
A Comparison of NSGA II and MOSA for Solving Multi-depots
Time-dependent Vehicle Routing Problem with Heterogeneous Fleet

Behrouz Afshar-Nadjafia,*, Arian Razmi-Faroojib

a Assistant Professor, Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University,
Qazvin, Iran

b MSc, Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Received 20 July, 2014; Revised 31 August, 2014; Accepted 20 September, 2014

Abstract

Time-dependent Vehicle Routing Problem is one of the most applicable but least-studied variants of routing and scheduling problems. In
this paper, a novel mathematical formulation of time-dependent vehicle routing problems with heterogeneous fleet, hard time widows and
multiple depots, is proposed. To deal with the traffic congestions, we also considered that the vehicles are not forced to come back to the
depots, from which they were departed. In order to solve our bi-objective formulation, we presented two well-known Meta-heuristic
algorithms, namely NSGA II and MOSA and compared their performance based on a set of randomly generated test problems. The results
confirm that our MILP model is valid and both NSGA II and MOSA work properly. While NSGA II finds closer solutions to the true
Pareto front, MOSA finds evenly- distributed solutions which allows the algorithm to search the space more diversely.
Keywords: Time-dependent Vehicle Routing Problem, Bi-objective optimization, Meta-heuristics, NSGA II, MOSA.

1. Introduction

Transportation is one of the most vital parts of today’s
tough economy. Transportation facilitates the mobility of
goods and people; hence, it plays a central role in
economic infrastructures of a country. One of the novel
topics in transportation science is Vehicle Routing
Problem (VRP). Firstly introduced by Dantzig and
Ramser (1959), classic VRP tries to find a set of optimal
routes, which starts from a depot, visiting some
customers, and finishing to that same depot.
According to Toth and Vigo (2002), VRP can reduce up
to 25% of transportation costs. This reason pushed
scientists to work on different versions of VRP, each
focusing on one industrial and economical need. One of
the most significant but under-researched variants of
VRP, is Time-dependent Vehicle Routing Problem
(TDVRP), The cornerstone of TDVRP is this fact, that the
travel speed of a vehicle is not constant, and due to
reasons such as traffic congestions, bad weather
conditions or road accidents, vehicles’ speed can vary
over time.
TDVRP was first proposed by Malandraki (1989) and
Malandraki and Daskin (1992). This problem was
formulated, using a mixed-integer linear programming
model. Malandraki and Daskin (1992) used a greedy
search method, which was based on travel times between
nearest neighbor customers and a branch and cut
algorithms, the drawback of Malandraki and Daskin´s

work (1992) was loss of First In-First Out (FIFO)
property. Based on this property, when a vehicle leaves
customer ݅ to serve customer ݆ at time ݐ, any identical
vehicle, which leaves customer ݅ to serve customer ݆ at
ݐ + ߝ where ,ߝ ≻ 0, will arrive later.
The above-mentioned drawback of Malandraki and
Daskin´s work (1989) was modified by Ichoua and et al.
(2003). They formulated a TDVRP model with soft time-
windows and a Tabu-search based solution approach,
which was implemented on Solomon test problems. To
modify the FIFO concept, they assumed the time
distribution as a piecewise linear function, from which the
speed distribution can be derived,
Fleischman et al. (2004) proposed an incapacitated
vehicle routing problem with and without presence of
time-windows; and to solve this formulation they
suggested a route construction procedure based on
insertions and a 2-opt local search mechanism. Van
Woensel et al. (2008) presented a Tabu-search solution
approach for solving a capacitated time-dependent vehicle
routing problem. The innovation of their work was
considering a queuing theory-based assumption for
determining the travel speeds over time. They finally
tested their approach on a set of test problems with 32 to
80 customers.
Kok (2010) formulated a TDVRP mathematical model
and solved this formulation by optimizing the departure

