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Abstract 

Recently, the economic crisis has resulted in instability in stock exchange market and this has caused high volatilities in stock value of 
exchanged firms. Under these conditions, considering uncertainty for a favorite investment is more serious than before. Multi-objective 
Portfolio selection (Return, Liquidity, Risk and Initial cost of Investment objectives) using MINMAX fuzzy goal programming for a Fuzzy 
Allocated Portfolio is considered in this research and all the main sectors of investment are assumed under uncertainty. A numerical 
example on stock exchange is presented to demonstrate the validity and strengths of the proposed approach. 
Keywords: Portfolio selection; Fuzzy Allocated Portfolio (FAP); Fuzzy goal programming; MINMAX Approach. 

1. Introduction 

In many corporations and industries, decision makers 
face many important problems including scheduling 
problem, logistics, data mining and asset allocation 
problem. In these problems, it is important that they 
predict the total future return and decide an optimal asset 
allocation maximizing them under some constraints, 
particularly a budget constraint. Furthermore, in recent 
investment fields, not only big companies and 
institutional investors but also individual investors called 
Day-Traders invest in stock, currency land and property. 
Therefore, the role of investment theory called portfolio 
theory becomes more and more important. Of course, they 
easily decide the most suitable allocation provided that 
they know future returns a priori. Furthermore, in the real 
world, there may be probabilitistic and possibilitistic 
factors derived from the lack of efficient information and 
an ambiguous prediction of decision maker. So the 
concept of Portfolio selection is an interesting concept for 
scientists. 

So far, various studies with respect to portfolio 
selection problems have been done. Portfolio selection, as  

 

 
 
 
 

originally introduced by Markowitz (1952) was one of the 
most important fields of research in theory of finance and  
his mean-variance model has been challenged and 
modified by many studies that examines the trade-offs  
between risk and return objectives in the “mean-variance” 
context. Commonly, portfolio selection models assume 
that the future condition of stock market can be accurately 
predicted by historical data without paying attention to the 
accuracy of the previous data (Chen and Huang, 2009). 
As far as most of the real world problems take place in an 
imprecise environment, this is not an appropriate 
assumption for the real financial markets due to the high 
volatility of market environments. Therefore, fuzzy set 
theory, proposed by Zadeh et al. (1987), has become a 
helpful tool in handling the imprecise conditions and 
attributes of portfolio selection. A brief literature on this 
subject in the previous years with focus on fuzzy 
approach follows. Two portfolio selection models based 
on fuzzy probabilities and possibility distributions were 
proposed by Tanaka et al. 2000. Inuiguchi and Tanino 
2000 proposed a new possibilistic programming approach 
based on the worst regret to the portfolio selection. 
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Tiryaki 2001 used DEA to analyze more complex 
portfolio systems. A fuzzy goal programming with fuzzy 
goals and fuzzy constraints was formulated by Parra et al. 
[15] assuming three criteria: return, risk and liquidity. 
Ong et al. (2005) proposed a method that incorporates the 
grey and possibilistic regression models. A multistage 
stochastic fuzzy program with soft constraints and 
recourse in order to capture both uncertainty and 
imprecision was developed by Lacagnina and Pecorella 
2006. Huang et al. (2006) revised the conventional mean–
variance method to determine the optimal portfolio 
selection under conditions of uncertainty. Terol et al. 
2006 formulated a fuzzy compromise programming 
problem and Zhang et al. 2007 proposed two kinds of 
portfolio selection models based on lower and upper 
possibilistic means and possibilistic variance. Huang 2007 
dealt with the problem of portfolio selection when 
security returns contain both randomness and fuzziness. 
Gupta et al. 2008 applied multi-criteria decision making 
via fuzzy mathematical programming to develop 
comprehensive models of asset portfolio optimization. 

In this research, an FAP problem will be introduced, 
where; all the main sectors of investment are considered 
under uncertainty. We extend this concept in the 
framework of a multi-objective fuzzy portfolio selection 
problem whose objectives are return, risk, liquidity and 
initial cost of investment. Then, we use the MINMAX 
Approach model (Yaghoobi and Tamiz, 2007) to optimize 
this multi-objective fuzzy problem.  

The remainder of this paper is organized as follows. 
Section 2 briefly discusses the theoretical background and 
fundamental concepts of fuzzy goal programming. 
Modeling an optimization of a multi-objective problem to 
the Iran stock exchange market and solving them with two 
famous models will be illustrated in Section 3. In section 
4, FAP and “linguistic” constraints are used to help 
investors to find the efficient portfolio under uncertainty. 
Finally, conclusion and further research will be 
considered in Section 5. 

