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Abstract 

Facility location-allocation models are used in a widespread variety of applications to determine the number of required facility along with 

the relevant allocation process. In this paper, a new mathematical model for the capacitated multi-facility location-allocation problem with 

probabilistic customer's locations and fuzzy customer’s demands under the Hurwicz criterion is proposed. This model is formulated as α-

cost minimization model according to different criteria. Since our problem is strictly Np-hard, a new hybrid intelligent algorithm is 

presented to solve the stochastic-fuzzy model. The proposed algorithm is based on a vibration damping optimization (VDO) algorithm 

which is combined with the simplex algorithm and fuzzy simulation (SFVDO). Finally, a numerical example is presented to illustrate the 

capability of the proposed solving methodologies.  

Keywords: Fuzzy simulation, Location-allocation problem, Vibration damping optimizatio.

1. Introduction 

Location-allocation (LA) problem aims to locate a set 

of new facilities such that the transportation cost from 

facilities to customers is minimized. This problem, 

initially introduced by Cooper [9], has been studied by 

many researchers in the past years. LA problem was 

studied in detail in Gen and Cheng [13, 14] where not 

only all types of cases were discussed but also many 

models were developed.  

Logendran and Terrell [22] firstly introduced the 

stochastic uncapacitated facility Location-allocation 

(FLA) model. Zhou [32] proposed the expected value 

model, chance-constrained programming and dependent-

chance programming for uncapacitated LA problem with 

stochastic demands. To solve LA models, numerous 

solving methodologies have been presented. It is worth 

mentioning that Sherali and Nordai [29] showed that 

capacitated LA problem is NP-hard even if all the 

customers are located on a straight line. The capacitated 

continuous location–allocation problem is also called 

capacitated multi source Weber problem. Kuenne and 

Soland [18] used a branch-and-bound algorithm to obtain 

the outputs of their proposed model. Aras et al. [2]  

 

 

 

 

proposed a new heuristic method for the capacitated 

multi-facility Weber problem. The capacitated multi-

facility Weber problem is concerned with locating m 

facilities in the Euclidean plane and allocating their 

capacities to n customers at minimum total cost. Durmas 

et al. [11] presented the discrete approximation heuristics 

for the capacitated continuous location–allocation 

problem with probabilistic customer locations. Altinel et 

al. [3] presented the location-allocation heuristic for the 

capacitated multi-facility Weber problem with 

probabilistic customer locations. Furthermore, many 

meta-heuristic algorithms involving simulated annealing 

(SA) were designed by Murray and Church [26]; tabu 

search by Ohlemuller [27], and so on. Some hybrid 

algorithms have also been developed such as combination 

of simulated annealing and random descent method by 

Ernst and Krishnamoorthy [12] and combination of the 

Lagrange relaxation method and genetic algorithm (GA) 

by Gong et al. [15]. Zhou and Liu [34] proposed the 

expected value model, chance-constrained programming 

and dependent-chance programming for capacitated LA 

problem with stochastic demands.  
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To make the models more realistic, many researches 

assumed that customer’s demand is stochastic, while in a 

vast range of situations it is not applicable. The reason is 

that due to the lack of data in such situations, the 

estimations of probability distributions for demands of 

customers are complicated. In this regard, expert 

viewpoints are analyzed to estimate the corresponding 

parameters. To do so, the incorporation of fuzzy set 

theory into LA problem has been carried out in recent 

researches. In the past decades, there have been many 

researchers bringing fuzzy theory into facility location 

problem. Bhattacharya et al. [4, 5] considered new 

facilities to be located under multiple fuzzy criteria. They 

also proposed a fuzzy goal programming approach to deal 

with such problems. Canos et al. [6] categorized 

quantitative fuzzy models. They specifically discussed the 

classical p-median problem as a fuzzy model. Chen and 

Wei [7], Darzentas [10], Rao and Saraswati [28] 

discussed various facility location problems in fuzzy 

environment. However, all the parameters in these 

problems are deterministic, and fuzzy theory is only used 

to solve the classical mathematical programming 

effectively. Zhou and Liu [35] proposed three types of 

programming models with fuzzy demands-fuzzy expected 

cost minimization model, fuzzy α-cost minimization 

model, and credibility maximization model based on 

different decision criteria. To solve these fuzzy models 

efficiently, the network simplex algorithm, fuzzy 

simulation and GA are hybridized to produce a hybrid 

intelligent algorithm.  
One of the most familiar criteria which are more useful 

in uncertainty environments is the optimistic and 

pessimistic criterion. In this regard, various criteria have 

been proposed as a list of properties of rationality and 

consistency [8, 25]. The most well-known criteria is the 

Hurwicz criterion presented by Hurwicz [16, 17]. This 

criterion attempts to find a middle ground between the 

extremes posed by the optimistic and pessimistic criteria. 