* Corresponding author Email address: afsharnb@alum.sharif.edu

Journal of Optimization in Industrial Engineering 16 (2014) 65-73

65

times and considering driver breaks. Finally, he also
considered driving hours´ regulations and managed to
obtain feasible solutions. Figliozzi (2012) proposed an
Iterative Route Construction and improvement (IRCI)
method for dealing with TDVRP with hard time-
windows. Testing his solution approach on a set of well-
known Solomon benchmark problems, he reported
competitive results. Despite all researches conducted on
VRP, multi-objective VRPs did not obtain the researchers'
interests. There are three different approaches to solving a
multi-criteria optimization problem: scalar methods,
Pareto methods like NSGA II and MOSA and those,
which do not belong to either of the aforementioned
techniques. In multi-objective VRPs, the Pareto approach
within an evolutionary framework is more common.
Ulungu et al. (1999) employed a MOSA-based algorithm
to solve a particular type of routing problems. In their
proposed problem, a customer asks to load a quantity at
one place and to transport it to another place. The goal of
defining this problem was to determine the daily routes of
a fleet of trucks, where satisfying a set of customers was
mandatory. Żelazny (2012) employed a Memetic
algorithm to tackle multi-objective VRP. His proposed
genetic algorithm was able to use a local search procedure
on non-dominated solutions in order to further improve
the Pareto frontier.
Jagiłło and Żelazny (2013) presented a parallel Tabu
Search (TS) algorithm on Graphics processing Units
(GPUs) to solve multi-criteria discrete optimization of
Distance-Constrained VRP. Based on their computational
results, they reported that Parallel Tabu Search on GPUs
outperforms the classic Tabu Search Method.
To conclude, in spite of the undeniable importance of
vehicle routing problem and its variants in both
manufacturing and service industry and all of the studies
conducted on VRPs, a problem which contains nearly all
of constraints we encounter in our real-world problems is
still missing in the current literature. In this research, we
consider time-varying travel speeds, hard time-windows,
multiple depots, heterogeneous fleet and intra depot
routes. Moreover, to solve our bi-objective formulation,
we employ two well-known multi-criteria meta-heuristics;
namely, Non-dominated Sorting Genetic Algorithm II
(NSGA II) and Multi Objective Simulated Annealing
(MOSA). To the best of our knowledge, no paper has
been published yet, covering all the above-mentioned
constraints and solving meta-heuristics simultaneously.
In section 2, we define and formulate our bi-objective
Mixed Integer Linear Programming (MILP) mathematical
model. In section 3, we propose two meta-heuristics;

namely, NSGA II and MOSA to solve our model. Section
4 deals with the computational results and discussions.
Finally, section 5 concludes this paper.

2. Problem Definition

The Time-dependent Vehicle Routing Problem with hard
time-windows, heterogeneous fleet and multiple depots
(TDVRPTWHFM) studied in this article is defined as
follows: ܩ	(ܰ, is a directed graph, where ܰ is the node (ܣ
set and ܣ is the arc set. The node set ܰ consists of two
other subsets, ܹ = {1,2,… ,݉}, the depots’ set and
ܸ = {݉ + 1, … , ݊}, which is the customers’ set. The arcs’
set ܣ is also defined as ܣ = {(݅, ݆): ݅ ≠ ݆	 ∧ ݅, ݆ ∈ ܰ}. Each
customer has a fixed and known demand ݍ௜ ≥ 0, it is also
assumed that depots have no demands (ݍ௜ = 0			∀݅ ∈ ܹ).
Serving customers should take place in their time-
windows [ܽ௜ , ܾ௜], and each customer has a service time
	௜ݏ ≥ ܨ .0 = {1, … , ݇} is the set of heterogeneous fleets’
types. It is assumed that there are unlimited vehicles from
each type, each having a capacity ܥ௞, fixed cost ܿ ௞݂ and
variable cost ܿݒ௞. Each arc from ݅ to ݆ has a fixed distance
݀௜௝ . However, the cost of travelling this distance is
different for each vehicle type and equals ܿ௜௝௞ ݀௜௝	x	௞ݒܿ= .
Travelling each arc from ݅ to ݆ has a travel time ݐ௜௝௞ , which
depends on the travelling start time (leaving node ݅).
Planning occurs daily and each day is divided into several
intervals ݑ ∈ ,ܫ ܫ = {1, … ,ܷ}, which means due to daily
traffic congestion, travelling from ݅ to ݆ has no fixed
travelling time and it is dependent on the travel starting
time and the day interval, in which the travel took place.
This problem involves the minimization of the following
objectives in order of priority:

1. Number of vehicles from each type
2. Total costs, including travelling costs and vehicle

costs
It is worth noting that these two objective functions are
contradictory. It means that, having more vehicles and in
other words more routes leads to higher total travel costs.
There are two decision variables: ݔ௜௝௞௨ is a binary decision
variable, which indicates whether vehicle ݇, travels from
node	݅ to ݆ in time interval ݑ. The real number ݕ௜௞ is also
used to indicate when the vehicle ݇ arrives to customer ݅.
The primary and secondary objective functions are
defined by (1) and (2), respectively. The constraints are as
follows: all customers must be served (3) and (4);

 (1) ݉݅݊෍෍ ෍ ෍ݔ௜௝௞௨
௎

௨ୀଵ

௡

௝ୀ௠ାଵ

௠

௜ୀଵ

௞

௞ୀଵ

(2) ݉݅݊෍෍෍෍ܿ௜௝௞
௎

௨ୀଵ

௡

௝ୀଵ

௡

௜ୀଵ

௞

௞ୀଵ

௜௝௞௨ݔ	 +෍෍ ෍ ෍ ௙ܿೖݔ௜௝
௞௨

௎

௨ୀଵ

௡

௝ୀ௠ାଵ

௠

௜ୀଵ

௞

௞ୀଵ

	

Behrouz Afshar-Nadjafi & Arian Razmi-Farooji/ A Comparison of a NSGA...