2. The Fuzzy Goal Programming (FGP) Model 

An objective with an imprecise aspiration level can be 
treated as a fuzzy goal. The fuzzy goals can be identified 
as fuzzy sets defined over the feasible set with the 
membership functions. Mostly, linear membership 
functions, such as follows, are used in the literature 
(Narasimhan, 1980; Hannan, 1981): 
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                         (1) 

where ΔiL and ΔiR are the maximum admissible violations 
from the aspiration level bi (for i = 1,…, K). They are 
either subjectively chosen by DM (Narasimhan, 1980; 
Hannan, 1981) or tolerances in a technical process (Kim 
and Whang, 1998. The above membership function is 
depicted respectively in Figure 1. 
 
            1 
 
                                                 
                                                 
 
                            bi - ΔiL        bi   bi + ΔiR 
                                   

Fig. 1. Linear membership functions 
 

Now, consider multi-objective fuzzy model for portfolio 
selection problem as follows: 
ݔܽ݉ ሚ݂ሺݔሻ,       ݄ ൌ 1, … ,                                                          ܪ
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Where ( )%
hf x and ( )%

lf x respectively are fuzzy objectives, 
and xj (for j = 1,…, n) is the invested proportion of 
security j in optimal portfolio. Finding optimal solution x* 
is equivalent to solve the following crisp model 
(Zimmermann, 1978): 
max  ߣ

s.t. 
ߣ  ߤ

ሺݔሻ,    ݄ ൌ 1, … ,  ܪ

ߣ  ߤ
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ୀଵ
 

 (3)                                                                       ,ܵ߳ݔ

Where ( )
hf xμ and ( )

lf xμ  represent the membership 
functions of objectives, respectively, and 0 ≤ λ ≤ 1 is the 
achievement degree of the membership functions. 

Yang et al. (1991) proposed a model to solve FGP 
problems with triangular linear membership functions. In 
fact, they extended the well-known Zimmerman’s (1978) 
approach to transform the problem into a conventional 
single LP model. Yaghoobi and Tamiz (2007) developed 
Yang et al. (1991) and presented the following model for 
solving FGP problems. 
max  ߣ
s.t. 
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where bi (for i = 1,…, K) is the precise aspiration level for 
goal ith, ni and pi (for i = 1,…, K) are respectively the 
negative and positive deviations from aspiration value of 
goal ith, ΔiL and ΔiR indicate left and right admissible 
violations for fuzzy goal ith, respectively. In this model, 
weights are considered equally for the fuzzy goals and the 
fuzzy decision is symmetrical.  

3. Portfolio Selection in Iran Stock Exchange Market 

In this section, two different fuzzy approaches in the 
portfolio selection will be compared in a real sample of 15 
main stocks from the Iran stock exchange market during 
2006-2008. In order to study this problem, we consider 
four selected objectives as follows:  

● Return: Instead of the crisp representations used in this 
paper, rate of return is represented as fuzzy numbers to 
reflect the uncertainty at the evaluation stage. The fuzzy 
rate of return ሺ̃ݎ ൌ ሺ ෨ܲ,௧ െ ܲ,௧ିଵ  ෩,௧ሻܦ ܲ,௧ൗ ሻ measures the 
profitability of the stock where ෨ܲ,௧  is the fuzzy price of 
the stock j at time t and ܦ෩,௧  is the fuzzy dividend 
received during the period [t –1, t].  

● Beta risk: ߚ෨ ൌ ,ݎሺ̃ݒܥ ሻݎ̃ ⁄,ሻݎሺ̃ݎܸܽ  where ̃ݎ,  j=1, 2, 
…,15 is the fuzzy rate of return of stock j and ̃ݎ is the 
fuzzy rate of market return. This objective indicates the 
performance on its own rather than by the movements of 
the market. The aim is to choose a diversified portfolio 
with small β. 

● Initial cost of investment: In real world, many people do 
not have enough money for secure investments. Thus, 
the aim is to enable people to spend less money while 
they will obtain their favorite results from other 
objectives. Pj̃ is the fuzzy price of stock j (with known 
formal currency) in the last under study day. Let N be 
the total number of existent securities (stocks) in the 
optimum portfolio. Therefore, the initial cost of 
investment objective function can be obtained without 
considering the value N as follows: 
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15 15
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( ... )
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∑ ∑
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  (5) 

Finally, optimum value of cost for selection and allocation 
of optimum portfolio is equal to Z*= f3

*N. We consider 
the price of the last day (Pj̃) to purchase stock j.  

