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Abstract 

Integrated production-distribution planning (PDP) is one of the most important approaches in supply chain networks. We consider a supply 
chain network (SCN) consististing of multi suppliers, plants, distribution centers (DCs), and retailers. A bi-objective mixed integer linear 
programming model for integrating production-distribution designed here aim to simultaneously minimize total net costs in supply chain 
and transfer time of products for retailers. From different terms of evolutionary computations, this paper proposes a Pareto-based meta-
heuristic algorithm called multi-objective simulated annealing (MOSA) to solve the problem. To validate the results obtained, a popular 
algorithm, namely non-dominated sorting genetic algorithm (NSGA-II) is utilized as well. Since the solution-quality of proposed meta-
heuristic algorithm severely depends on their parameters, the Taguchi method is utilized to calibrate the parameters of the proposed 
algorithm. Finally, in order to probe the validity of the proposed model, a numerical example is solved and conclusions are discussed. 
Keywords: Supply chain network (SCN), Integrated production-distribution planning (PDP), Multi-objective simulated annealing (MOSA), 
Non-dominated sorting genetic algorithm (NSGA-II), Taguchi method. 

1. Introduction  

The traditional production management approaches 
that are less integrated in the following processes will lose 
their effectiveness. Supply chain (SC) as an integrated 
approach for the proper management of materials, 
products, information, and financial is capable (Chen and 
Lee, 2004). In this regard, a close relationship exists 
between design and management of flows (materials, 
information, financial) and success of a chain. A SC is 
defined as a network of facilities in order to supply 
products to final customers at the appropriate time and 
location. Thus, SC as well as transfer of the final good to 
customers will deliver it of the proper lead time. So, in 
addition to the total costs of chain which are minimized, 
the needs of the customers with high service level are also 
met (Simchi-Levi et al., 2000). The main problem in SC is 
the integrated PDP. The problem of production planning 
is decision making about the products produced by 
manufacturers (Lee and Kim, 2002; Park et al., 2007). 
Decisions related to finding a channel to deliver products 
from a manufacturer to a distributor or customer is 
distribution planning problem. These problems are 
mutually dependent; therefore, they should be 
simultaneously considered in an integrated approach (Lee 
and Kim, 2002; Rizk et al., 2005; park et al., 2007; Selim 
et al., 2008).  

 

 
 
 

Modeling and analysis of integrated PDP problems in 
SCNs have been an active area of research for many 
years. Fahimnia et al. (2013) presented a whole set of 
integrated PDP model of SCNs in different categories, 
one of which has solving methodology. The search space 
to find the optimal solution in integrated SC problems 
may contain long CPU time. For this reason, selecting an 
effective optimization technique to solve SC optimization 
models is so prominent and has always been a key subject 
in literature. To do this, a brief related literature review of 
the aforementioned solving methodologies in both of the 
single-objective and multi-objective models is presented.   

In this regard, Haq et al. (1991) proposed an integrated 
production-inventory-distribution model incorporating 
many realistic conditions to determine optimal production 
and distribution as well as inventory level. A mixed 
integer linear programming (MILP) is formulated for 
minimizing the total cost of system. Barbarosoglu and 
Ozgur (1999) used Lagrangian relaxation method in 
hierarchical design of an integrated production-
distribution in a 2-echelon system. A MILP is presented 
to minimize the total fixed and variable costs. Chen and 
lee (2004) presented a multi-product, multi-stage, and 
multi-period model with multiple incommensurable goals 
of a multi-echelon SCN as a mixed-integer nonlinear 
programming (MINLP) problem. The fuzzy sets are 
considered to describe the uncertain demands and product * Corresponding author E-mail: key_sarrafha@yahoo.com 
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prices in this model. Selim et al. (2008) developed a 
multi-objective linear programming (LP) model to 
collaborate PDP problem in a SC. A fuzzy goal 
programming is considered to incorporate decision 
maker’s imprecise aspiration levels. Ferrio and Wassick 
(2008) proposed a multi-product chemical supply network 
include production sites, an arbitrary number of DCs, and 
customer zones (CZs). This problem was formulated as a 
MILP model for redesigning and optimizing of network. 
Their model was analyzed by GAMS/CPLEX 
mathematical programming solver. Tuzkaya and Onut 
(2009) presented an integrated model to determine the 
best strategy of distribution the sub-products between 
supplier, warehouses and manufacturers. The objective 
function is minimizing total costs of the inventory, 
warehouse, manufacturer, and penalty cost for supplier, 
manufacturers and warehouses. Jolayemi (2010) 
presented an integrated MILP model with factories, DCs, 
and retailers for determining the optimal quantities of 
products to be produced, optimum inventory holding in 
factories, optimal transportation quantities to DCs, 
optimal inventory holding in DCs, and optimal quantities 
transported to retailers in each period. The model is 
introduced as production-distribution and transportation 
planning problem that two versions as the fully optimized 
version (FOV) and the less fully optimized (LFOV) is 
considered to solve it. Pishvaee and Razmi (2012) 
presented an interactive fuzzy solution approach to solve 
a multi-objective fuzzy mathematical programming model 
for an environmental supply chain network design 
(SCND) with objectives of the minimizing total cost and 
minimization of the total environmental impact. Bashiri et 
al. (2012) presented a new multi-product mathematical 
model with strategic and tactical planning and different 
time resolution decisions for a multi-echelon network. 
This model was categorized in small, medium, and large 
scales and was solved by CPLEX solver in small and 
medium size, and some heuristics to decrease solution 
time. Sadjadi and Davoudpour (2012) proposed an 
efficient Lagrangian to solve a two-echelon SCND 
problem. The problem is designed in both strategic and 
tactical levels of SC planning in deterministic, single 
period, and multi-commodity contexts, and is formulated 
as a mixed integer programming (MIP) model to 
minimize total costs of the network. Badri et al. (2013) 
developed a new multi-commodity SCND model with 
different time resolutions for strategic and tactical 
decisions. The objective function is maximizing the total 
net income over the time. A mathematical technique 
based on the Lagrangian Relaxation method was 
developed to solve the problem. Liu and Papageorgiou 
(2013) proposed a multi-objective production-distribution 
and capacity planning model by considering costs, 
response, and service level in a universal SC. Their model 
is solved by means of the ε-constraints and Lexicographic 
mini-max methods. 