66

(3) ∀	݆ = ݉ + 1,… , ݊ ෍෍෍ݔ௜௝௞௨ = 1
௎

௨ୀଵ

௡

௜ୀଵ

௞

௞ୀଵ

(4) ∀	݅ = ݉ + 1,… , ݊ ෍෍෍ݔ௜௝௞௨ = 1
௎

௨ୀଵ

௡

௝ୀଵ

௞

௞ୀଵ

(5) ∀	݇ = 1,… , ݇ ෍ ෍ ෍ݔ௜௝௞௨ ≤ 1
௎

௨ୀଵ

௡

௝ୀ௠ାଵ

௠

௜ୀଵ

(6) ∀	݇ = 1,… , ݇ ෍ ෍෍ݔ௜௝௞௨ ≤ 1
௎

௨ୀଵ

௠

௝ୀଵ

௡

௜ୀ௠ାଵ

ݎ	∀ (7) = ݉ + 1,… , ݊ ∀	݇ = 1, … , ݇ ෍෍ݔ௜௝௞௨ −෍෍ݔ௥௝௞௨ = 0
௎

௨ୀଵ

௡

௝ୀଵ

௎

௨ୀଵ

௡

௜ୀଵ

ݑ	∀ (8) = 1,… , ܷ ∀	݇ = 1,… , ݇ ܽ௜ 	෍ݔ௜௝௞௨
௡

௝ୀଵ

	 ≤ ௜௞ݕ	 	 ≤ 	 ܾ௜ 	෍ݔ௜௝௞௨
௡

௝ୀଵ

ݑ	∀ (9) = 1,… ,ܷ ∀	݇ = 1,… , ௜௞ݕ ݇ + ௜ݏ + ௜௝௞ݐ ൫ݕ௜௞ + ௜൯ݏ − ௝௞ݕ ≤ 1)ܯ − (௜௝௞௨ݔ

ݑ	∀ (10) = 1,… , ܷ ∀	݇ = 1,… , ௜௞ݕ ݇ + ௜ݏ − ௨ܶ 	 ≤ 1)ܯ − ௜௝௞ݔ)
												∀	݅, ݆	 ∈ ܣ

ݑ	∀ (11) = 1,… , ܷ ∀	݇ = 1,… , ௜௞ݕ ݇ + ௜ݏ ≥ ௨ܶିଵ	ݔ௜௝௞௨

												∀	݅, ݆	 ∈ ܣ

(12) ∀	݇ = 1,… , ݇ ෍ݍ௜ 	෍෍ݔ௜௝௞௨ 	 ≤ ௞ܥ

௎

௨ୀଵ

௡

௝ୀଵ

௠

௜ୀଵ

each vehicle should leave one of the depots in all time
intervals at most once (5); each vehicle should arrive at
one of the depots in all time intervals at most once (6);
when a vehicle arrives to a customer, it should also leave
that customer (7); customers should be served in their
associated Time-windows (8); service start time must
allow for travel time between customers (9); the
connection between departure time (ݕ௜௞ + ௜) with theݏ
time interval, so that the appropriate piece of the
travelling time is employed (10) and (11). These
constraints, which were introduced by Balseiro et al.
(2011), guarantee if a vehicle leaves node ݅ to reach node
݆ in second interval, it will start its next route in second or
third interval, because time never goes back. Vehicle’s
capacity should not be violated (12).

3. Solution Approach

Toth and Vigo (2002) explain that the classic Vehicle
Routing problem is derived from the famous Travelling
Salesman Problem (TSP). Since the TSP is an NP-Hard
combinatorial optimization problem, VRP and its variants
belong to this group of problems. Belonging to NP-hard
problems, finding exact solutions for TDVRPTWHFM is

not only time-consuming, but also impossible in cases that
the size of problems get bigger. So, to solve our bi-
objective formulation, we decided to employ two well-
known multi-objective meta-heuristic approaches;
namely, Non-dominated Sorting Genetic Algorithm II
(NSGA II) and Multi-objective simulated Annealing
(MOSA).

3.1 The NSGA II Approach

Srinivas and Deb (1995) proposed a Genetic Algorithm
based method to solve multi-criteria optimization
problems, called Non-dominated Sorting Genetic
Algorithm (NSGA). This algorithm could find several
Pareto solutions in each iteration. However, the algorithm
functioned in a very complex way and it lacked elitism
selection procedures. These drawbacks made Deb et al.
(2002) to modify the previous algorithm and propose its
second version; namely, Non-dominated Sorting Genetic
Algorithm II (NSGA II). They also added Crowded
Distance to their algorithm, a new feature which leads the
searching process and chooses the solutions from the most
crowded regions, i.e. regions with more densely populated
solutions. Followings are the different parts of our
algorithm design.