● Liquidity: Liquidity is measured as the possibility of 
converting an investment into cash without any 
significant loss in its value. Other things being equal, 
the investors prefer greater liquidity (Parra et al, 2001). 
The exchange flow ratio ,( / ),=% % %

j j s mEF N N with Ñj,s 
being the fuzzy number of days when the stock j has 
been traded and Ñm being the fuzzy number of days that 
the market has been opened. 

Furthermore, our aim is to include into our framework 
linguistic labels, such as “little rate of return”, “sufficient 
initial cost of investment” and “near absolutely liquid”. 
These natural expressions have a fit representation 
through fuzzy numbers used in the work. However, the 
main portfolio selection problem can be formulated as 
follows: 

15
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2 1

15
3 1

15
4 1
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min     ,      1,  ...,  15
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β

=
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∑
∑
∑
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   (6) 

1 2 3 15

5 6 7 8

4 13 14

9 10 11 12

s.t.
0.25,
0.25,

0.25,
0.25,

0 0.1,  1,  ...,  15.j

x x x x
x x x x
x x x
x x x x

x j

+ + + =

+ + + =

+ + =

+ + + =

≤ ≤ =   

 

Where, in order to diversify the selected portfolios and 
maximum utilization of the all existent capacities of 
investment, DM proposes to invest 25% in automotive 
industry (for stocks j = 1, 2, 3, 15), banking and leasing 
(for stocks j = 5, 6, 7, 8), investment sectors (for stocks j = 
4, 13, 14) and another sectors (for stocks j = 9, 10, 11, 
12). Moreover, we set a lower and an upper bound for 
each stock in order to diversify the portfolio, 0 ≤  xj  ≤ 0.1, 
for     j = 1, 2, …, 15 where the xj is the proportion to be 
invested in the stock j.  

Model (11) is transformed to an MA model (Yaghoobi 
and Tamiz, 2007) as follows: 
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Furthermore, the Yang et al. (1991) model for solving 
model (11) is as follows: 
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The model involves expressions of set of fuzzy decision 
goals 1 2 3 4( , , , ),b b b b b=% % % % % which is associated with a set of 
fuzzy objectives f(x) = (f1(x), f2(x), f3(x), f4(x)). The 
problem formulation allows the objectives to be under-or 
over-achieved enabling the DM to be relatively imprecise 
about initial design goals. Table 1 presents the de-
fuzzified goal values of objectives: return, risk, initial cost 
of investment and liquidity. The goal value of Beta 
objective is equal to 1 (Lee and Chesser, 1980). 
 

Table 1 
 De-fuzzified goal values of fuzzy objectives (for i = 1, 2, 3, 4)                             

Objective (fi) ΔiL bi ΔiR 
f1 0.0008 0.002 – 
f2 – 1 0.05 
f3 – 1300 100 
f4 0.002 0.126 – 

  
Table 2 presents data concerning the 15 main stocks of 
the Iran stock exchange market during 2006-2008. We 
considered de-fuzzified numbers instead of fuzzy 
numbers and applied fuzzy decision goals in the FAP 
problem. The five columns of Table 2 are the stocks, the 
stock price in the last exchanged day, the risk β, the 
expected rate of return of each security and the exchange 
flow ratio of each security, respectively. 
 
Table 2 
 De-fuzzified data under study 

Stocks 
( j) 

Stock price 
in the last 
exchanged 

day (Pj) 

Beta risk 
(βj) 

Expected rate
of return 

(μj) 

Exchange 
flow ratio 

(EFj) 

PARS AUTO 926 0.59815 0.0012654 0.1292097 

MEH IRAN AUTO 700 1.15065 −0.0006437 0.1301761 

SAIPA 926 0.17812 0.0015994 0.1214500 
PAY SAIPA INV 2392 2.60025 0.0027148 0.1067670 
PERSIAN BANK 2337 1.05606 0.0021114 0.1140610 
KAR AFR BANK 1435 2.00207 0.0019685  0.1304640 

IRAN LEAS 2115 −0.02369 0.0027717 0.1304920 

IND & MIN LEAS 967 1.23007 0.0022249 0.1399780 

PARS ALU 948 2.14956 −0.0001838 0.1289632 
ALUMTAK 1385 −0.82301 0.0016264 0.1100235 

IRAN BEHNUSH 2373 −0.00125 0.0009780 0.1224789 
PARS MINOO 2477 3.67891 −0.0021901 0.1263525 
OIL IND INV 1180 1.67921 0.0011433 0.1324790 
SEPAH INV 1180 2.12003 0.0011433 0.1240011 