Since most of the realistic SCs are complex in nature 
with a high number of variables and constraints involved, 

mathematical optimization methods such as LP and MIP 
may not be very effective in solving real world SCN 
problems (Fahimnia et al., 2013). Furthermore, due to the 
exponential growth of the problem size and complexity, 
the model would become NP-Hard and long CPU time is 
required in order to process complex mathematical 
algorithms (Park et al., 2007; Jolai et al., 2011). Hence, 
heuristic and meta-heuristic algorithms are used to solve 
the problems. In this regard, Syarif et al. (2002) designed 
a multi-echelon SCN in order to select of the plants and 
DCs to be opened and the distribution network design to 
satisfy the demand, which was solved using a spanning-
tree-based Genetic algorithm (GA). Altiparmak et al. 
(2009) presented a multi-objective network structure of 
manufacturers and CZs in which shortage is forbidden. 
The minimization of total costs and delivery time and 
balancing the capacity of the factories were objective 
functions in this problem. The objectives' weights are 
determined by using an analytic hierarchy process (AHP) 
and utilized a GA to solve the problem. Park et al. (2007) 
proposed a multi-period SC model, including supplier, 
factory, and DC with multi-product for minimizing the 
total cost, and presented a GA to solve the problem. 
Kazemi et al. (2009) proposed a multi-level SC with two 
scenarios for making their production-distribution 
decisions. A multi-agent system based on GA for each 
level by considering interplay of the levels is proposed to 
solve the problem. Chang (2010) designed a multi-
echelon SCN including suppliers, factories, DCs and 
retailers for minimizing the total costs of chain including 
purchasing and transportation cost of raw materials and 
products, manufacturing of products in factories, and 
storage cost of products in DCs. In order to help in 
finding rapidly a solution, a GA is utilized with optimum 
search features combined with a co-evolutionary mode 
and constraint-satisfaction. Amrani et al. (2011) presented 
a multi-commodity production-distribution network with 
alternative facility configuration. The problem formulated 
as a MIP model, and solved by using a variable 
neighborhood search (VNS) method.  Jolai et al. (2011) 
developed a linear multi-objectives production-
distribution model in a SCN with several products, levels, 
and periods. The decision maker's imprecise aspiration 
levels of goals are incorporated into the model using a 
fuzzy goal programming approach and solved by 
considering three meta-heuristic algorithms with a new 
fitness function in GA and particle swarm optimization 
(PSO), and an improved hybrid GA as well. Mehdizadeh 
and Afrabandpei (2012) presented a multi-stage and 
multi-product logistic network with minimizing the total 
cost of supply chain and solved it by a hybrid priority-
based genetic algorithm (pb-GA) and SA in two phases to 
find the optimal solution. Taherkhani and Seifbarghy 
(2012) proposed a multi-echelon supply chain to 
minimize the total cost of supply chain consists of 
purchasing, assembling, and transportation costs between 
levels. Then, the model is solved by a SA based heuristic. 
Kadadevaramath al. (2012) presented the modeling and 
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optimization of a three echelon SCN using the PSO / 
intelligence algorithms.  

Regarding the above literature review, as the problem 
in large size is shown strongly NP-hard, a little variety of 
solving methodology including meta-heuristic algorithms 
have been utilized to find Pareto solution sets of different 
multi-criteria SCN models. Therefore, in this paper, a bi-
objective model of an integrated PDP in a multi-echelon 
SCN is presented in which in addition to minimizing the 
total costs of the chain, service level is also considered. In 
this model, in order to improve the service level, the 
transfer time of products is optimized. Two parameter-
tuned Pareto-based algorithms are also proposed to find 
non-dominated solutions of solving the problem. The rest 
of the paper is organized as follows: problem definition 
and mathematical formulation are presented in section 2. 
Section 3 presents the proposed meta-heuristic algorithms 
proposed. Section 4 presents the Taguchi method to tune 
the parameters. Experimental data and analysis of results 
also demonstrated different problems of various sizes in 
this section. Finally, conclusion and directions for future 
research appear in section 5. 

2. Description of the Model 

A SC with some suppliers, plants, DCs, and retailers 
are considered in fixed locations. In SC of this study, the 
used raw materials of products are supplied from 
suppliers to plants, and various products produced by each 
plant if produced in the related period, are transferred to 
various distributors. Here, a distributor can be understood 
as a logistics warehouse delivering finished products from 

a plant to a retailer. In this research, the allocation 
between DCs and retailers in order to obtain suitable 
quantity of distribution is investigated. Minimization of 
total chain costs, and transfer time of products to retailers 
are the objective functions of the model. Furthermore, in 
case of retailer demands in each period are not met, the 
shortage as lost sale is different concept that is considered 
in the model’s first objective function. In this model there 
is one objective function on time and one objective 
function on cost. It is worth mentioning that, on one hand, 
we want to decrease lead time of products to retailers and, 
on the other hand, minimization of costs of all the 
echelons altogether is also required. Therefore, 
minimizing transfer times in SC may lead to an increase 
in the total cost of the supply chain. These are the reasons 
for choosing such conflicting objectives in this research. 
The proposed SCN is illustrated in Figure 1. The 
assumptions, notations and mathematical formulation for 
this SC are presented in the following section. 