Journal of Optimization in Industrial Engineering 16 (2014) 65-73

67

3.1.1 Solutions’ Representations

The goal of solving TDVRPTWHFM is assigning
vehicles to the customers, with regard to less total travel
costs and fewer number of routes. To assign vehicles to
the customers, we employed a two-string chromosome, in
which the first string is vehicles assigned to the customers
and the second string represents the available customers.
As mentioned earlier in Part 2, there are ݇ vehicle types
available in each depot, so the probability density function

of selecting vehicles is uniform. Accordingly, in the first
string a number between 1 and ݇ shows the corresponding
vehicle type assigned to that customer. In the second
string, a randomly generated number between 0 and 1
depicts the sequence of servicing the customers.
Sequencing the customers first happens in discrete space
and by employing Smallest Position Value (Tasgetiren et
al. 2009) it will then be transformed to the continuous
space. Figure 1 shows the above-mentioned procedures.

Fig 1-A. The proposed two-string chromosome before sorting the randomly generated the numbers in the second string
 Fig 1-B. The proposed two-string chromosome after sorting the randomly generated the numbers in the second string

 Fig 1-C. Proposed two-string chromosome with the sequenced customers

 3.1.2 Initial Population

 The first step in Genetic Algorithm is forming the initial
population. There are two different ways to form the
initial population: seeding method, which lets genetic
algorithm search in space, where solutions are more likely
or generating the initial population randomly. In this
research, we formed the initial population by generating
two-string chromosomes corresponding to the population
size (PopSize).

3.1.3 Parents’ Selection Mechanism

After forming the first generation, some of the individuals
must be selected to form the next generation. Because of
our bi-objective formulation, the selection criteria are
based on the followings:
1) Location of solutions in a Pareto front: Lower Pareto

fronts are superior to the upper ones.
2) Crowded Distance: If there are two solutions in the

same lower Pareto front, one with the least crowded
distance, i.e. solution located in a less sparse region
of the front, will be selected.

3.1.4 Reproduction

 After selecting the parents, the new generation should be
formed by changing some of the parents’ characteristics.
In our algorithm design, we used both Mutation and
Recombination as follows:

3.1.4.1 Mutation

Start
1. Two genes are selected randomly from the second
strings of the each parent. (Fig.2-A)
2. These two genes will be multiplying by two
randomly generated numbers between 0 and 1, and
new solutions are formed. (Fig. 2-B)
3. For each ݇,
4. The vehicle type assigned to each customer
changes, and in each case the objective functions are
calculated.
5. end for
6. The less objective function and its associated
vehicle type assignment are chosen.

End

Behrouz Afshar-Nadjafi & Arian Razmi-Farooji/ A Comparison of a NSGA...

68

Fig 2. The proposed Mutation

3.1.4.2 Crossover

The following Pseudo-code shows, how parents are
chosen for recombination
Start

1. To select parents for recombination, it is
started from the lowest front.
2. if the individuals in the first front (݂݊) are
fewer than the individuals which should
be selected by recombination (݊ܿ),
3. All of the individuals in the first front will be
selected and the rest individuals are

selected from the second front with the lowest
crowded distance.
4. else
5. Individuals with the less crowded distance will
be selected.
6. end if

End
After selecting parents for recombination, as Figure 3
illustrates, a two-point crossover will be implemented on
our proposed two-string chromosomes.

Fig 3. Two-point Crossover

3.1.5 Objective Functions

 To evaluate the fitness of each generation, the following
pseudo-code was implemented.
Start

  Set of customers which have not been ࡿ .1
served yet.
 {} ≠ ࡿ ࢋ࢒࢏ࢎ࢝ .2
 ܭ ∋ each vehicle ࢘࢕ࢌ .3
4. one depot is selected randomly
5. customers are selected randomly and assigned
to the vehicle
6. checking the vehicle’s capacity
7. checking the customers’ time windows
8. checking depots’ time windows
9. end of ࢘࢕ࢌ
10. deleting served customers from ࡿ

End
Based on this pseudo-code, first set	ܵ, the set of
customers, who have not been served yet, is formed. Next,
for all available vehicle types and till the set ܵ is not
empty, one depot will be chosen randomly. Then, a
customer is selected and assigned to one of vehicles
randomly. If the vehicle’s capacity is not exceeded, the

arrival time of vehicle at the depot will be checked. If and
only if, all of these conditions are met, that served
customer will be removed from the set ܵ and travel costs
and vehicle capacity will be updated. If due to the full
capacity of the current vehicle, we cannot use it anymore,
a new vehicle will be chosen and one router will be added
to the number of routes.

3.1.6 Survival Selection Mechanism

To replace the older generation, from all the individuals
(parents and offsprings) some individuals will be selected.
The selection mechanism is exactly like parents’
selection.