SAIPA DIESEL 920 0.89782 −0.0004956 0.1203698 
 
Models (12) and (13) were solved by Lingo software 
package and Table 3 presents optimal portfolios and 
optimal values of each objective: 
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Table 3 
 Result of solving problem (18) with different models 

Optimal 
solution 

Yang et al. (1991) 
model MA model 

x1 0.1 0.1 
x2 0.05 0.05 
x3 0.1 0.1 
x4 0.0996 0.0996 
x5 0 0 
x6 0.0549 0.0549 
x7 0.0951 0.0951 
x8 0.1 0.1 
x9 0.1 0.1 
x10 0.1 0.1 
x11 0.05 0.05 
x12 0 0 
x13 0.1 0.1 
x14 0.0504 0.0504 
x15 0 0 
f1 0.0014839 0.0014839 
f2 1 1 
f3 1365 1365 
f4 0.1253 0.1253 

Optimal 
values of 
deviation 
variables 

– n1 = 0.000516 
– p2 = 0.033256 
– p3 = 64.51238 
– n4 = 0.00129 

 
Results of Table 3 show that MA model (Yaghoobi and 
Tamiz, 2007) is in general equivalent to Yang et al. 
(1991) model and can optimize the FGP problems.  

4. Fuzzy Allocated Portfolio (FAP) 

In this section, FAP model as a novel approach to 
portfolio selection problem will be discussed. To diversify 
the selected portfolios and maximum utilization of the all 
existent capacities of investment, FAP allocates a 
percentage of total selected portfolios to any investment 
sector under uncertainty. By this definition, allocated 
constraints of FAP are defined as “linguistic” constraints. 
We propose this kind of portfolio selection for decreasing 
the above-mentioned current problems concerning 
investment in Iran stock exchange market. Hence, with 
regard to the above advantages, we will develop our 
portfolio selection problem and use Yaghoobi and Tamiz 
(2007) model to solve it. 
The membership function related to fuzzy allocated 
constraint t-th (t = 1, 2, 3, 4) of the main portfolio 
selection problem may be presented as follows: 
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(9) 
Then, the main FAP problem can be formulated as 
follows: 

15
1 1

15
2 j1

15
3 1

15
4 1

1 2 3 15

5 6 7 8

4

max            1,  ...,  15

min            1,  ...,  15

min            1,  ...,  15

max         1,  ...,  15

s.t.
0.3
0.3

j jj

jj

j jj

j jj

f r x j

f x j

f P x j

f EF x j

x x x x
x x x x
x

β

=

=

=

=

= =

= =

= =

= =

+ + + ≅

+ + + ≅
+

∑
∑
∑
∑

% %

% %

% %

% %

13 14

9 10 11 12
15

1

0.3
0.3

1,

0 0.1,       1,  ...,  15.

j
j

j

x x
x x x x

x

x j
=

+ ≅

+ + + ≤

=

≤ ≤ =

∑

%

              (10) 

Based on the MA model of Yaghoobi and Tamiz (2007), 
model (15) is transformed as follows: 
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Model (16) is solved by Lingo software package and the 
optimal solution is obtained as follows: 
x1

* = 0.1, x2
* = 0.1, x3

* = 0.1, x4
* = 0.0726, x5

* = 0, x6
* = 

0.1, x7
* = 0.1, x8

* = 0.1, x9
* = 0, x10

* = 0.1, x11
* = 0.0273, 

x12
* = 0, x13

* = 0.1, x14
* = 0.1, x15

* = 0, f1
* = 0.0015336, f2

* 
= 1, f3

* = 1320, and f4
* = 0.12592.  

It seems that by interpreting constraints as “linguistic” the 
feasible solution space gets bigger than before and the 
results obtained will not worsen. Therefore, the 
comparison of the results for models (12) and (16) reveals 
that the optimal solution obtained after interpreting 
constraints as “linguistic” improve.  
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(12) 

It is realistic in most cases that poor performance on 
one criterion cannot easily be balanced with good 
performance on other criteria. In this case, we can 
reformulate the model so that the achievement level of 
membership functions should not be less than the allowed 
value. The α-cut approach can be utilized to ensure that 
the degree of achievements for any goals and fuzzy 
constraints should not be less than a minimum allowed 
value α. In this case, the model (16) should be 
reformulated by adding new constraints of λi (for i = 1, 2, 
3, 4), φ, τ, ω, ψ ≥ α, α [α ,α ]− +∈ to other system 
constraints. This approach requires that DM have to 
choose reasonable values for α to avoid getting infeasible 
solutions (Chen, [1]). 

