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Abstract 

The multiple traveling salesman problem (MTSP) involves scheduling m > 1 salesmen to visit a set of n > m nodes so that each node is 
visited exactly once. The objective is to minimize the total distance traveled by all the salesmen. The MTSP is an example of 
combinatorial optimization problems, and has a multiplicity of applications, mostly in the areas of routing and scheduling. In this paper, a 
modified hybrid metaheuristic algorithm called GA2OPT for solving the MTSP is proposed. In this algorithm, at the first stage, the MTSP 
is solved by the modified genetic Algorithm (GA) in each iteration, and, at the second stage, the 2-Opt local search algorithm is used for 
improving solutions for that iteration. The proposed algorithm was tested on a set of 6 benchmark instances from the TSPLIB and in all but 
four instances the best known solution was improved. For the rest instances, the quality of the produced solution deviates less than 0.01% 
from the best known solutions ever. 
Keywords: Genetic algorithm; Multiple traveling salesman problem; NP-Hard problems; 2-Opt local search algorithm. 

1. Introduction 

The multiple traveling salesman problems (MTSP) is a 
generalization of the well-known traveling salesman 
problem (TSP) (Carter [6]), where more than one 
salesman can be used in the solution. Besides, it is an 
example of combinatorial optimization problems, and has 
a multiplicity of applications mostly in the areas of 
routing and scheduling such as the School Bus Routing 
Problem (Angel [1], Orloff [14]). and the Pickup and 
Delivery Problem (Christofides [7], Savelsbergh [16]). 
Therefore, finding an efficient algorithm for the MTSP is 
important and induces to improve the solution of any 
other complex routing problems. The MTSP can in 
general be defined as follows:  
Given n>1 nodes, let there are m salesmen located at a 
single depot node. The remaining nodes that are to be 
visited are called intermediate nodes. Then, the MTSP 
consists of finding tours for all m salesmen, who all start 
and end at the depot, such that each intermediate node is 
visited exactly once and the total cost of visiting all nodes  
 

 
 
 
 
is minimized. In the MTSP, the n nodes must be 
partitioned into m tours, with each tour resulting in a TSP 
for one salesman. The MTSP is more difficult than the 
TSP because it requires assigning nodes to each salesman, 
as well as the optimal ordering of the nodes within each 
salesman’s tour (Shi [17]). 
 

 
Fig. 1. A sample of solving the MTSP 
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 The techniques used for solving the MTSP can be 
categorized into exact, heuristic and metaheuristic 
algorithms. Exact approaches for solving the MTSP are 
successfully used only for relatively small problems, but 
they guarantee optimality based on different techniques. 
These techniques apply algorithms that generate both a 
lower and an upper bound on the true minimum value of 
the problem instance. If the upper and lower bound 
coincide, a proof of optimality is achieved. There have 
been many studies in the literature proposing exact 
algorithms to solve the MTSP. These algorithms are 
based on lagrangean relaxation algorithm (Yadlapalli 
[19]), branch-and-cut method (Cordeau [8]), etc.  
Although the MTSP is conceptually simple, it is difficult 
to obtain an optimal solution (Bektas [3]). In other words, 
when the problem size is increased, the exact methods 
cannot solve it. So, heuristic or metaheuristic methods are 
necessary to be used for solving them in a reasonable 
amount of time particularly with large sizes. Some of the 
well-known heuristic algorithms are gravitational 
emulation search (Balachandar [2]), local search (Bianchi 
[4]), and lin-kernighan (Karapetyan [12]).  
A new kind of emerged algorithm basically tries to 
combine basic heuristic methods in higher level 
frameworks aimed at efficient and effective exploration 
of a search space in the last 30 years. These methods are 
nowadays commonly called metaheuristics. The term 
metaheuristic, first introduced in (Glover [10]), derives 
from the composition of two Greek words. Heuristic 
stems from the verb heuriskein which means “to find”, 
while the prefix meta means “beyond in an upper level”. 
Before this term was widely adopted, metaheuristics were 
often called modern heuristics (Reeves [15]). In general, 
it is incredibly urgent to use metaheuristic algorithms to 
solve complex optimization problems when dealing with 
them. Since the metaheuristic approaches are very 
efficient for escaping from local optimum, they are one of 
the best group algorithms for solving combinatorial 
optimization problem. That is why the recent publications 
are all based on metaheuristic approaches such as genetic 
algorithm (GA) (Kaur [13]), memetic algorithm (MA) 
(Bontoux [5]), ant system (AS) (Ghafurian [9]) and 
particle Swarm optimization (PSO) (Zhong [20]). 

While the TSP is considered to be one of the standard 
problems in the operation research and management 
science literature, the MTSP has not yet received 
extensive attention. So, in this paper, a modified GA is 
used for solving the MTSP. Furthermore, the 2-Opt local 
search is applied to increase performance of the proposed 
algorithm.  