3.1.7 Stopping Criteria

To be able to judge about the performance of our meta-
heuristic approaches, we set time limit as a termination
criterion. The stopping criteria for large test problems are
three minutes and for other types it will be calculated,
respectively.

Journal of Optimization in Industrial Engineering 16 (2014) 65-73

69

3.1.8 Parameter Tuning

Since NSGA II has three parameters, Population size
(PopSize), Crossover Rate (௖ܲ), and Mutation Rate (௠ܲ)),
we designed an experiment based on the Taguchi (1986)
method on 48 randomly generated large size test
problems, with respect to maximizing the signal to noise
ratio . The output data were analyzed by Minitab and the
tuned parameters were selected. Table 1 and Figure 4
show the experiment levels and the Minitab software
output.
Table 1
 Levels of Taguchi Experiment

 Levels of Experiment
 Low Middle Up

 200 100 50 ݁ݖ݅ܵ݌݋ܲ
௖ܲ 0.8 0.85 0.9
௠ܲ 0.025 0.05 0.075

 Fig 4. Minitab Output for Taguchi Experiment

According to Figure 4, the middle level is accepted and
the optimal values for mentioned parameters
are	ܲ݁ݖ݅ܵ݌݋ = 100,	 ஼ܲ = 0.9, and ௠ܲ = 0.075.	

3.2 Multi-objective Simulated Annealing Approach

The second part of our solution approach considers one of
the most novel multi-criteria solution methods, Multi-
objective Simulated Annealing (MOSA). First introduced
by Serafini (1992), this solution approach tries to adapt
the well-known Simulated Annealing approach to solve
multi-objective problems. One of the advantages of
MOSA over other evolutionary algorithms is that, MOSA
does not need lots of memory space and uses no more
complicated algorithms to develop Pareto Optimal Front
(POF) solutions.
Our MOSA solution approach, as Nam and Park (2000)
offer, consists of the following three phases

3.2.1 Neighbor generating and Annealing

Since TDVRPHFMD is a finite state combinatorial
optimization problem, the most general neighbor
generating method is permute operation, which must

satisfy the reachability and symmetry conditions. So,
equation (13) is the most frequently used one for the
annealing phase in such problems:
௞ܶ = ௞ߙ ଴ܶ (13)

Where	0 < ߙ < 1 is the cooling rate and ଴ܶ is the initial
temperature.

3.2.2 Transition Probability

In single objective Simulated Annealing problems, one
can use the Metropolis or Logistic method for transition
phase. However, since these functions support only scalar
cost functions, they are not directly applicable to multi-
objective optimization problems. The following equation
shows the transition probability from state ݅ to	݆:

௧ܲ(݅, ݆) = ݉݅݊{݁(ି
஼(௜,௝)
்) , 0} (14)

Where ܿ(݅, ݆) is the cost criterion for transition from state
݅ to	݆ and	ܶ is the annealing temperature. Nam and Park
(2000) evaluated six different schemes and later in their
article, they suggest using random, average and fixed
criteria. However, since the cost function in our
TDVRPHFMD problem is the sum of travel costs and
costs of using certain vehicles and it can be always
calculated with fixed amounts, so the cost criterion in our
problem is a fixed one.

3.2.3 Deciding whether to stay or move in non-
dominated situation

It was pointed out earlier that in multi-objective
optimization problems we confront non-dominated
solutions. If the new state is the same level of value as the
current state, there can be two different scenarios: move
to a new state or stay in the current state. Nam and Park
(2000) suggested that the move state is better, because in
stay state the algorithm is not able to search the solutions,
which are in the middle of Pareto frontier, but in move
state the algorithm can move freely and continue the
search in the middle part of the Pareto fronts. The
following shows the pseudo-code of the proposed MOSA.

Start
1. S=ܵ଴
2. T= ଴ܶ
3. Repeat
4. Generate a neighbor S’=N(S)
5. If C(S’) dominates C(S)
6. move to S’
7. else if C(s) dominates C(S’)
8. move to S’ with the transition

probability ௧ܲ(ܥ(ܵ), ,(′ܵ)ܥ ܶ)
9. else if C(S) and C(S’) do not dominate

each other
10. move to S’
11. end if
12. T= annealing (T)

End repeat (until the termination is satisfied)

Behrouz Afshar-Nadjafi & Arian Razmi-Farooji/ A Comparison of a NSGA...