2.1. Assumptions 

In the formulation of the problem, the following 
assumptions are considered: 
 A SC with several suppliers, plants, DCs and retailers 

is considered. 
 All decisions are made within multi periods. 
 There is a transportation capacity constraint for all 

periods. 
 Each plant can produce various products, and can 

produce all the products within each period. 
 The shortage as lost sale is considered for retailers. 

 
Fig. 1. The studied SCN 

2.2. Indices  

s: index of suppliers (s=1, 2, …, S) 
p: index of plants (p=1, 2, …, P) 
d: index of DCs (d=1, 2, …, D) 
c: index of retailers (r=1, 2, …, R) 
i: index of products (i=1, 2, …, I) 
t: index of time periods (t=1, 2, …, T) 

2.3. Parameters 

DErit: Amount of product i demanded by retailer r in 
period t 
CSMspt: Supply and transportation cost per unit of raw 

material from supplier s to plant p in period t 
CSEpit: Production preparation cost of product i at plant p 

in period t 
CPpit: Production cost of product i at plant p in period t 
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CHpit: Inventory holding cost of product i at plant p in 
period t 

CTpdit: Transportation and purchase cost of product i from 
plant p to DC d in period t 

CHdit: Inventory holding cost of product i at DC d in 
period t 

CTdrit: Transportation and purchase cost of product i from 
DC d to retailer r in period t 

CPTspt: Transportation capacity of raw material from 
supplier s to plant p in period t 

CPTpdt: Transportation capacity of products from plant p 
to DC d in period t 

CPTdrt: Transportation capacity of products from DC d to 
retailer r in period t 

CPPpit: Production capacity of product i at plant p in 
period t 

CPDpit: Inventory capacity of product i at plant p in period 
t 

CPDdit: Inventory capacity of product i at DC d in period t 
TSMspt: Time required to ship of raw material from 

supplier s to plant p in period t 
TPpit: Time required to produce and holding of product i 

at plant p in period t 
TTpdit: Time required to ship of product i from plant p to 

DC d in period t 
TTdrit: Time required to ship of product i from DC d to 

retailer r in period t 
CLSrit: Cost of lost sale of product i for retailer r in period 

t 

2.4. Decision variable 

QSMspt: Supply quantity per unit of raw material from 
supplier s to plant p in period t 

QPpit: Production quantity of product i at plant p in period 
t 

QSpdit: Supply quantity of product i from plant p to DC d 
in period t 

QSdrit: Supply quantity of product i from DC d to retailer r 
in period t 

Ipit: Inventory of product i at plant p in period t 
Idit: Inventory of product i at DC d in period t 
Wpit: 1, if plant p produces product i in period t, 0 

otherwise 
Ydrt: 1, if DC d is assigned to retailer r in period t, 0 

otherwise  

2.5. Objective functions 

The first objective function of the proposed model 
given in Eq. (1) minimizes total costs in supply chain 
including supply and transportation of raw material from 
suppliers to plants, production preparation and production 
in plants, inventory holding of products in plants, 
transportation and purchase of products to DCs, inventory 
holding of products in DCs, transportation and purchase 
of products to retailers, and lost sale of products. The 

second objective function given in Eq. (2) minimizes 
transfer time of products to retailers.  

푀푖푛	푍 = 퐶푆푀 × 푄푆푀

+ 퐶푆퐸 ×푊

+ 퐶푃 × 푄푃  

+ 퐶퐻 × 퐼

+ 퐶푇 × 푄푆

+ 퐶퐻

× 퐼 																											 

+ 퐶푇 × 푄푆

+ 퐶퐿푆 × (퐷퐸

− 푄푆 )																																																																													(1) 

푀푖푛	푍 = 푇푆푀 × 푄푆푀

+ 푇푃 × 푄푃

+ 푇푇 × 푄푆  

+ 푇푇

× 푄푆 																																																																																					(2) 

Subject to 
 

푌 ≥ 1																										∀ 	푟, 푡																																								(3) 

푄푆푀 ≤ 퐶푃푇 														∀	푠, 푝, 푡																																						(4) 

푄푆 ≤ 퐶푃푇 												∀ 	푝, 푑, 푡																																		(5) 
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푄푆 ≤ 퐶푃푇 × 푌 																		∀ 	푑, 푟, 푡														(6) 

푄푃 ≤ 퐶푃푃 ×푊 													∀	푝, 푖, 푡																												(7) 

푄푆 ≤ 퐷퐸 																		∀ 	푟, 푖, 푡																														(8) 

퐼 − 퐼 = 푄푃 − 푄푆 														∀	푝, 푖, 푡						(9)	 

퐼 − 퐼

= 푄푆 − 푄푆 																			∀	푑, 푖, 푡														(10)	 

푄푆푀 − 푄푃 = 0																				∀	푝, 푡											(11) 

퐼 ≤ 퐶푃퐷 															∀	푝, 푖, 푡																																								(12) 

퐼 ≤ 퐶푃퐷 																				∀	푑, 푖, 푡																																			(13) 

푄푆푀 ,푄푃 , 푄푆 ,푄푆 , 퐼 , 퐼 ≥ 0		 

	∀	푠, 푝, 푑, 푟, 푖, 푡																																																																			(14) 