Instead of assuming total optimism or pessimism, the 

Hurwicz criterion incorporates a measure of both by 

assigning a certain percentage weight λ to optimism and 

1- λ to pessimism � ∈ �0,1�. Many researchers use the 

optimistic criterion or pessimistic criterion to model the 

FLA problem, which are both extreme cases. In order to 

compromise these two models, we employed the Hurwicz 

criterion to model the FLA problem. 

As a state-of-the-art study, Wen and Iwamura [31] 

proposed a new model, namely, α-cost model under the 

Hurwicz criterion with fuzzy demands. In order to solve 

the model, the simplex algorithm, fuzzy simulations, and 

GA have been integrated to propose a hybrid intelligent 

algorithm. In the solving methodologies area, Mehdizadeh 

and Tavakkoli-Moghaddam [23] introduced a new meta-

heuristic algorithm namely vibration damping 

optimization (VDO) which was used to solve parallel 

machine scheduling problem. This stochastic search 

method is inspired by SA algorithm and is created based 

on the concept of the vibration damping in mechanical 

vibration.  

The goal of this paper is to propose a new 

mathematical model for the capacitated multi-facility 

location allocation problem with probabilistic customer's 

locations and fuzzy customer’s demands under the 

Hurwicz criterion. To this end, the proposed LA model is 

formulated as α-cost minimization model under different 

criteria. To solve this stochastic-fuzzy model, a new 

hybrid intelligent algorithm is presented. The proposed 

algorithm is based on VDO algorithm which is combined 

with the simplex algorithm and fuzzy simulation 

(SFVDO).  

The paper is organized as follows: In Section 2, first, 

we review the concept of possibility space and credibility 

of fuzzy variable. Afterwards, the proposed LA problem 

as fuzzy α-cost minimization model under the Hurwicz 

criterion is modeled. The evaluation of the expected 

distance is carried out in Section 3. The proposed hybrid 

intelligent algorithm is represented in Section 4. Finally, 

Section 5 provides a numerical example to illustrate the 

capability of the proposed solving methodologies. 

2. The Proposed Fuzzy Location-Allocation Model 

First, we briefly review the concepts of possibility 

space and credibility of fuzzy event and then we describe 

the proposed model in details. 

Let δ be a nonempty set, P(δ) the power set of δ, and 

Pos a possibility measure. Then, the triplet (δ,P(δ),Pos) is 

called a possibility space. A fuzzy variable is defined as a 

function from a possibility space (δ,P(δ),Pos) to the set of 

real numbers.  

Suppose that v is a fuzzy variable with membership 

function µ. Then, the possibility, necessity, and credibility 

of a fuzzy event 	
 ≥ �
 can be respectively defined as 

Eq. (1). 

{ } sup ( )
u r

Pos v r uµ
≥

≥ =
                                              (1)

 

{ } 1 sup ( )
u r

Nec v r uµ
<

≥ = −  

1
{ } ( { } { })

2
Cr v r Pos v r Nec v r≥ = ≥ + ≥  

Note that a fuzzy event may fail even though its 

possibility achieves one, and hold even though its 

necessity is zero. However, the fuzzy event must hold if 

its credibility is one, and must fail if it is zero. 

It should be mentioned that our proposed model is 

formulated using two well-known models which are the 

capacitated location allocation problem with fuzzy 

demands under the Hurwicz criterion (proposed by Wen 

and Iwamura [31]) and the capacitated multi-facility 
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Weber problem with probabilistic customer locations 

(proposed by Altinel et al. [3]). To do that, the following 

indices, parameters, and decision variables are used: 

i: Index of facilities; � = 1,2, … , �  

j: Index of customers; � = 1,2, … , �
 
 

�� = (���, ���): Location of customer j; 1 ≤ � ≤ �
  

 


�: Fuzzy demand of customer j; 1 ≤ � ≤ � 

Si: Capacity of facility i ;  1 ≤ � ≤ � 

�� = (���, ���): Location of facility i as a decision variable; 

1 ≤ � ≤ � 

ij
z : Quantity supplied to customer j by facility i  after the 

fuzzy demands are realized, 1 ≤ � ≤ �; 1 ≤ � ≤ �. 

