푥  

max 푓 (푥) = 5푥  

Subject to: 

											푋 ∈ 퐹푆 (27) 

푃 :min 푓 (푥) = −푥  

max 푓 (푥) = −2 푥  

max 푓 (푥) = −3 푥  

Subject to: 

											푋 ∈ 퐹푆 (28) 

푃 :min 푓 (푥) = −3푥  

max 푓 (푥) = −6푥  

max 푓 (푥) = −9푥  

Subject to: 

										푋 ∈ 퐹푆 (29) 

Step 3. Appling TOPSIS method, calculate the individual 
PIS and NIS of each objective function for sub 

problems 푃 , 푃 and푃 . The obtained PIS, NIS of sub 
problem 푃 are shown in Tables1,2. 
 

PIS: 푓 ∗ = (푓 ∗, 푓 ∗, 푓 ∗) = (0.0000, 5.0000, 2.5000). 

푓 ∗ = (푓 ∗, 푓 ∗, 푓 ∗) = (0.0000, 7.5000, 5.0000) 

푓 ∗ = (푓 ∗, 푓 ∗, 푓 ∗) = (0.0000, 10.0000, 5.0000). 

 

 

 
Table 1 
PIS payoff table of (푃 ) 

  푓  푓  푓  푥  푥  푥  
 min 푓     0.0000∗ 0.0000 0.0000 0.0000 0.0000 0.0000     

푃  max 푓  2.5000    5.0000∗ 2.5000 2.5000 0.0000 0.1667 
 max 푓  2.5000 5.0000 		2.5000∗ 2.5000 0.0000 0.1667 
        
 min 푓     0.0000∗ 0.0000 0.0000 0.0000 0.0000 0.0000 

푃  max 푓  5.0000    7.5000∗ 5.0000 2.5000 0.0000 0.1667 
 max 푓  5.0000 7.5000 		5.0000∗ 2.5000 0.0000 0.1667 
        
 min 푓     0.0000∗ 0.0000 0.0000 0.0000 0.0000 0.0000 

푃  max 푓  5.0000 				10.0000∗	 5.0000 2.5000 0.0000 0.1667 
 max 푓  5.0000  10.0000 		5.0000∗ 2.5000 0.0000 0.1667 

 
Table 2  
NIS payoff table of (푃 ) 

  푓  푓  푓  푥  푥  푥 	 
 max 푓  		2.5000  5.0000 2.5000 2.5555 0.0000 0.1667 
푃  min 푓  0.0000 		0.0000  0.0000 0.0000 0.0000 0.0000 

 min 푓  0.0000     0.0000 			0.0000  0.0000 0.0000 0.0000 
        
 max 푓  5.000  7.5000 5.0000 2.5000 0.0000 0.1667 
푃  min 푓  0.0000     0.0000  0.0000 0.0000 0.0000 0.0000 

 min 푓  0.0000 0.0000 			0.0000  0.0000 0.0000 0.0000 
        
 max 푓  			5.0000    10.0000 5.0000 2.5000 0.0000 0.1667 
      푃       min 푓  0.0000     0.0000  0.0000 0.0000 0.0000 0.0000 
 min 푓  0.0000 0.0000 			0.0000  0.0000 0.0000 0.0000 

 

 

NIS:푓 = (푓 , 푓 , 푓 ) = (2.5000, 0.0000, 0.0000). 

푓 = (푓 , 푓 , 푓 ) = (5.0000, 0.0000, 0.0000) 
푓 = (푓 , 푓 , 푓 ) = (5.0000, 0.0000, 0.0000) 

Step 4. Applying PISand NISfrom the results of step 3, 

Construct the functions of 푑 as shorter distance from 

the PISand 푑  as farther distance from NIS for each sub 

problem.The values 푑 and 푑  for problem 푑 are 

calculated as follows:  

푑 = 
.

. .
+ .

. .
+ .

. .
+

.
. .