70

3.2.4 Solution Representation

Since we propose two meta-heuristic approaches to solve
the TDVRPHFMD problem, introduced in this paper and
in order to judge which approach is better, all the possible
conditions are chosen to be the same. So, the solution
representation in MOSA is like the NSGA II
representation. Figure 5 shows the representation of the
two string solution:

Fig 5-A. The proposed two-string representation before sorting the

randomly generated the numbers in the second string
Fig 5-B. The proposed two-string chromosome after sorting the

randomly generated the numbers in the second string
 Fig 5-C. Proposed two-string chromosome with the sequenced

customers

3.2.5 Parameter Tuning for MOSA

Since simulated annealing has only two parameters;
namely, initial temperature (଴ܶ) and cooling rate (ߙ), in
order to tune these parameters we used trial and error
method. Based on the results, we considered ଴ܶ =
1200	and ߙ = 0.9

4. Results

To evaluate the performance of our proposed algorithms
and also to be able to compare the efficiency of these two
different approaches, we tested our solution approach on
three various problem types; namely, small, medium and
large. These test problems are generated randomly by
 and run on Lenovo computer with a 2.40 7.12 ®ܤܣܮܶܣܯ
GHz ்݁ݎ݋ܥ ®݈݁ݐ݊ܫெ i5 CPU and 4 GB RAM. Table 2
presents the detailed information about the test problems.
Since the two proposed meta-heuristics function
differently, and in order to be able to compare the
efficiency of these two algorithms, we considered running
time as the stopping criterion. We set the running time of
large size test problems equal to three minutes or 180
seconds and by using the following equations, we
calculated the running time of other problem types.

ߠ =
180
75	ݔ	4

= 0.6 (15)

Table 2
 Specifications of Randomly Generated Test Problems
 Number of

Problems
Number of
Customers

Number of
Depots

Time
(Seconds)

Large Size 10 15 2 18
Medium

Size 10 45 3 81

Small Size 10 75 4 180

In equation (15), 180 is the running time set for solving
large size test problems, while numbers 4 and 75 are the
numbers of depots and customers in large size test
problems, respectively. After multiplier ߠ was calculated,
running time of small and medium size test problems are
calculated by using equation (16).

ݐ = .݉.ݒ (16) ߠ

Where ݒ and ݉ are the number of customers and depots
in small and medium test problems.
In small size test problems, we compared the results with
outputs obtained from solving our mathematical
formulation using ܵܯܣܩ® software and ݔ݈݁݌ܥ® solver.
The metrics used to compare the performance of small
size test problems was relative Percent Deviation (RPD),
which was introduced by Naderi et al. (2011). Equation
(15) shows the RPD concept.

ܦܴܲ = ஺௟௚ೞ೚೗ି௠௜௡ೞ೚೗
௠௜௡ೞ೚೗

 x 100 (17)

Since in small size problems two different approaches
(meta-heuristics and ܵܯܣܩ® output) are compared
together, a new modification to RPD is necessary.
Equation (18) depicts the new modification to RPD.

ܦܴܲ =
஺௟௚భି௠௜௡(஺௟௚భି஺௟௚మ)

௠௜௡(஺௟௚భି஺௟௚మ)
 x 100 (18)

In each table, ݃ܽ݌	1, and ݃ܽ݌	2 compare the performance
of each two solutions by considering number of routes
(the first objective) and travel cost (the second objective),
respectively. The value ݃ܽ݌	3 is a simple average of
 In each table one solution approach .2	݌ܽ݃ and 1	݌ܽ݃
(shown above word ݃ܽ݌) was considered as the first
algorithm.

Table 3
Average of gaps for small size test problems for NSGA II and Model

 NSGA II Vs. Model Model Vs.
NSGA II

1௔௩௘	݌ܽ݃ 	(%) 17.71 15.00
2௔௩௘	݌ܽ݃ 	(%) 15.24 0.58
3௔௩௘	݌ܽ݃ 	(%) 16.48 7.79

Table 4
 Average of gaps for small size test problems for MOSA and Model

 MOSA Vs. Model Model Vs MOSA
1௔௩௘	݌ܽ݃ 	(%) 23.19 0.00
2௔௩௘	݌ܽ݃ 	(%) 4.56 5.68
3௔௩௘	݌ܽ݃ 	(%) 13.88 2.84

To compare the efficiency of NSGA II and MOSA, we
employed the following metrics:

Journal of Optimization in Industrial Engineering 16 (2014) 65-73

71

4.1 Spacing

First introduced by Schott (1995), Spacing is one of the
metrics used to measure the distance variance of
neighboring vectors in a known Pareto front. Equation 11
defines the Spacing metric.

ܵ = ඨ 1
݊ − 1

	෍(݀̅ − ݀௜)ଶ
௡

௜ୀଵ

 (19)

and

݀௜ = ݉݅ ௝݊(| ଵ݂௜(⃑ݔ) − ଵ݂
௝(⃑ݔ)|+| ଶ݂௜(⃑ݔ) −

ଶ݂
௝൫ݔ)|ሬሬሬሬሬ⃑ ൯

(20)

Where ݅, ݆ = 1, … , ݊, ݀̅ is the mean of all ݀௜ and ݊ is the
number of vectors in the known Pareto front. When ܵ =
0, all members are spaced evenly apart. The advantage of
using this metric is that the researcher does not need to
know the true Pareto front.