In order to formulate the model, we assumed that the 

path between any customer and facility is connected and 

unit transportation cost is proportionate of the quantity 

supplied and the travel distance and facility i which 

located within a certain region as Eq. (2): 

 

1 2 1 2{( , ) | ( , ) 0}i i i i i iR x x g x x= ≤
                              (2) 

 

For the sake of convenience, the following notation is 

denoted as Eq. (3). 

v = (
1v ,

2v  ,…,
mv )  

11 12

21 22

1 2n n

x x

x x
X

x x

 
 
 =
 
 
 

⋯ ⋯

           

11 12 1

21 22 2

1 2

m

m

n n nm

z z z

z z z
Z

z z z

 
 
 =
 
 
 

⋯

⋯

⋯ ⋯ ⋯ ⋯

⋯

                               (3) 

 

In a deterministic LA problem, X and Z are decision 

variables, and Z is decided along with X. However, in a 

LA problem with fuzzy demands, the decision Z will be 

made every period after the fuzzy demands are realized. 

For eachθ δ∈ , the value vj(θ) is a realization of vj for 

each j. It should be mentioned that an allocation z is 

feasible if z is in the feasible allocation set as follows 

1

1

0, 1,2,..., , 1,2,...,

( ) | ( ), 1,2,...,

, 1,2,...,

ij

n

ij j

i

m

ij i

j

z i n j m

Z z z v j m

z s i n

θ θ
=

=




≥ = =


= = =



≤ =


∑

∑
                     

Note that Z(θ) is to be an empty set for some θ. For each 

fixed (���, ���), we should determine the optimal 

allocation z* for each � ∈   in order to minimize the 

transportation cost !("|�$) where 

( )
1 1

( ) m in ( ( , ) )
n m

i j i j
z z

i j

C X z E d x a
θ

θ
∈

= =

= ∑ ∑|
          

If Z(θ) is an empty set, Eq. (6) can be defined 

1
1

( ) ( ) m a x ( ( , ) )
m

j i j
i n

j

C X v E d x aθ θ
≤ ≤

=

= ∑|
  

 

As mentioned earlier, since the demands of customers 

and locations of customers are fuzzy and probabilistic, 

respectively, the transportation cost C(X|θ) will be 

stochastic-fuzzy. It is meaningless to minimize the 

transportation cost directly; therefore we should attempt 

to utilize other methods to model it. 

2.1. Hurwicz Criterion 

In the early 1950s, investigating various criteria for 

decision making attracted many scholars. In particular, the 

decision-theoretic view of statistics advanced by Wald 

[30] had an obvious interpretation in terms of decision-

making under complete ignorance, in which the maximin 

strategy was shown to be a best response against natures’ 

minimax strategy. Wald’s criterion is extremely 

conservative even in a context of complete ignorance, 

though ultra-conservatism may sometimes make good 

sense. Several other criteria were proposed in which a list 

of properties of rationality and consistency were set forth 

as a set of axioms to be obeyed by a rational criterion [8, 

25]. The most well-known criterion is the Hurwicz 

criterion, developed by Leonid Hurwicz [16] in 1951, 

which selects the minimum and maximum payoff to each 

given action x, and then associates to each action as the 

following index:  

max( ) (1 ) min( ).x xλ λ+ −  
Applying Hurwicz criterion to this study, we get the 

Hurwicz criterion under fuzzy environment: 

 

min max( ) (1 ) ( )f fλ α λ α+ −
                                        

where min ( )f α and max ( )f α  are the α-optimistic and α-

pessimistic values defined as following equations: 

 

min
( ) min{ | { ( , | ) } }

f
f f Cr C x y fα θ α= ≤ ≥

             

(4)

 

(5) 

 
 

 

(6) 

(7) 

 

 

 

 

(8) 
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max ( ) max{ | { ( , | ) } }
f

f f Cr C x y fα θ α= ≥ ≥
    

(9) 

    
The parameter % ∈ (0,1� reflects the level of satisfying 

the event C(x,y|θ)≤ f
 
or C(x,y|θ)≥ f. This means that the 

transportation cost will be blow the α-optimistic value 

fmin(α) with credibility α and will reach upwards of α-

pessimistic value fmax(α) with credibility α. According to 

Hurwicz criterion, the parameter � ∈ �0,1� which reflects 

the degree of the decision maker’s optimism, must be 

determined by the decision maker. Generally speaking, it 

is difficult to determine the appropriate λ for decision 

makers, since it varies from person to person. By varying 

the parameter λ, the Hurwicz criterion changes into 

various criteria, e.g., when λ=1, the criterion is the 

optimistic criterion; when λ=0, it degenerate to a 

pessimistic criterion. This implies that the Hurwicz 

criterion is fairly flexible. 