푊 ,푌 ∈ {0, 1}																		∀	푝, 푑, 푟, 푖, 푡																					(15) 

퐼 , 퐼 = 0																												∀	푝, 푑, 푖																												(16) 

Constraint (3) ensures that each retailer can be 
supplied more than one DC in each period. Constraint (4) 
indicates transportation capacity of raw material to 
procurement for plants in each period. Also, constraints 
(5) and (6) show transportation capacity of products to 
ship from plants to DCs and from DCs to retailers among 
periods. Constraint (7) shows that if the product i produce 
by plant p in period t; it limits by production capacity. In 
constraint (8), the shipment quantity of each product to 
each retailer by DCs during each time period should not 
exceed the retailer demand. Equations (9) and (10) 
indicate inventory levels of products in plants and DCs in 
each time period. For instance, constraint (10) indicates 
that inventory of product i in DC d is equal to the 
inventory of product i in the previous period plus the 
quantity of product i received from plants in period t 
minus quantity of product i shipped to retailers in period t. 
Eq. (11) ensures that production quantity of products by 
each plant in each period is equal to the total supply 
quantity of raw material by suppliers. Constraints (12) and 
(13) state that inventory of product i in each period should 
not exceed the inventory capacity in plants and DCs, 
respectively. Finally, constraints (14) and (15) is the 
condition of non-negatively and binary integer of all 
variables. Note that the initial states of the inventories are 
as (16). 

3. Solving Methodology 

According to complexity of the problem in literature 
and proof by Kazemi (2009) and Joali et al. (2011), two 
Pareto-based multi-objective meta-heuristic algorithms, 
namely, the multi-objective simulated annealing (MOSA) 
and NSGA-II are implemented to solve the problem. 
Actually, we aim to introduce MOSA to the literature of 
the integrated PDP problems and NSGA-II is used to 
evaluate the performance of the MOSA. To do so, first 
some required multi-objective backgrounds are defined in 
the following.  

3.1. Preliminary concepts of multi-objective algorithms 

Consider a multi-objective model with a set of conflict 
objectives f(x) = [f (x),… , f (x)] subject to g (x) ≤ 0, 
i=1, 2, …, k, in which x ∈ X denotes n-dimensional vector 
that can get real, integer, or even Boolean value and X is 
the feasible region, domination concept for a 
minimization problem is defined as follows (Deb, 2001):  

1) 푓(푎) ≤ 	푓 푏 , 푖 = 1, 2, … ,푚 

2) ∃	푖 ∈ {1, 2, … ,푚}:	푓(푎) < 	푓 푏  
According to these conditions, solution 푎 dominates 

solution 푏 under the simultaneously existing of the two 
mentioned conditions. Based on this definition, Pareto 
optimal front is called to a set of solutions that cannot 
dominate each other. This front has two main features 
which are known as 1) good convergence and 2) good 
diversity within the solutions of the Pareto front (Deb, 
2001). 

3.2. Multi-objective simulated annealing algorithm 

Simulated annealing (SA) was first introduced by 
Kirkpatrick et al. (1983) to solve the large combinatorial 
optimization problems. This algorithm simulates the 
annealing process. In this algorithm, initially, a matter to 
melt is heated and then gradually cooled, whose structural 
properties of cold matter depend on the cooling rate. In 
this process, until the system reaches a frozen steady state, 
changes of energy are simulated. So, this idea is used to 
search the feasible solution of an optimization problem 
with the convergence goal to an optimal solution. 

SA by beginning from a current solution (X1) 
generates another solution (X2) by taking a stochastic step 
in some neighbourhood of X1. If the new solution 
improves the value of the objective function, it replaces as 
the new current solution. Otherwise, the new solution is 
accepted with a given probability. The possibility of 
moving to solutions with a higher cost characterizes, and 
enables it to away from local optimum. The probabilistic 
acceptance of the worst solution depends on the cost 
difference between the two solutions and it also decreases 
during the search. Eq. (17) inspired from thermodynamics 
models, and this probability often defines: 
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푃푟표푏푎푏푖푙푖푡푦	(푖, 푋, 푋 ) = 푒푥푝
∆

	;	 

∆푓 =
푓(푋 ) − 푓(푋)

푓(푋 ) × 100																																															(17) 

Where 푇  is the temperature at stage i. The 
temperature is kept unchanged during each stage, which 
consists of a constant number of iterations. After each 
stage, the temperature is decreased by a factor 훽 ∈ (0,1) 
that 푇  is obtained based on eq. (18) (Kirkpatrick et al, 
1983). SA differs from each other with respect to the 
various factors such as neighbourhood search, cooling 
(annealing) schedule and termination criterion.  

푇 = 훽 × 푇 ; 				푖 ≥ 2,				0 ≤ 훽 ≤ 1																														(18) 

3.2.1. Solution representation 

In this section, to represent solution, structure 
variables are used. In this representation, each of the 
structures created as part of the solution is expression of a 
feature of the solution. The structure of chromosome 
consists of three parts. The first part consists of two 
vectors with dimension of 푃 × 퐼 × 푇 and 퐷 × 푅 × 푇 that 
represents assignment of production in each period, and 
allocation between DCs and retailers in each period that 
are generated with uniform distribution as binary 
numbers. Quantity of supply, and amount of production 
and distribution of products are decisions that should be 
determined in the second part; these variables are 
generated based on the transportation capacity of all 
echelons and production capacity to produce of products. 
The third part also shows the inventory of the plants and 
DCs in each period. 