4.2 Generational Distance (GD)

This metric, which was proposed by Van Veldhuizen and
Lamount (1998), reports how far on average the known
Pareto front is from the true Pareto front. It is obvious that
this metric requires the researcher to know the true Pareto
front. The following equation shows the generation
distance metrics.

ܦܩ = ඨ∑ ݀௜ଶ௡
௜ୀଵ

݊
 (21)

Where ݊ the number of vectors is in known Pareto front,
݀௜ is the Euclidean distance between each number and the
closest member of the true Pareto front. When ܦܩ = 0,
known Pareto front and true Pareto front are the same.

Tables 5 and 6 show the average of these two metrics for
NSGA II and MOSA for the small, medium, and large test
problems.

Table 5
The average of Spacing Metric for NSGA II and MOSA

Test Problems NSGA II MOSA
Small Size 3,95E+05 3,78E+05
Medium Size 4,30E+05 3,60E+05
Large Size 4,24E+05 3,69E+05

Table 6
 The average of Generational Distance Metric for NSGA II and MOSA

Test Problems NSGA II MOSA
Small Size 64.15 64.77
Medium Size 52.13 64.13
Large Size 50.44 61.70

4.3. Discussion

To test how valid our mathematical model is, we
compared the results obtained from NSGA II and MOSA
with the results of our MILP model, solved by using
 solver for small size test ®ݔ݈݁݌ܥ software and ®ܵܯܣܩ

problems. Table 3 shows that our NSGA II approach
works in 16.48 % of cases worse than MILP model, while
MILP model has a worse performance in 7.79% of the
cases. When it comes to the objective functions, it is clear
that in terms of number of routes and total travel costs,
MILP has a better performance than NSGA II.
According to Table 4, our MILP model has a better
performance than MOSA, as well. In terms of number of
routes, MILP model always finds fewer routes. In fact
MOSA has a worse performance, in terms of number of
routes in 23.19 % of cases However, in terms of total
travel costs, MOSA has a better performance and is able
to find routes with less total travel costs. In 4.56 % of
cases, MOSA has a worse performance in terms of total
travel costs, while MILP model, works in 5.68% of the
cases worse than MOSA. These two tables show that the
MILP model is robust and valid, and comparable to our
NSGA II and MOSA approaches, which can find nearly
good solutions in only 18 seconds of running times.
As mentioned in the results section, to judge the
efficiency of two Meta-heuristics, we have used Spacing
and Generational Distance metrics. The reason why we
employed these metrics is that, in multi-objective
optimization problems, there are some non-dominated
solutions which have no special superiority to each other.
Based on Table 5, which summarizes the information
about the average Spacing metrics for NSGA II and
MOSA for three types of problems, MOSA has a less
Spacing metrics than NSGA II in all of three problem
types. Less spacing metrics shows that solutions are
distributed more evenly. This is an important fact,
because more evenly distribution of solutions causes the
algorithm to reach further space and diversifies the
solution search procedure.

Table 6 compares the efficiency of NSGA II and MOSA
based on Generational Distance metric. Generational
Distance metrics measure how far the solutions from the
true Pareto front are. According the Table 6, NSGA II has
less Generational Distance than MOSA in all three
problem types. In other words, the solutions which are
found by NSGA II are closer to true Pareto front,
compared to MOSA.

5. Conclusion

In this paper, a novel variant of vehicle routing problems,
Time-dependent Vehicle Routing Problem with hard
time-windows, heterogeneous fleet and multiple depots
(TDVRPTWHFM) with intra depot routes was
formulated. To the best of our knowledge, no paper has
been published yet, which considered all of these
assumptions simultaneously. To solve this bi-objective
particular formulation, we employed two well- known
multi-objective meta-heuristics; namely, NSGA II and
MOSA. We tested our approaches on three different
randomly generated problem types (small, medium and

Behrouz Afshar-Nadjafi & Arian Razmi-Farooji/ A Comparison of a NSGA...

72

large size). In small size test problems, we compared our
solutions with our mathematical formulation output,
obtained by solving MILP model by using ܵܯܣܩ®
software and ݔ݈݁݌ܥ® solver. The results showed both
robustness of the model and the algorithms. To judge
which multi-objective meta-heuristic (NSGA II or
MOSA) is better, we compared the performance of
algorithms, using Spacing and Generational Distance
metrics. Results illustrated that MOSA found more evenly
distributed solutions, which let MOSA search more
diversely, while NSGA II was capable of finding closer
solutions to the true Pareto front. For future research, it is
advised to expand this problem and work on other
variants of vehicle routing problem, such as Time-
dependent Pick-up and Delivery Problem with stochastic
demands or Time-dependent Vehicle Routing Problem
with heterogonous fleet and traffic restriction, in which
some routes are not open in some time intervals, or not all
the vehicles can pave all the routes.