2.2. α-cost Minimization Model 

Chance-constrained programming (CCP) is also 

applied to solve the practical optimization problems with 

the requirement that the chance constraints should hold 

with at least some given confidence levels provided as an 

appropriate safety margin by the decision-maker. In [27, 

28], CCP was applied into stochastic un capacitated and 

capacitated LA problem, respectively, to meet such a type 

of requirement. A framework of fuzzy CCP has been 

presented in Liu and Iwamura [20, 21] and Liu [19]. In a 

stochastic-fuzzy LA problem, the decision-maker may 

just want to obtain the optimization goals with some 

stochastic and fuzzy constraints holding at least some 

confidence levels. In this article, a novel α-cost 

minimization model is proposed based on a new concept 

of α-cost. The α-cost of a stochastic-fuzzy LA problem is 

defined as min { ( ) }Cr f C X fθ α≤ ≥| | where α is the 

predetermined confidence level. In order to minimize the 

α-cost of a stochastic-fuzzy LA problem, the following 

mathematical α-cost minimization model is presented: 

   X
Minimize f

 
Subject to: 

 

{ ( ) }Cr C X fθ δ θ α∈ ≤ ≥| |                                
 

1 2( , ) 0, 1,..., , 1, 2,...,k i ig x x i n k p≤ = =  

 

where f is called α-optimistic transportation cost, and 

C(X|θ) is defined by Eq.(5) and Eq.(6). Therefore, we 

provided the FLA model to minimize the α-pessimistic 

transportation cost as Eq. (11). 

 

X
Minimize Max f

 

Subject to: 

 

{ ( ) }Cr C X fθ δ θ α∈ ≥ ≥| |                                          
 

1 2( , ) 0, 1,..., , 1, 2,...,k i ig x x i n k p≤ = =
 

 

2.3. α-cost Model Under the Hurwicz Criterion 

The α-cost model, as one of the most frequently used 

models in FLA problem, follows to minimize the 

optimistic value or pessimistic value [33, 35]. In order to 

compromise these two extreme models, we utilized the 

Hurwicz criterion to model the FLA problem, named α-

cost model under the Hurwicz criterion. 

1 2

1 2

1

2

1 2

( min (1 ) max )

{ | ( | ) } ,

{ | ( | ) } ,

( , ) 0, 1,2,..., , 1, 2,...,

fX f

k i i

Minimize f f

subject to Cr C X f

Cr C X f

g x x k p i n

λ λ

θ δ θ α

θ δ θ α

+ −



∈ ≤ ≥
 ∈ ≥ ≥


≤ = =        

 

 
where � ∈ �0,1�. This model is different from the 

traditional stochastic-fuzzy programming models because 

there is a sub-optimal problem in the model, i.e. 

( )
1 1

( ( , ))
n m

ij i j
z Z

i j

Minimize z E d x a
θ∈

= =

∑∑
 

Subject to: 

1

( ) , 1 , . . . ,

n

i j j
i

z v j mθ
=

= =∑
              

1

, 1 , . . . ,

m

i j i
j

z s i n
=

≤ =∑
      

0 , 1,..., 1,...,ijZ i n j m≥ = =
 

 

The objective of the above model is to get total cost 

C(X|θ). In this model, the parameter λ should be decided 

in advance. The process of decision making λ may be 

different, e.g. it can be made completely by decision 

makers, investigation and analysis, and even history data. 

In short, the parameter λ is dissimilar in various cases 

with different methods. This fact means that the α-cost 

minimization model under the Hurwicz criterion is fairly 

flexible by varying the value λ, e.g., when λ=1, the model 

degenerates to the α-cost minimization model (11). 