In this example, α– is assumed to be 0.0878 and α+ can 
be obtained from Zimmermann’s (1978) approach in 
which all objective functions and constraints are equally 
important. In fact, α+ is the maximum achievement degree 
of membership functions of fuzzy objectives and 
constraints. In this example, α+ is calculated at 0.4976982 
and then α can vary from 0.0878 to a maximum level of 
0.4976982. To change α from α– to α+, causes the problem 
solutions to vary from asymmetric to fully symmetric 
decision making. In this case, α is changing in steps 
0.045, from 0.0878 to 0.4976982. Table 4 (Appendix 1.) 
presents all optimal solutions S1 to S11 related to these α-
cut levels. Fig 2 represents achievement level variations 

of membership functions according to α-cut level 
approach. 

Fig. 2. Degree of achievement objective functions and constraints(α-cut 
level from 0.0878 to 0.4976982) 

5. Conclusion 

To deal with the nature of uncertainty in the portfolio 
selection problem, a multi-objective problem with four 
objectives was introduced and applied to selecting optimal 
portfolio in Iran stock exchange market. The coefficients 
and goal value of objectives were considered based on 
fuzzy set theory as unbalanced triangular fuzzy numbers. 
Then, the multi-objective fuzzy problem was converted to 
a model of FGP and, in order to solve it, we considered 
two approaches: the MA model (Yaghoobi and Tamiz, 
2007) and Yang et al. (1991) model. Both models were 
solved according to FAP approach. The α-cut approach 
was used for the obtained results to insure that the 
achievement level of objective functions should not be 
less than the minimum level α. It was shown that by 
increasing α level, objectives improvement of problem 
will decrease unless about expected rate of return. This 
matter represented trade-offs between the objectives 
under uncertainty environment. 
Further research may address using group decision 
making, stochastic fuzzy constraints and changing the 
objectives.  
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Appendix 1. 
Table 4 
 Optimal solution S1 to S11 related to α-cut level 

Solutions S1 S2  S3 S4  S5 S6 S7 S8 S9 S10 S11 
α-cut 0.0878 0.133 0.178 0.223 0.268 0.313 0.358 0.403 0.448 0.493 0.4976982 

x1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
x2 0.1  0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0331 0.0356 
x3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
x4 0.0726 0.0740 0.0753 0.0767 0.0780 0.0794 0.0807 0.0821 0.0842 0.0923 0.0883 
x5 0 0.0037 0.0074 0.0111 0.0148 0.0186 0.0223 0.0260 0.0318 0.0007 0.01 
x6 0.1 0.0963 0.0925 0.0888 0.0851 0.0814 0.0777 0.0740 0.0682 0.1 0.1 
x7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
x8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
x9 0 0 0 0 0 0 0 0 0 0 0 
x10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
x11 0.0273 0.0260 0.0246 0.0233 0.0219 0.0206 0.0192 0.0179 0.0158 0.0177 0.0127 
x12 0 0 0 0 0 0 0 0 0 0 0 
x13 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
x14 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
x15 0 0 0 0 0 0 0 0 0 0.0562 0.0533 
f1 0.0015336 0.0015366 0.0015392 0.0015422 0.0015449 0.0015481 0.0015508 0.0015539 0.0015583 0.0015944 0.0015981 
f2 1 1 1 1 1 1 1 1 1 1.025 1.025 
f3 1320 1323 1326 1330 1333 1337 1340 1344 1349 1351 1350 
f4 0.12592 0.12585 0.12575 0.12567 0.12558 0.12552 0.12543 0.12536 0.12523 0.12498 0.12498 
λ1 0.4172 0.4208 0.4244 0.4280 0.4316 0.4352 0.4388 0.4424 0.4480 0.5 0.5 
λ2 1 1 1 1 1 1 1 1 1 0.5 0.5 
λ3 0.7992 0.7654 0.7316 0.6979 0.6641 0.6304 0.5967 0.5629 0.5103 0.5 0.5 
λ4 0.9670 0.9258 0.8848 0.8437 0.8027 0.7616 0.7206 0.6795 0.6155 0.5 0.5 
φ 1 1 1 1 1 1 1 1 1 0.6431 0.6318 
τ 1 1 1 1 1 1 1 1 1 0.9659 0.4977 
ω 0.0878 0.1330 0.1780 0.2230 0.2680 0.3130 0.3580 0.4030 0.4731 0.7435 0.6094 
ψ 1 1 1 1 1 1 1 1 1 1 1 

 
 
 
 
 