References

[1] Balseiro, S. R., Loiseau, I., Ramonet, J. (2011). An Ant
Colony algorithm hybridized with insertion heuristics for
the Time Dependent Vehicle Routing Problem with Time
Windows, Computers and Operations Research, 38, 957-
966.

[2] Dantzig, G.B., Ramser, J.H., (1959). The truck dispatching
problem, Management Science, 6-80.

[3] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T. (2002). A
fast Elitist Non-dominated Sorting Genetic Algorithm for
multi-objective Optimization (NSGA II), IEEE
Transactions on Evolutionary Algorithms, 6, 182-197.

[4] Figliozzi, M.A. (2012). The time dependent vehicle
routing problem with time windows: Benchmark
problems, an efficient solution algorithm, and solution
characteristics, Transportation Research Part E, 48, 616-
636.

[5] Fleischmann, B., Gietz, M., Gnutzmann, S. (2004). Time-
varying travel times in vehicle routing, Transportation
Science, 38, 160–173.

[6] Ichoua, S., Gendreau, M., Potvin, J.Y. (2003). Vehicle
dispatching with time-dependent travel times, European
Journal of Operational Research, 144, 379–396.

[7] Jagiełło, S., Żelazny, D., (2013). Solving Multi-criteria
Vehicle Routing Problem by Parallel Tabu Search on
GPU, International Conference on Computational Science,
2529-2532.

[8] Kok, A.L. (2010). Congestion Avoidance and Break
Scheduling within Vehicle Routing, PhD. Thesis,
University of Twente, Enschede, the Netherlands.

[9] Malandraki, C. (1989). Time Dependent Vehicle Routing
Problems: Formulations, Solution Algorithms and
Computational Experiments, Ph.D. Dissertation,
Northwestern University, Evanston, Illinois.

[10] Malandraki, C., Daskin, M.S. (1992). Time-dependent
vehicle-routing problems – formulations, properties and
heuristic algorithms, Transportation Science, 26, 185–200.

[11] Naderi, B., Fatemi Ghomi, S.M.T., Aminyari, M.,
Zandieh, M. (2011). Scheduling open shops with parallel

machines to minimize total completion times, Journal of
Computational and Applied Mathematics235, 1275-1287.

[12] Nam, D., Park, C., (2000). Multiobjective simulated
annealing: A comparative study to Evolutionary
algorithms. International Journal of Fuzzy Systems, 2, 87–
97.

[13] Schott J. (1995). Fault tolerant design using single and
multicriteria genetic algorithms optimization, Department
of Aeronautics and Astronautics. Cambridge: Master’s
thesis, Massachusetts, Institute of Technology.

[14] Serafini, P., (1992). Simulated Annealing for
Multiobjective Optimization Problems in Proceeding of
the 10th International Conference on Multiple Criteria
Decision Making, Taipei Taiwan, 87-96.

[15] Solomon Test Problems:
http://w.cba.neu.edu/~msolomon/problems.htm

[16] Srinivas, N., Deb, K. (1994). Multi-Objective function
Optimization using non-dominated genetic algorithms’,
Evolutionary Computation, 2, 221-248.

[17] Taguchi, G. (1986). Introduction to quality engineering,
White Plains: Asian Productivity Organization, UNIPUB.

[18] Tasgetiren, M., Faith, Suganthan, P., Gencyilmaz G.,
Chen, Angela H-L. (2009). A smallest position value
approach, Invited book chapter in Differential Evolution:
A handbook for Global Permutation-Based Combinatirial
Optimization edited by Godfrey Onwubolu and Donald
Davendra, Springer-Verlag, 121-138.

[19] Toth, P., Vigo, D., (2002). The Vehicle Routing Problem,
Society for Industrial and Applied Mathematics
Philadelphia.

[20] E. Ulungu, J. Teghem, P. Fortemps, D. Tuyttens, (1999).
Mosa method: A tool for solving moco problems, Journal
of Multi-Criteria Decision Analysis, 8, 221-236.

[21] Van Veldhuizen, D., Lamont G., B., (1998), Evolutionary
Computation and Convergence to a Pareto Front.
Proceeding at the Genetic Programming Conference,
Stanford University, California, Stanford University
Bookstore. 221-228,

[22] Van Woensel, T., Kerbache, L., Peremans, H., Vandaele,
N. (2008). Vehicle routing with dynamic travel times: a
queueing approach, European Journal of Operational
Research, 186, 990–1007.

[23] Żelazny, D., (2012). Multicriteria optimization in vehicle
routing problem, in: National Conference of Descrite
Processes Automation, 157-163.

Journal of Optimization in Industrial Engineering 16 (2014) 65-73

73