3. Expected Distance Evaluation 

In this paper, to evaluate expected distances, the forms 

proposed by Aly and White [1] are presented in two 

different states as follows: 

(10)

 

(11)

 

(12) 

 

 

 

 

(13) 
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3.1. State 1 

In this state, distance is Euclidean and probability 

distribution is bi-variate symmetric normal. Therefore, 

( ( , ))
i j

E d x a is evaluated as follow:  

1 1( , )j j ja N µ σ∼    ,     
2 2( , )j j ja N µ σ∼  

2

2

1
( ( , )) ( ,1, )

2 2 2

ij

i j j

j

E d x a H
λπ

σ
σ

= − −               (14) 

Where                 

2 2

1 1 2 2( ) ( ) ,
ij i j i j

x xλ µ µ= − + −  

            

0

( ) ( )
( , , )

( ) ( ) !

k

k

u k v t
H u v t

u v k k

∞

=

Γ + Γ
=

Γ Γ +
∑  

 

where (.)Γ  is the gamma function  and (.,.,.)H  is the 

confluent hyper geometric function. 

3.2. State 2 

In this step, distance is squared Euclidean and 

probability distribution is bi-variate symmetric normal. 

Therefore, ( ( , ))
i j

E d x a is evaluated as follow:  

 

1 1
( , )

j j j
a N µ σ∼

   ,      2 2
( , )

j j j
a N µ σ∼  

2 2( ( , ) ) 2i j j i jE d x a σ λ= +
                         (15) 

where
  

2 2

1 1 2 2( ) ( )
ij i j i j

x xλ µ µ= − + −  

4. Novel Hybrid Intelligence Algorithm 

Generally speaking, uncertain programming models of 

LA problem are difficult to solve by traditional methods. 

As mentioned earlier, our problem is overly Np-hard [29]. 

To do so, a new hybrid intelligent algorithm is presented 

to solve the stochastic-fuzzy model. In this situation, an 

appropriate matter is to design efficient hybrid intelligent 

algorithms for solving them. In this section, we integrated 

the simplex algorithm, fuzzy simulations, and a new 

meta-heuristic algorithm namely VDO to produce a 

hybrid intelligent algorithm for solving α-cost model 

under the Hurwicz criterion. 

4.1. Computing Uncertain Functions 

Uncertain functions consist of probabilistic and fuzzy 

parameters. Due to its high complexity, we designed some 

fuzzy simulations to estimate the uncertain functions. 

First, an uncertain function is presented as the following: 

 

1( ) min{ { ( ) } }U X f r X fθ δ θ α→ ∈ ≤ ≥|C |C |
       

 

This type of function can be estimated through the 

following procedure: 

Step 1: Generate θk 
from δ such that  

&'(	�)
 ≥ * for + = 1,2, . . , -, where * is a sufficiently 

small number and M is a large number. 

Step 2: For ( )
k

v θ , solve the linear programming (13) by 

the simplex algorithm and denote the optimal objective 

value by .) , + = 1,2, . . , -. 

Step 3: Set 
) = &'(	�)

 
for + = 1,2, . . , -. 

Step 4: Find the maximal value r such that ( )L r α≥  

holds, where 

11

1
( ) (max{ | } min{1 | }).

2
k k k k

k Mk M
L r v c r v c r

≤ ≤≤ ≤
= ≥ + − >  

Step 5: Return r . 

Similarly, the second uncertain function can be estimated. 

 

2( ) min{ { ( ) } }U X f Cr X fθ δ θ α→ ∈ ≥ ≥| |C |
                 

 

Finally, the total cost is defined as follow:  

1 2( ) ( ) (1 ) ( )U X U X U Xλ λ= + −
                           

 

4.2. SFVDO Hybrid Intelligent Algorithm 

Recently, a new heuristic optimization technique based 

on the concept of the vibration damping in mechanical 

vibration was introduced by Mehdizadeh and Tavakkoli-

Moghaddam [23] named vibration damping optimization 

(VDO) algorithm. They already utilized the algorithm to 

solve parallel machine scheduling problem.  

Our proposed algorithm is based on a vibration 

damping optimization (VDO) algorithm which is 

combined with the simplex algorithm and fuzzy 

simulation (SFVDO). The proposed SFVDO algorithm is 

illustrated in the following steps: 

Step 1: Generating feasible initial solution.  