In the following parts of this paper, a mathematical 
model of MTSP is presented in Section 2. In Section 3, 
the basic GA and the proposed idea are especially 
explained. In Section 4, the proposed algorithm is 
compared with some of the other algorithms on standard 

problems. Finally in Section 5, the conclusions are 
presented. 

2. A Mathematical Model 

Let G(V,A) be a perfect undirected connected graph 
with a vertex set {0,1, ..., }V n=  and an edge 
set {( , ) : , , }A i j i j V i j= ∈ ≠ . If the graph is not 
perfect, the lack of any edge is replaced with an edge that 
has an infinite size. For presenting the integer linear 
programming model for MTSP, the following variables 
are introduced: 

n = the number of nodes for each instance.  
m = the number of salesmen used for each instance.  
C= the cost matrix on graph G is symmetric firstly, 

and it is true in triangle inequality secondly. It means that 

ij jic c= and ij jk ikc c c+ ≥  for each ( , , 1, 2, ..., )i j k n= . 

1

0 .ij

if the salesman travels directly for i to j
x

otherwise
⎧= ⎨
⎩

.     

Hence, one of the common integer programming 
formulations for the MTSP can be written as follows: 

1 1
min

n n

ij ij
i j

c x
= =
∑∑                                                                  (1) 

1
1 2,...,

n

ij
i

x j n
=

= =∑                           (2) 

1
1

n

ij
i

x m j
=

= =∑                                      (3) 

1
1 2,...,

n

ij
j

x i n
=

= =∑                                        (4) 

1

1
n

ij
j

x m i
=

= =∑                                              (5) 

1 ( {2,..., }), 2ij
i S j N S

x S N n Sφ
∈ ∈ −

≥ ≠ ⊂ = ≥∑ ∑        (6) 

1 ( {2,..., }), 2ij
i N S j S

x S N n Sφ
∈ − ∈

≥ ≠ ⊂ = ≥∑ ∑         (7) 

{0,1}ijx ∈                                                                     (8) 

The objective function (1) minimizes the total distance 
traveled in a tour. Constraint sets (2) and (3) ensure that 
the salesmen arrive once at each node and m times at the 
depot. Constraint sets (4) and (5) ensure that the salesmen 
leave each node once and the depot m times. Constraint 
sets (6) and (7) are to avoid the presence of sub-tours for 
each salesman. Finally, Constraint set (8) defines binary 
conditions on the variables.  
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3. The Presented Algorithm 

Metaheuristic algorithms such as memetic algorithms, 
simulated annealing, particle swarm optimization, tabu 
search and so on have been successfully applied to many 
difficult optimization problems including traveling 
salesman problem, vehicle routing problem, quadratic 
assignment problem and job-shop scheduling problem, 
etc. In this section, first the Genetic Algorithm (GA) is 
explained, and then the proposed algorithm is analyzed in 
more details.  

The Genetic Algorithm 

The GA is one of the oldest metaheuristic algorithms 
that have received much attention by researchers' 
worldwide. This algorithm is an adaptive searching 
procedure for solving combinatorial optimization 
problems based on the mechanics of natural genetics and 
natural selection. 

The GA starts from a group of initial solutions called 
the initial population. Furthermore, a fitness function is 
used to evaluate the performance of the solutions. Each 
time two solutions, called parent solutions, are chosen 
from the population according to the selection probability 
which is proportional to their fitness value. Then, the two 
parent solutions crossover to produce two new solutions 
of the next generation. These new solutions will replace 
the old solutions if they have better fitness.  

Then, a mutation operation is applied to the newly-
generated solutions based on a mutation probability. 
Repeat selection, crossover, and mutation operations to 
produce more new solutions until the population size of 
the new generation is the same as that of the old one.  The 
iteration then starts from the new population. Since better 
solutions have a larger probability to be selected for 
crossover and the new solutions produced carry the 
features of their parents, it is hoped that the new 
generation will be better than the old one. The procedure 
continues until the number of generations is reached to n 
or the solution quality cannot be easily improved.  

Proposed Algorithm 

In the proposed algorithm, only one kind of 
chromosome is commonly employed for solving the 
MTSP. Fig. 2 illustrates a method for representing 
solutions to a MTSP (where n = 11 and m = 3). This 
technique involves using a single chromosome of length n 
+ m and is referred to as the ‘‘one chromosome’’ 

technique. In this technique, the n nodes are represented 
by a permutation of the integers from 1 to n. This 
permutation is partitioned into m sub-tours by the 
insertion of m negative integers (from 1 to m) that 
represent the change from one salesman to the next. In the 
example illustrated in Fig. 2, the first salesman would 
visit nodes 1 and 9 (in that order), the second salesman 
would visit nodes 10, 3, 11, 5, 4 and 2 (in that order), and 
the third salesman would visit nodes 6, 7 and 8 (in that 
order). 