+ .
. .

+ .
. .

+
.

. .
+ .

. .
+ .

. .
     

(30) 
 

푑  
= .

. .
+ .

. .
+ .

. .
+
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.
. .

+ .
. .

+ .
. .

+
.

. .
+ .

. .
+ .

. .
 
(31) 

 
The calculated values of푑 and 푑  are proposed in 
Table 3. 
Step 4-1.Applying 푑 and 푑 from the results of Table 
7,the two membership function for the positive (or푑 ) 
objective and negative (or푑 ) objective can be defined 
as: 
휇 (푥) = −0.2667푥 + 0.6667 (32) 
휇 (푥) = −0.1333푥 + 0.4000 (33) 
Step 4-2.Final solution is obtained by solving the single 
problem (34) as: 

max휆 

−0.8000푥 + 2.8889 ≥ 휆(34) 
−0.1333푥 + 0.8333 ≥ 휆 

0 ≤ 휆 ≤ 1, 푋 ∈ 퐹푆  

휆∗ = 0.8333푥 ∗ = 0 

휆∗is the maximum satisfactory level and 푥 ∗is the final 
compromised solution for first sub problem. 
Now, we solve the second sub problem by using the 
proposed method.The individual PIS and NIS of each 
objective function for sub problems 푃  as shown in 
Tables4, 5. 

PIS: 푓 ∗ = (푓 ∗, 푓 ∗, 푓 ∗) = (0.0000, 8.0000, 4.0000). 

푓 ∗ = (푓 ∗, 푓 ∗, 푓 ∗) = (−6.0000, 0.0000, 0.0000) 

		푓 ∗ = (푓 ∗, 푓 ∗, 푓 ∗) = (0.0000, 6.0000, 4.0000) 

 

 
Table 3 
PIS payoff table of (푑 ) 

 푑  푑  푥  푥  푥  

min 푑  0.4444∗ 1.4444  2.5000 0.0000 0.1667 

max 푑  0.8333  1.8333∗ 2.5000 0.0000 0.1667 

   

Table 4 
PIS payoff table of (P ) 

  푓  푓  푓  푥  푥  푥  
 min 푓  0.0000∗ 0.0000 0.0000 0.0000 0.0000 0.0000 

푃  max 푓  4.0000 8.0000∗ 4.0000 0.0000 2.0000 0.0000 
 max 푓  4.0000 8.0000 		4.0000∗ 0.0000 2.0000 0.0000 
        
 min 푓  −6.0000∗ -10.0000 -4.0000 0.0000 2.0000 0.0000 

푃  max 푓  0.0000 0.0000∗ 0.0000 0.0000 0.0000 0.0000 
 max 푓  0.0000 0.0000 			0.0000∗ 0.0000 0.0000 0.0000 
        
 min 푓  0.0000	∗ 0.0000 0.0000 0.0000 0.0000 0.0000 

푃  max 푓  4.0000 6.0000∗ 4.0000 0.0000 2.0000 0.0000 
 max 푓  4.0000 6.0000 4.0000∗ 0.0000 2.0000 0.0000 

 

Table 5  
NIS payoff table of (푃 ) 

  푓  푓  푓  푥  푥  푥  
 max 푓  4.0000  8.0000 4.0000 0.0000 2.0000 0.0000 

푃  min 푓  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 
 min 푓  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 
        
 max 푓  0.0000	  0.0000 0.0000 0.0000 0.0000 0.0000 

푃  min 푓  -6.0000 −10.0000  -4.0000 0.0000 2.0000 0.0000 
 min 푓  -6.0000 -10.0000 −4.0000  0.0000 2.0000 0.0000 
        
 max 푓  4.0000  6.0000 4.0000 0.0000 2.0000 0.0000 

푃  min 푓  0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 
 min 푓  0.0000 0.0000 			0.0000  0.0000 0.0000 0.0000 
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NIS: 푓 = (푓 , 푓 , 푓 ) = (4.0000, 0.0000, 0.0000). 