In this paper, the initial solution is uniformly generated 

from potential region below 

{( , ) | ( , ) 0, 1,2,..., , 1, 2,..., }
k i i

x y g x y i n k p≤ = =
 

Solution representation is also provided as follows: 

(16) 

(17) 

 
 

 

(18) 
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0 1 2 1 2( , ) ( , ,..., , , ,..., )
n n

v x y x x x y y y= =
 

Step 2: Initializing the algorithm parameters which 

consist of: initial amplitude (A0), max of iteration at each 

amplitude (lmax), damping coefficient (γ), max of iteration 

of outer loop of algorithm (tmax), and standard deviation 

(σ). Finally, parameter t is set in one (t=1) 

Step 3: Calculating the objective value U0 for initial 

solution v0 by fuzzy simulations in which the simplex 

algorithm is used to solve the linear programming (13) in 

one step of simulation process. 

Step 4: Initializing the internal loop 

In this step, the internal loop is carried out for 1l =  and 

repeat while l<lmax. 

Step 5: Neighbourhood generation 
In this step, neighbourhood structure v are uniformly 

generated from potential region below 

{( , ) | ( , ) 0, 1,2,..., , 1,2,..., }
k i i

x y g x y i n k p≤ = =   

It should be mentioned that the objective value U for 

solution v  is calculated similar to step 3. 

Step 6: Accepting the new solution 

Set ∆=U-U0 Now, if ∆<0, accept the new solution, else if 

∆>0 generate a random number r  between (0, 1); 

If 

2

2
1 exp( )

2

A
r

σ
< − −  , then accept a new solution; 

otherwise, reject the new solution and accept the previous 

solution. 

If  maxl l>  , then 1t t+ → ; otherwise 1l l+ → and go 

back to step 5. 

Step 7: Adjusting the amplitude 

In this step, 
0 exp( )

2
t

t
A A

γ
= − is used for reducing 

amplitude at each iteration. If maxt t>  return to step 8; 

otherwise, go back to step 4. 

Step 8: Stopping criteria  

In this step, the proposed algorithm will be stopped after 

predetermined number of iteration. At the end, best 

solution is obtained. 

5. Numerical Example 

In order to represent the capability of the proposed 

hybrid intelligent algorithm to solve the location-

allocation problem, a numerical example has been 

illustrated. Suppose that there are 20 customers whose 

locations and demands are given in Table 1, and there are 

4 facilities to be located whose capacities Si (i =1,2,3,4) 

are 80, 90, 100 and 100, respectively, where all demands 

are assumed to be trapezoidal fuzzy numbers. In practical 

problems, the parameter λ can be decided completely by 

decision makers, investigation and analysis, and even 

historical data.  In this example, we set λ=0.5.  
The proposed algorithms were coded in MATLAB and 

ran on a PC with Intel
®
 core™ 2Duo CPU2.00GHz, 4GB 

of RAM qualifications. The Linprog function of 

MATLAB was used to solve the linear programming (13) 

during running program. To generate a suitable test for 

the presented models, we set the mean of customer 

coordinates equal to customer’s given locations. 

Furthermore, the standard deviations along both 

dimensions of customer coordinates were taken equal to 

10% of the largest value of the range in which the mean 

coordinates vary. In all problems for locating each 

facility, the feasible region is assumed as a rectangle area 

described by 

{
1 20 100, 0 100 1, 2, 3, 4

i i
x x i≤ ≤ ≤ ≤ = } 

To represent the capability of the presented algorithm, 

some problems with different parameters were generated 

and each problem was run for an equal determined period. 

This period is the mean of enough time for algorithm to 

converge to the final output.  Moreover, we computed a 

relative efficiency measure called relative deviation index 

(RDI).  
The relative deviation index (RDI) is computed for 

each problem as|/01234 − ���234| ∕ |���234 − ���234|, 

where /01234 is the performance value of a problem, and 

���234  and ���234 are the minimum value and the 

maximum value, respectively, among the performance 

values of the same problem. We computed the average, 

the average RDI (
avg

RDI ) and the standard deviation RDI 

(
std

RDI ) for the performance values of all problems. 

When 0
avg

RDI =  it means the best state and 1
avg

RDI =  

indicates the worst one. The experimental results are 

summarized in Table 4. In the following given tables, n 

denotes the number of facility and m denotes the number 

of customer. 