 
3628 7 6 2 4 51131091

 
 
Fig. 2. Representation of the one chromosome in the proposed algorithm 

 
One of the best crossovers in terms of quality and speed is 
Order crossover yet. So, this method which is simple to 
implement has been considered here, and the modified 
crossover is proposed based on the Order crossover. In 
this crossover, a randomly chosen crossover point divides 
the parent strings in left and right substrings. The right 
substrings of the parents are selected. After selection of 
nodes the process is the same as the order crossover. The 
only difference is that instead of selecting random several 
positions in a parent tour, all the positions to the right of 
the randomly chosen crossover point are selected (Fig. 3). 
Clearly, this method allows only the generation of valid 
strings. 
Moreover, two mutations are used in the proposed 
algorithm. These operators select randomly two points in 
the string, and it replaces together (Fig. 4-1) or reverses 
the substring between these two cut points (Fig. 4-2). 
Furthermore, the vast literature on metaheuristics 
indicates that a promising approach to obtaining high-
quality solutions is to couple a local search such as 2-opt 
algorithm when attaining a better solution compared to 
the previous iterations. In fact, the probability of finding 
better solutions near a good solution is relatively high in 
this situation. The 2-opt heuristic tries to improve route 
by replacing its two non-adjacent edges by two other 
edges (Fig. 5). It should be noted that there are several 
routes for connecting nodes and producing the tour again, 
but a state that satisfies the problem’s constraints is 
acceptable. So, this unique tour will be accepted only if, 
first, the above constraints are not violated and, second, 
the new tour produces a better value for the problem than 
the previous solution. The process is repeated until no 
further reduction of route length is possible.  

 

  
                                                         Fig. 3. a. Randomized selection number of genes in each chromosome 
                                                                     b. finding arrangement these genes in another chromosome       
                                                                            c. replacement these genes on based new arrangement 

2  3  1  6  5  4 | 2 4                         2  *  1  *  *  4 | 2 4                         2  3  1  5  6  4 | 2 4        
1  3  4  2  5  6 | 3 3                         1  3  *  *  *  6 | 3 3                         1  3  2  5  4  6 | 3 3 
          (1)                                                   (2)                                                 (3) 
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Fig. 4. Two mutations used for a chromosome 

 

 
Fig. 5. The 2-opt algorithm 

 
A pseudo-code of the proposed algorithm for the MTSP is presented in the Fig. 6 below. 

 
     procedure  GA2OPT algorithm 

S:= none;                                                    // S is population of solutions // 
n= the number of nodes; 
if n is even then nn:=n else  nn:=n+1;        // the number of chromosomes // 
l:= int[n/10] ;                                             // l is the number of used mutations in each iteration // 

                *s  is the random solution;                          // *s  is the best solution found yet // 

               
*f is value of  

*s ;                                      // *f  is the best value found yet // 
for i:= 1 to n do                                 // main cycle // 
        for j:= 1 to nn do 

     Construct a solution is as Fig. 2; 

      Find value of the is and call it ( )if s ; 

      S=S isU ; 

 end 
         for j := 1 to nn do 
                   if j is odd then  
                         begin 

                         do crossover for js  and 1js
+

 as Fig. 3 and called them
*
is  and

*
1is + ; 

                         if values of 
*
js  and

*
1js + are better than js  and 1js

+
respectively, then replaced them; 

                         end 
                   end 
          end 
         select l number chromosomes from S and do mutation for them; 
         if new solutions based on mutations are better than before, then replace new solutions and their values; 

                                       find the best solution and  value of S and called
*
is  and 

*( )if s  

if **( )if s f< then 

begin  

         apply 2-opt local search to *
is ; 

* *: ( )
i

f f s= ; 

* * ;
i

ss =  

end // save the best so far solution // 
                   end 

     show 
*s  and 

*f  
 end // procedure // 

Fig. 6. Pseudo-code of the proposed algorithm 
 

                                                       2  5  1  6  3  4 | 2 4      (1) 
2  3  1  6  5  4 | 2 4 
                                                  2  5  6  1  3  4 | 2 4      (2)         
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4. Experiments and Computational Results  

     Some numerical results of comparison between the 
proposed algorithm and several metaheuristic algorithms 
are presented in this section. The proposed algorithm is 
coded in Matlab and implemented on a Pentium 4 3 GHZ 
(512 MB RAM), operation system is windows XP. The 
proposed algorithm will be stopped after n iterations. To 
reveal the variability of the GA2OPT’s performance from 
one run to another, 10 runs are carried out for each 
instance with different random numbers. 