푓 = (푓 , 푓 , 푓 ) = (0.0000,−10.0000,−4.0000) 
푓 = (푓 , 푓 , 푓 ) = (4.0000, 0.0000, 0.0000) 

Now calculate the amount of 푑 as shorter distance from 
the PISand 푑  as farther distance from NIS for second 
sub problem as: 

푑 = 
.

. .
+ .

. .
+ .

. .
+

.
. .

+ .
. .

+ .
. .

+
.

. .
+ .

. .
+ .

. .
	 

(35) 

푑  
= .

. .
+ .

. .
+

.
. .

.
. .

+ .
. .

+
.

. .
+ .

. .
+ .

. .
+

.
. .

									                                                   (36) 

The values of푑 and 푑  of second sub problem are 
proposed in Table 6. 

The membership functions for 푑 and 푑 are 
proposed respectively in Eqs (37), (38). 

휇 (푥) = −0.7334푥 + 0.6266	                                   (37) 
휇 (푥) = −0.5001푥 + 1                                             (38) 
Solving final single objective programming problem, the 
compromised solution for second sub problem is 
obtained.  

max휆 
−0.7334푥 + 0.6266 ≥ 휆(39) 

−0.5001푥 + 1 ≥ 휆 
0 ≤ 휆 ≤ 1, 푋 ∈ 퐹푆  
휆∗ = 0.5556푥 ∗ = 0 

Similar to sub problems푃 ,푃 , the values of PIS and NIS 
for sub problem 푃 ,are proposed in Tables7, 8. 

PIS: 푓 ∗ = (푓 ∗, 푓 ∗, 푓 ∗) = (0.0000, 3.0000, 2.0000). 

푓 ∗ = (푓 ∗, 푓 ∗, 푓 ∗) = (−1.0000, 0.0000, 0.0000) 

푓 ∗ = (푓 ∗, 푓 ∗, 푓 ∗) = (−3.0000, 0.0000, 0.0000) 

NIS: 푓 = (푓 , 푓 , 푓 ) = (2.0000, 0.0000, 0.0000) 

푓 = (푓 , 푓 , 푓 ) = (0.0000,−2.0000,−3.0000) 

푓 = (푓 , 푓 , 푓 ) = (0.0000,−6.0000,−3.0000) 

Appling Eqs (11), (12), we compute the values푑 and 
푑  as: 

푑 = 
.

. .
+ .

. .
+ .

. .
+

.
. .

+ .
. .

+ .
. .

+
.

. .
+ .

. .
+ .

. .
 

(40) 
 

푑  
= .

. .
+ .

. .
+ .

. .
+

.
. .

+ .
. .

+ .
. .

+
.

. .
+ .

. .
+ .

. .
 

(41) 

The values of 푑 and 푑 are proposed in Table 9. 

Using Eqs(14), (15),휇 (푥)and휇 (푥) can be obtained as 

follows: 

휇 (푥) = 푥 + 3.3333																													                          (42) 
휇 (푥) = 0.6551푥 + 0.3448                                       (43) 
After using the proposed method, the resulting solution 
and the maximum satisfactory level is obtained for sub 
problem 3 as: 
 

max휆 
푥 + 3.3333 ≥ 휆(44) 

0.6551푥 + 0.3448 ≥ 휆 
0 ≤ 휆 ≤ 1, 푋 ∈ 퐹푆  
휆∗ = 0.99996푥 ∗ = 1 

The maximum satisfactory level (휆∗ = 0.99996) is 
achieved for the compromised solution 푥 ∗ = 1 .