The relative deviation index (RDI) was computed for 

each problem as|/01234 − ���234| ∕ |���234 − ���234|, 

where /01234 is the performance value of a problem, and 

���234and ���234 are the minimum value and the 

maximum value, respectively, among the performance 

values same problem. 
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Table 1   

Location and demand of 20 customers 

Customer No. (aj, bj) vj 

1 (28,42) (14,15,16,17) 

2 (18,50) (13,14,16,18) 

3 (74,34) (12,14,15,16) 

4 (74,6) (17,18,19,20) 

5 (70,18) (21,23,24,26) 

6 (72,98) (24,25,26,28) 

7 (60,50) (13,14,15,16) 

8 (36,40) (12,14,16,17) 

9 (12,4) (13,15,16,17) 

10 (18,20) (22,24,26,28) 

11 (14,78) (13,15,16,17) 

12 (90,36) (11,14,15,17) 

13 (78,20) (13,14,15,19) 

14 (24,52) (11,13,14,16) 

15 (54,6) (20,24,25,26) 

16 (62,60) (16,18,19,23) 

17 (98,14) (18,19,21,22) 

18 (36,58) (13,14,16,17) 

19 (38,88) (16,17,19,20) 

20 (32,54) (19,21,24,25) 

 

We compute the average, the average RDI ( 
avg

RDI ), 

and the standard deviation RDI (
stdRDI ) for the 

performance values of all problems. Value 0
avg

RDI =
 

means the best state and 1
avg

RDI =  indicates the worst 

one. The experimental results are summarized in Table 4. 

In the following given tables, n denotes the number of 

facility and m denotes the number of customer.  

If we want to minimize the 0.9-cost, we have the 

following 0.9-cost minimization model under the Hurwicz 

criterion, 

1 2

1 2

1

2

1

2

min (0.5min 0.5max )

{ | ( | ) } 0.9,

{ | ( | ) } 0.9,

0 100, 1,2,3,4,

0 100, 1,2,3,4,

X f f

i

i

f f

subject to Cr C X f

Cr C X f

x i

x i

θ δ θ

θ δ θ

+

 ∈ ≤ ≥
 ∈ ≥ ≥


≤ ≤ =
 ≤ ≤ =      

  (19) 

 

Where 

4 20

( )
1 1

20

1 4
1

min ( ( , )), ( )

( | )

( ) max ( ( , )),

ij i j
z z

i j

j i j
i

j

z E d x a if z

C X

v E d x a otherwise

θ
θ φ

θ

θ

∈
= =

≤ ≤
=


≠


= 



∑∑

∑
  (20) 

And 

4

1

20

1

( ), 1, 2, ..., 20

( ) | , 1, 2 , 3, 4

0 , 1, 2, 3, 4 , 1, 2 , ..., 2 0

ij j

i

ij i

j

ij

z v j

z z z s i

z i j

θ

θ

=

=

 
= = 

 
 

= ≤ = 
 
 ≥ = =
 
 

∑

∑

   

with regards to Section 5, for each i and j we have: 

2

2

2 2

Euclidean distance

Squared Euclidean distance

1
( ,1, ),        

2 2 2( ( , ))

2 ,               

ij

j

ji j

j ij

H
E d x a

λπ
σ

σ

σ λ


− −

= 
 +

(22) 
In order to solve model (19), the proposed hybrid 

intelligent SFVDO algorithm was run to obtain the  

computational results shown in Tables 2 and 3 where A0 
is the initial amplitude, lmax is the

 
maximum of iteration in 

each amplitude, γ 
 
is the damping coefficient, σ is the 

standard deviation, and also ‘‘cost’’ is the minimal cost 

which is set based on the values of Table 2, 3, and 4. 

These numbers are found based on implemented design of 

the experiment by Mehdizadeh [24]. In this paper, the 

parameter values are fitted on current values by trial and 

error approach using several runs. Fig. 1 shows that the 

proposed SFVDO consistently converges to the near 

optimal solution.  

6. Conclusion and Future Works 

In this paper, a mathematical model for capacitated 

location allocation problem with fuzzy demands and 

probabilistic locations under the Hurwicz criterion has 

been proposed. To formulate the problem, a stochastic-

fuzzy programming called α-cost model with fuzzy 

demands and probabilistic locations of customers was 

presented. As the main assumption, the distance between 

customers and facilities are Euclidean and squared 

Euclidean. Since the proposed model is Np-Hard, for 

solving the two stochastic-fuzzy mentioned models, 

optimal solutions of the problem are not available. 

Therefore, this paper has developed a new hybrid 

intelligent algorithm based on VDO algorithm which is 

combined with simplex algorithm and fuzzy simulation. 