Fig. 2. The solution representation 

In the presented chromosome, if all constraints are 
satisfied, then an initial generated solution is feasible. 
Hence, a heuristic policy is determined for all the 
variables. For instance, about a typical 퐷 × 푅 × 퐼 × 푇 
structure of the solution in second part the following 
strategy is taken: 

If DC d is assigned to retailer r in period t, then, 
product i from DC d is shipped to retailer r in period t 
based on the corresponding transportation capacity. In this 
case, the number of products provided to retailer r in 

period t should be less than the transportation capacity of 
the DC in that period. Now, until the sum of products 
shipped from DC d to retailer r is more than the 
transportation capacity, a product order is selected 
randomly. Then, this difference is calculated (δ). This 
process continues until the maximum difference among 
(δ) and the amount of selected randomly product that is 
shipped from DC d to retailer r in period t, which is 
shown (), does not reach less than zero (max	(0, ∆)). In 
fact, zero is considered in order to prevent minimum 
amount of shipped product gets negative and to avoid 
solutions keep infeasible. This guarantees to generate 
feasible solutions. 

In the third part of a chromosome, the inventory 
balance constraints must be satisfied. To do this, the 
following strategy is employed for typical D × I × T 
structure: 
 If the inventory of product i for plant p in period t 

becomes negative, until this value is negative, this 
inventory (Ϫ) is obtained. Then, a uniform random 
number in (0, 1) is first generated. If the random 
number is less than a predetermined value between (0, 
1), a product order is selected randomly and as for 
production capacity, will be incorporated into 
production value. This process continues until the 
inventory of product i in plant p to in period t get out 
of negative. Otherwise, if the random number is more 
than the predetermined value, a DC is randomly 
selected to ship product until the quantity of product i 
shipped from plant p to the selected DC in period t is 
equal to the maximum difference among the shipped 
quantity to the selected DC along with Ϫ and zero. 

3.2.2. Neighborhood structure 

A new solution is generated by altering the elements 
of current solution. In this step, two elements of one 
variable are selected and their positions swap together 
(Haupt and Haupt, 2004). Figure 4 illustrates this 
operation on the quantity of product i produced by plant p 
in period t. Note that the feasibility of solutions must be 
checked in accordance with the utilized policies when this 
operation is applied on all the variables. 
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Fig. 3. An example of the neighbourhood structure 

3.2.3. Multi-objective process of MOSA 

Since designing the Pareto-based MOSA is desired 
and that the simple SA is not a population based 
algorithm, a parallel mechanism is used to increase the 
efficiency of the single objective SA. This mechanism of 
MOSA starts with setting of the initial parameters 
including, population size (popsize), Temperature (T), 
iteration number (itr), number of the implementation of 
the neighborhood structure on each solution of the 
population (num.struct), temperature reduction rate (β), 
and archive size (Archsize). Then, a population of the 
solutions is generated. In fact, in the multi-objective 
version of the SA algorithm, a number (equal to popsize) 
of the simple SA run simultaneously and create a 
population. During the iterations, Temperature (T) 
controls the possibility of the acceptance of deteriorating 
solutions. It means that, for high Temperature, 
specifically in the beginning of the search process, the 
algorithm is flexible to reach to weak solutions. However, 
at lower Temperature, which mostly happens in the final 
steps of the search process, this flexibility is more 
restricted and decreased. 

In Pareto-based multi-objective algorithms, the 
domination concept is utilized for ranking, while in a 
single-objective algorithm the objective function value is 
used to rank the solutions. In the NSGA-II algorithm, 
proposed by Deb et al. (2002), two new mechanisms are 
inserted to the simple GA. One of these mechanisms 
calculates ranks for each solution of the population 
according to the number of the dominated solutions by 
that solution. This mechanism classifies and dedicates 
solutions of the population into different fronts and is 
called fast non-dominated sorting (FNDS). To search the 
second goal named diversity, another operator named 
crowing distance (CD) was considered in NSGA-II to 
estimate the density of similar rank solutions lay 
surrounding a particular solution. Bigger values of CD 
show better solutions lying in a less crowded area. Then, a 
binary tournament selection is performed according to the 
above two operators, in which if solutions are from 
different ranks, the one with smaller rank is selected. 
Otherwise, the one with the more value of CD is selected. 

After generating a population of the solutions, 
solutions are evaluated and their objective functions are 
determined. In this step, similar to NSGA-II, ranks and 
CDs of the solutions are calculated. Then, by repetitive  

 
 

implementation of the neighbourhood structure on each 
solution of the sorted population (Pt), a new population 
(St) is developed. For solutions of St, ranks and CDs are 
calculated and a comparison is performed. In this 
comparison, if a member of St , 푆 (푖), dominates the 
corresponding same ranked solution of Pt , 푃 (푖), it is 
replaced with that. Otherwise, it is replaced if a randomly 
generated uniform number between 0 and 1 becomes less 

than 푒
∆

. In this step, a new population, called Qt , is 
generated. This replacement is mimicked from the single 
objective SA. However, instead of comparing the 
objective function values, domination is implemented. 

Now, a process like the NSGA-II evolution process is 
used to face with the multi-objective environment of the 
problem. During this mimicked process, the new 
generated population (Qt) is combined with the beginning 
population (Pt) and create a new population named Rt (Rt 
= Pt  Qt). Then, ranks and CDs are calculated and Rt is 
sorted. In this step, population of the next iteration (Pt) is 
chosen based on popsize. In the last step of this (and each) 
iteration, this population is added to the archive (At), 
where the archive is ranked and sorted again. Of course, 
in case the number of members of the archive exceeds the 
determined size of the archive (Archsize), the redundant 
worst members are omitted. Pt is the starting population 
of the next iteration. The comprehensive pseudo code of 
the MOSA is illustrated in Fig. 9. 