 
Table 6 
PIS payoff table of (푑 ) 

 푑  푑  푥  푥  푥  

min 푑     1.7500∗ 2.1667  0.0000 2.0000 0.0000     

max 푑  0.6667     1.3148∗ 0.0000 2.0000 0.0000 
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Table 7 
PIS payoff table of (푃 ) 

  푓  푓  푓  푥  푥  푥 	 
 min 푓  			0.0000∗ 0.0000 0.0000 0.0000 0.0000 0.0000 

푃  max 푓  2.0000    3.0000∗ 2.0000 0.0000 0.0000 1.0000 
 max 푓  2.0000 3.0000 		2.0000∗ 0.0000 0.0000 1.0000 
        
 min 푓  −1.0000∗	    -2.0000   -3.0000 0.0000 0.0000 1.0000 

푃  max 푓  0.0000 			0.0000∗ 0.0000 0.0000 0.0000 0.0000 
 max 푓  0.0000      0.5000  			0.0000∗ 0.0000 0.0000 0.0000 
        
 min 푓  −3.0000∗	 -6.0000 -3.0000 0.0000 0.0000 1.0000 
      푃  max 푓  0.0000 			0.0000∗ 0.0000 0.0000 0.0000 0.0000 
 max 푓  0.0000      0.5000  			0.0000∗ 0.0000 0.0000 0.0000 

 

Table 8  
NIS payoff table of (푃 ) 

  푓  푓  푓  푥  푥  푥 	 
 max 푓  			2.0000      3.0000 2.0000 0.0000 0.0000 1.0000 

푃  min 푓  0.0000 			0.0000  0.0000 0.0000 0.0000 0.0000 
 min 푓  0.0000     0.0000 			0.0000  0.0000 0.0000 0.0000 
        
 max 푓  		0.000 	 0.0000 0.0000 0.0000 0.0000 0.0000 
      푃  min 푓     -1.0000 −2.0000     -3.0000 0.0000 0.0000 1.0000 
 min 푓     -1.0000 -2.0000 	−3.0000 	 0.0000 0.0000 1.0000 
        
 max 푓  				0.0000	  0.0000 0.0000 0.0000 0.0000 0.0000 
      푃       min 푓     -3.0000 −6.0000     -3.0000 0.0000 0.0000 1.0000 
 min 푓     -3.0000 -6.0000 −3.0000 	 0.0000 0.0000 1.0000 

 

Table 9 
PIS payoff table of (푑 ) 

 푑  푑  푥  푥  푥  

min 푑     3.1111∗ 4.4111  0.0000 0.0000 0.0000     

max 푑  1.0333     2.0000∗ 0.0000 0.0000 0.0000     

5. Conclusion 

In this paper, the focus was on applying a TOPSIS 
approach as a compromise decision making method to 
deal with MOLSLP problems with block angular 
structure. Sincethe decision making parameters are not 
usually crisp to deal with the real word situation 
problems, the value of decision matrix can be presented 
with uncertainty. The dantzig-wolf decomposition method 
is utilized to decompose aN-dimension problem into some 
single-space sub-problems. Then a useful method was 
applied to transfer each fuzzy sub-problem to three crisp 
sub-problems. Moreover, the fuzzy constraints were 
changed into crisp constraints. Then the proposed 
TOPSIS method was applied to obtain a suitable 
compromise solution. To obtain compromise solution of 
original problem, the individual positive ideal solution 
(PIS) and negative ideal solution (NIS) were calculated 
for each objectiveas presented in Tables 1,2,4,5,7,8. The  
 
 
 

 
 
 
concept of membership function was introduced and 
applied to aggregate the objective functions in each sub-
problemas shown in Tables 3, 6, 9. Therefore,this method 
can help the decision maker when the coefficient of 
objective functions and constraint is not crisp and the 
problem is large-scale. Hence, it can be argued that this 
method can be applied to a large number of issues dealing 
with the real world problems.Finally, to justify the 
proposed method, an illustrative example was provided. 
The objective functions and constraints may be proposed 
as a fuzzy non-linear programming problem. In addition, 
the programming problem can be proposed as a non-
convex problem. These subjects provide a new 
opportunity for further research. 
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