To illustrate the paper more explicitly, a numerical 

example is given to show the capability of the proposed 

hybrid algorithm. Finally, with regard to the obtained 

results based on RDI, we concluded that SFVDO 

algorithm is effective in solving the α-cost model under 

the Hurwicz criterion especially for Euclidean distance. 

As a direction for future research, it could be interesting 

to take both locations and demands in fuzzy 

(21) 
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environments. Furthermore, the proposed model can be 

investigated within queuing framework.  
 

 

 

 
Table 2  

The obtained results from SFVDO algorithm based on squared Euclidean distance 

Problem No.   A0  Lmax σ  γ  Optimal Location Cost 

1 6 20 1.5 0.005 (11.47,16.81), (41.54,49.28), (71.61,89.49), (79.25,8.88)  216220 

2 6 30 1.5 0.005 (80.58,20.20), (47.77,87.56), (26.74,43.10), (65.53,36.11) 207480 

3 6 40 2.0 0.005 (85.97,19.74), (62.29,95.93), (36.31,55.14), (24.91,23.13) 201610 

4 8 40 2.0 0.005 (28.28,14.60), (40.49,53.41), (57.41,74.68), (66.74,12.55) 200150 

5 8 20 1.5 0.050 (44.90,64.36), (17.06,32.12), (80.77,14.60), (70.75,80.22) 199970 

6 8 40 1.0 0.050 (56.27,71.53), (84.98,22.04), (17.07,22.41), (39.08,54.76) 199790 

7 8 30 2.0 0.050 (79.24,70.35), (27.58,67.17), (80.20,30.47), (31.97,18.18) 194710 

8 8 40 1.0 0.005 (21.94,33.25), (27.00,53.73), (77.84,24.51), (50.71,73.78) 191880 

9 6 20 1.0 0.005 (35.02,15.01), (61.53,98.53), (21.82,52.02), (78.08,13.60) 189720 

10 6 30 1.0 0.050 (25.79,70.69), (60.43,73.47), (79.40,26.02), (26.96,28.19) 185790 

 
Table 3  

The obtained results from SFVDO algorithm based on Euclidean distance 

Problem No.   A0  Lmax σ  γ  Optimal Location Cost 

1 6 20 1.0 0.05 (11.47,16.81), (41.54,49.28), (71.61,89.49), (79.25,8.88)  8560 

2 6 30 1.5 0.005 (80.58,20.20), (47.77,87.56), (26.74,43.10), (65.53,36.11) 8332 

3 6 20 1.0 0.005 (85.97,19.74), (62.29,95.93), (36.31,55.14), (24.91,23.13) 8185 

4 8 40 1.0 0.050 (28.28,14.60), (40.49,53.41), (57.41,74.68), (66.74,12.55) 8169 

5 8 30 2 0.050 (44.90,64.36), (17.06,32.12), (80.77,14.60), (70.75,80.22) 7931 

6 8 20 1.5 0.050 (56.27,71.53), (84.98,22.04), (17.07,22.41), (39.08,54.76) 7700 

7 8 40 1.0 0.005 (79.24,70.35), (27.58,67.17), (80.20,30.47), (31.97,18.18) 7626 

8 6 20 1.5 0.050 (21.94,33.25), (27.00,53.73), (77.84,24.51), (50.71,73.78) 7481 

9 6 40 2.0 0.005 (35.02,15.01), (61.53,98.53), (21.82,52.02), (78.08,13.60) 7284 

10 8 40 2.0 0.050 (25.79,70.69), (60.43,73.47), (79.40,26.02), (26.96,28.19) 7260 

 
Table 4  

Comparison of squared Euclidean and Euclidean distance based on average relative deviation index (789:::::)  

Problem No. A0 Lmax σ  γ  Squared Euclidean Euclidean 

1 6 20 1.5 0.005 0.54 0.45 

2 6 30 1.5 0.005 0.49 0.45 

3 6 40 2.0 0.005 0.68 0.25 

4 8 40 2.0 0.050 0.56 0.42 

5 8 20 1.5 0.050 0.59 0.57 

6 8 40 1.0 0.050 0.50 0.34 

7 8 30 2.0 0.050 0.52 0.32 

8 8 40 1.0 0.005 0.36 0.34 

9 6 20 1.0 0.005 0.38 0.25 

10 6 30 1.0 0.050 0.48 0.31 

Average 0.51 0.37 
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Fig. 1. The convergence graph of proposed SFVDO algorithm 
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