3.3. The employed NSGA-II algorithm 

The main difference of NSGA-II algorithm with the 
MOSA is the evolution process of the algorithm from Pt 
to Qt. In MOSA algorithm, single objective SA is 
employed as process evolution; while, in NSGA-II, the 
evolution process of a GA is used. Furthermore, NSGA-II 
uses a binary tournament selection strategy of selection 
operator. Accordingly, after generating or modifying 
populations by means of single-objective operators of the 
algorithms (GA or SA), the population is dealt in multi-
objective way in a similar fashion in all algorithms. 
Besides, to minimize the impact of using different 
operators on the performance comparison process of the 
algorithms, operators are designed identically. To do so, 
the neighbourhood structure of the MOSA is designed 
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similar to the mutation operator of NSGA-II. Other 
parameters such as the population size of all algorithms, 
and all parameters of NSGA-II are also set identically. 
Moreover, in NSGA-II the crossover operator is also 

designed similarly using a uniform crossover operator 
(Bate and Jones, 2008). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Pseudo code of the multi-objective simulated annealing algorithm 

4. Computational Results 

This section presents experimental outputs of the 
algorithms. To do so, first, some popular multi-objective 
metrics are introduced. After that, the parameters of the 
algorithms are tuned via Taguchi method. Finally, defined 
metrics are calculated on the outputs of the metrics and 
outputs are compared on different statistical tests.  

4.1. Multi-objective metrics 

In order to evaluate the performances of the two multi-

objective meta-heuristic algorithms five metrics are used 
as follows. 

1- Diversity: is used for evaluating the spread of the 
front (Zitzler and Thiele, 1998). 2- Spacing: measures the 
standard deviation of the distances among solutions of the 
Pareto front (Zitzler, 1999). 3- Mean ideal distance 
(MID): measures the convergence rate of Pareto fronts to 
a certain point (0, 0) (Zitzler and Thiele, 1998). 4- 
Number of found solutions (NOS): measures the number 
of the Pareto solutions in Pareto optimal front. 5- The 
CPU time of running the algorithms to reach near 
optimum solutions. 
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4.2. Parameter Setting 

This section is divided into two sections to present 
parameter settings of both the model and the algorithms. 
Table 1 presents generated scenario of the input data 
which are used during the experimental results.  
 
Table 1 
 Inputs of the model 

Range  Paramete
r  Range  Paramete

r 
Uniform(100,110) 퐶푇  Uniform (1500,2000) 퐷퐸  

Uniform(5,7) 푇푆푀  Uniform(20,30) 퐶푃  
Uniform(9000,1000

0) 
퐶푃퐷  Uniform(5,10) 퐶푆퐸  

Uniform(8,16) 푇푃  Uniform(25,35) 퐶푆푀  

Uniform(5000,8000) 퐶푃푇  Uniform(70,80) 퐶푇  

Uniform(2000,3000) 퐶푃푇  Uniform(10,15) 퐶퐻  

Uniform(2000,3000) 퐶푃푇  Uniform(10,15) 퐶퐿푆  

Uniform(5,7) 푇푇  Uniform(10,15) 퐶퐻  
Uniform(8000,1000

0) 퐶푃푃  Uniform(3,5) 푇푇  

 Uniform(10000,1200
0) 퐶푃퐷  

 
To assess the model, 15 test problems are generated. 

These problems are investigated in three sizes and each of 
the five problems as (S= 3, …, 7; P= 5, …, 9; D= 6, …, 
10; R= 9, …, 13) in the first size, (S= 8, …, 12; P= 10, …, 
14; D= 11, …, 15; R= 14, …, 18) in the second size, and 
(S= 13, …, 17; P= 15, …, 19; D= 16, …, 20; R= 19, …, 
23) in the third size. Besides, 5 product types at 6 time 
periods are considered in test problems.    

In order to calibrate the parameters of the proposed 
algorithms, the Taguchi method is utilized. This method is 
an experimental design methodology. Optimization of 
process parameters is the key step in the Taguchi method 
in order to achieve high quality without increasing cost. 
The greatest advantage of this method is to save the 
experimental time as well as the cost by finding out the 
significant factors by analysis (Fraley et al. 2006). One of 
the important steps involved in Taguchi’s method is 
selection of an orthogonal array (OA). The OA estimates 

the effects of factors on the response mean and variation 
and also allows investigating each effect independently 
from the others and may reduce the cost and time 
associated with the experiment when fractionated designs 
are used. To obtain optimum process parameters setting, 
Taguchi proposed a statistical measure of performance 
named the signal to noise ratio (S/N). This ratio considers 
both the mean and the variability. In addition to S/N ratio, 
ANOVA is used to indicate the influence of process 
parameters on performance measures. Taguchi proposed 
three categories of performance characteristics in the 
analysis of the S/N ratio: the higher-the-better, the 
nominal-the-better, and the smaller-the-better (Ross, 
1996). Then, the aim of the method is to maximize the 
S/N ratio. In this paper, due to minimization nature of the 
objective functions of this research, the smaller-the-better 
type of the response is used. Eq. (19) formulates S/N of 
this type of response, where Y denotes the response and n 
shows the number of OAs. 
푆
푁 	푟푎푡푖표 = 	−10 × log

푆(푌 )
푛 																																					(19) 

To conduct the Taguchi method more 
comprehensively, a response is considered in this 
research. As mentioned earlier, in Pareto based 
algorithms, two main goals including (1) good 
convergence and (2) diversity are sought. Among the 
introduced metrics in Section 4.1, CPU time and MID are 
the ones that measure the convergence rate of the 
algorithms and the others are used for modelling the 
diversity of the algorithms. Hence, MID metric is 
considered as a response.   