In these tests, the efficiency and performance of the 
proposed algorithm (PA) is compared with some of the 
best techniques designed including modified genetic 
Algorithm (MGA) [18] and Modified Ant Colony 
Algorithm (MACA) [11]. These algorithms are applied 
and tested on several instances from TSP problems 
available on the TSPLIB including Pr76, Pr152, Pr226, 
Pr299, Pr439 and Pr1002.  

Table 1 illustrates the characteristics of the six problem 
instances pointed out above. These problems range in size 
from n=76 to n=1002 nodes. All problems are Euclidean, 
and their distances are compared with real numbers. 
Columns 2-6 show the problem size n, the number of 
salesmen m, the max number of customers that a 
salesman can visit l, the number of runs that carried out 
for each instance tb, the number of iterations that the 
proposed algorithm will be stopped after no improvement 
T. Additionally, in order to recognize the performance of 
the method, the best solutions published in the literature 
and also on the web BKS, are presented in column 7.  

Table 1 
The characteristics of the six problem instances 

Instance n M l tb T BKS 
P r 7 6 76  5 20  10  76  157444  
P r 1 5 2 152  5 40  10  152  127839  
P r 2 2 6 226  5 50  10  226  166827  
P r 2 9 9 299  5 70  10  299  82106  
P r 4 3 9 439  5 100  10  439  161955  
Pr1002 1002  5 220  10  1002  382198  

 
Table 2 shows the comparison of the proposed 

algorithm with the published results. The first column 
depicts the various instances, whereas columns 2-3 
specify the two well-known and best published results 
obtained using metaheuristic algorithms. Furthermore, 
column 4 refers to the best result of the proposed method 
for these instances; column 5 presents the best result 
published in the literature and also on the web for these 
instances and finally; column 6 shows the mean gap 
values. It is noted that the gap is defined as the percentage 
of deviation from the best known solution in the 
literature. In other words, the gap is equal to 

−** * *100[ ( ) ( )] / ( ),c s c s c s  where **s  is the best solution 

found by the algorithm for a given instance, and *s is the 

overall best known solution for the same instance on the 
Web. 

The results of the comparison show that the GA2OPT 
has the ability for escaping from local optimum points 
and find the best solutions for most of the instances. 
Besides, the proposed algorithm yields better solutions 
than the MGA and MACO for some of the instances. 
More specifically, the results of this comparison show 
that the proposed algorithm gains worse solutions than 
the MGA in Pr152, and it gains better solutions than the 
MGA in the other problems from Pr76 to Pr1002. 
 
Table 2 
Comparison of algorithms for standard problems of MTSP  

instance MGA [18]MACO[11] GA2OPT BKS Gap 
P r 7 6157444  178597  1 5 7 4 4 0 157444 +0.00 
P r 1 5 2127839  130953  127852 127839 -0.01 
P r 2 2 6166827  167646  166817 166827 +0.00 
P r 2 9 982176  82106  82095 82106 +0.01 
P r 4 3 9173839  161955  162150 161955 -0.01 
P r 1 0 0 2427269  382198  382185 382198 +0.00 

 
Furthermore, the results indicate that although the 

MACO gives a better solution than the proposed 
algorithm for one instance in the name of Pr439, this 
algorithm cannot gain optimal solutions for the others and 
yields less solution than the proposed algorithm. The 
Computational experiments also show that, in general, the 
proposed algorithm gives better results compared to other 
two algorithms including the MGA and the MACO 
algorithms in terms of quality of solution. 

 
Fig. 7. Result of the proposed algorithm for two instances including 

Pr152 (left curve) and Pr76 (right curve) 
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To show exactly the correctness and effectiveness of 
the proposed algorithm, Figure 7 illustrates 2 traveling 
salesmen problems with 76 and 152 nodes. This figure 
represents the results and the convergence curve of the 
proposed algorithm. In the two curves, the vertical axis 
shows the total distance gained by the algorithm and the 
horizontal axis shows the number of iteration as 
termination conditions of the proposed algorithm.  

In Figure 8, the values obtained by the proposed 
algorithm, MACO and MGA are shown. The results 
indicate that although the MGA has a very good ability 
for small problems, the MACO has an approximately 
similar behavior for large problems, and can converge to 
the best solutions. However, this ability for the proposed 
algorithm is satisfied for all of the instances. 
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Fig. 8. Comparison between gap of the proposed algorithm and other 

metaheuristic algorithms 

5. Conclusions 

In this paper, a hybrid algorithm combining modified 
GA and 2-opt local search was proposed for solving the 
MTSP. The GA2OPT is more efficient than the modified 
ant colony optimization and modified genetic algorithm. 
For large-size problems, in particular, this algorithm 
yields better solutions compared with the previous 
algorithms. Also it seems that the combination of the 
proposed algorithm with other metaheuristics algorithms 
including simulated annealing, ant colony optimization, 
tabu search, etc. will yield better results. Furthermore, 
using this proposed algorithm for all versions of the 
vehicle routing problem is suggested for future research.  
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