In order to utilize the Taguchi method, the levels of 
the factors are first determined in Table 2. As observed 
above, factors are presented in two ways, including their 
actual names along with their coded names. Moreover, 
three levels are considered for each factor involved in the 
algorithms. Then, using Minitab 14 Software, the L9 
design is used for NSGA-II. Meanwhile, the L27 design is 
employed for MOSA. The OAs of these designs along 
with experimental results are presented in Table 3 (for 
NSGA-II) and Table 4 (for MOSA). 

 
Table 2 
 Factor levels of the parameters of the algorithms 

Multi-Objective Algorithms Algorithm Parameters Parameters Range Low (1) Medium (2) High (3) 

 
NSGA-II 

nPop (A) 25-75 25 50 75 
Pc (B) 0.8-0.9 0.8 0.85 0.9 
Pm (C) 0.05-0.15 0.05 0.1 0.15 

nIter (D) 100-300 100 200 300 

MOSA 

Temprature (A) 500-1000 500 750 1000 
Redurate (B) 0.9-0.99 0.9 0.95 0.99 

MaxA (D) 100-200 100 150 200 
nPop (E) 5-15 5 10 15 
MaxIt (F) 100-300 100 200 300 

nMove (G) 5-10 5 8 10 
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Table 3 
 Computational results to tune NSGA-II 

Run Order 
Algorithm Parameters Response Value of 

NSGA-II 
A B C D MID 

1 1 1 1 1 330535843.07 
2 1 2 2 2 341198969.88 
3 1 3 3 3 326321596.91 
4 2 1 2 3 360311604.79 
5 2 2 3 1 320715432.77 
6 2 3 1 2 327413623.79 
7 3 1 3 2 360916813.15 
8 3 2 1 3 324634080.34 
9 3 3 2 1 322107772.79 

 
Table 4 
 Computational results to tune MOSA 

Run Order 
Algorithm Parameters Response Values of 

MOSA 
A B C D E F MID 

1 1 1 1 1 1 1 336668659.08 
2 1 1 1 1 2 2 355611801.44 
3 1 1 1 1 3 3 332629067.17 
4 1 2 2 2 1 1 367578473.88 
5 1 2 2 2 2 2 328843998.64 
6 1 2 2 2 3 3 354415379.90 
7 1 3 3 3 1 1 322762686.96 
8 1 3 3 3 2 2 33836353.67 
9 1 3 3 3 3 3 316023983.29 
10 2 1 2 3 1 2 371646175.10 
11 2 1 2 3 2 3 315233329.54 
12 2 1 2 3 3 1 364480480.06 
13 2 2 3 1 1 2 319295760.23 
14 2 2 3 1 2 3 348984328.52 
15 2 2 3 1 3 1 309936723.24 
16 2 3 1 2 1 2 343529243.33 
17 2 3 1 2 2 3 340698595.17 
18 2 3 1 2 3 1 323403919.07 
19 3 1 3 2 1 3 303096525.30 
20 3 1 3 2 2 1 321236506.70 
21 3 1 3 2 3 2 315396631.64 
22 3 2 1 3 1 3 327456159.79 
23 3 2 1 3 2 1 339262330.25 
24 3 2 1 3 3 2 340125537.13 
25 3 3 2 1 1 3 330154421.12 
26 3 3 2 1 2 1 355056801.90 
27 3 3 2 1 3 2 334207892.15 

 
For each algorithm, the effect plot for S/N ratio is 

presented in Fig. 5. In this figure, for each parameter the 
higher value of the S/N ratio is the factor of choosing the 
best level of that parameter in the experiment. Using the 
above results, the proper values of the parameters are 
determined and highlighted in Table 2. 

4.3. Outputs of the algorithms on the metrics 

Table 5 presents experimental outputs of the 
algorithms on the mentioned metrics. The statistical 
outputs of the metrics are summarized in Table 6. These 
algorithms are programmed by MATLAB software on a 
PC with 4-GB RAM and 2.4-GHz CPU. 

In this section, the performances of the proposed tuned 
multi-objective solving methodologies are evaluated and 
compared using the multi-objective metrics given in 
Section 4.1. Table 5 illustrates the computational results 
of employing the algorithms on the 15 test problems 
introduced in Section 4.2. Furthermore, to eliminate 
uncertainties of the solutions obtained, each problem is 
implemented five times under different random 
environments. Then, the averages of these five runs are 
treated as the ultimate responses. Moreover, the 
algorithms are statistically compared based on the 
properties of their obtained solutions via the 2-sample t-
test. The P-values of these tests on each metric are 
summarized in Table 6. We note that while in terms of the 
diversity and NOS metrics, bigger values are desired, for 
spacing, MID and CPU time, smaller values are better. 
Then, in general, based on the average of outputs in the 
last row of Table 5, it is clear for NSGA-II has better 
performance in terms of diversity and CPU time. 
Meanwhile, for other metrics, in a total view, MOSA has 
better performances. However, when the metrics are 
statistically compared, in terms of spacing, NOS, and 
CPU Time, the algorithms have significant differences. 
This conclusion is also confirmed at 95% confidence level 
based on the results given in Table 6. Furthermore, Figs. 6 
and 7 support this conclusion as graphical and interval 
plots for two spacing and NOS.  

This can be viewed as a validation signal of the test 
problems used. Besides, to clarify better performance of 
the proposed Pareto-based algorithms, the obtained Pareto 
solutions of both the algorithms on two test problem 2 and 
12 are presented in Fig. 8.  

Although the experimental results and comparisons 
above show that the proposed MOSA is a compatible 
algorithm with NSGA-II, for further explicitly and 
clarification, the outputs of the metrics are also integrated 
and the popular multi-criteria decision making method of 
TOPSIS is used here (Hwang and Yoon, 1981). Equal 
weight for all metrics is considered. Tables (7), (8), and 
(9) indicate steps of TOPSIS method to select the final 
alternative that according to the ranking obtained by 
TOPSIS, MOSA achieves the highest rank among the 
NSGA-II.  
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Fig. 5. S/N ratio of the Taguchi method for MOSA and NSGA-II 

Table 5 
 Multi-objective metrics obtained for each algorithm 

Proposed MOSA  Proposed NSGA-II 
Num 

Time MID NOS Diversity Spacing  Time MID NOS Diversity Spacing 

89.28 21773747.8 7 266111.6 48229.1  57.43 31398548.9 3 1226592.1 303091.4 1 

108.57 25424667.2 7 622827.6 55386.5  62.17 32274068.1 3 930067.9 22708.9 2 

123.39 29016149.9 4 411367.0 52158.4  70.85 29109204.2 4 476850.5 191708.9 3 

139.11 34089267.5 6 551144.8 107004.5  79.88 27370419.4 3 775791.9 98112.7 4 

153.76 33283308.2 4 558003.8 29718.5  90.18 27510848.4 3 581006.1 47050.8 5 

225.57 121572228.6 3 886899.2 103280.9  120.47 188652252.3 5 1794512.1 112724.7 6 

239.75 123145010.8 6 2243829.7 52555.1  125.09 124905285.1 3 1214184.1 170697.4 7 

261.05 108523755.5 3 374100.8 51673.9  144.67 144753365.6 3 917000.9 423645.1 8 

288.22 157111489.9 3 2686184.9 843136.6  159.72 153156143.5 5 3543518.3 884706.7 9 

307.69 147904766.9 5 1487229.9 122322.3  173.93 142023468.3 3 3239168.2 790166.4 10 

483.14 393822922.8 4 3965591.1 692295.1  278.44 413167497.0 4 3878825.3 1207687.1 11 

524.63 398592413.4 8 8605121.1 510498.4  302.17 405743636.4 4 3719551.8 1729717.1 12 

577.89 410113080.7 5 4551200.9 119545.2  328.04 445947404.3 3 9410892.5 4468780.5 13 

614.64 391584469.1 3 1849278.3 130208.9  359.25 410707425.8 4 4386453.6 1760653.1 14 

662.27 270618195.5 4 7658368.5 860571.4  380.51 412822999.1 3 4246539.1 1577897.4 15 

319.93 177705032 4.8 2447817.28 258572.32  182.19 199302838 3.53 2689396.96 919289.88 Ave 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Graphical summery of the performance of the algorithms on spacing and NOS metrics 
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Table 6 
 Statistical comparison of proposed MOSA with NSGA-II  

 
t-test 

 

P-value Result 
Diversity 0.795 H0 is not rejected 

MID 0.717 H0 is not rejected 

Time 0.03 H0 is rejected 

Spacing 0.049 H0 is rejected 

NOS 0.014 H0 is rejected 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Interval Plot of the statistical test on spacing and NOS metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Obtained Pareto-front of the algorithms on two test problem 2and 12 

 

Table 7  
Decision matrix of the problem 

Algorithm Spacing Diversity NOS MID Time 
NSGA-II 182.19 199302838 3.53 2689396.96 919289.88 

MOSA 319.93 177705032 4.8 2447817.28 258572.32 
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Table 8 
Normalized weight matrix 

Algorithm Spacing Diversity NOS MID Time 
NSGA-II 0.192528985 0.147908304 0.118490906 0.149278266 0.098970857 

MOSA 0.054153393 0.134622188 0.161120778 0.133101462 0.173795194 

 

Table 9 
Distance of each option to ideal and not ideal solutions matrix and Final ranking of proportional distance of each option to ideal solution 

Algorithm 1d   1d   CL  Ranking 

NSGA-II 0.145694198 0.075994751 0.342799005 2 

MOSA 0.075994751 0.145694198 0.657200995 1 

5. Conclusion and Future Research 

The aim of this paper is to study integrated PDP 
problem in a multi-echelon SCN with multiple products 
and at several time periods. Furthermore, if final products 
are not supplied for retailers, shortage costs as lost sale is 
considered in the model. In addition, minimizing total 
costs in SC, transfer time of products for retailers is 
considered within the bi-objective structure of the model. 
Since, the problem is NP-Hard, a Pareto-based algorithm 
called MOSA is proposed and compared with an existing 
algorithm of the literature called NSGA-II. Of course, 
first algorithms are tuned via the Taguchi method. Then, 
some multi-objective measures are used to compare the 
MOSA with the other algorithm. According to these 
results, it is proved that MOSA is a comparable 
alternative for the existing multi-objective Pareto-based 
algorithms of the literature. For future research, shortage 
cost as combined backorder and lost sales can be 
considered. Also, uncertainty of parameters such as costs, 
demands, transportation capacity, inventory capacity and 
production capacity of the problem can be extended as a 
fuzzy model and may be solved using fuzzy multi-
objective meta-heuristic algorithms. 
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