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Abstract 

Time-dependent Vehicle Routing Problem is one of the most applicable but least-studied variants of routing and scheduling problems. In 
this paper, a novel mathematical formulation of time-dependent vehicle routing problems with heterogeneous fleet, hard time widows and 
multiple depots, is proposed. To deal with the traffic congestions, we also considered that the vehicles are not forced to come back to the 
depots, from which they were departed. In order to solve our bi-objective formulation, we presented two well-known Meta-heuristic 
algorithms, namely NSGA II and MOSA and compared their performance based on a set of randomly generated test problems. The results 
confirm that our MILP model is valid and both NSGA II and MOSA work properly. While NSGA II finds closer solutions to the true 
Pareto front, MOSA finds evenly- distributed solutions which allows the algorithm to search the space more diversely. 
Keywords: Time-dependent Vehicle Routing Problem, Bi-objective optimization, Meta-heuristics, NSGA II, MOSA.  

1. Introduction 

Transportation is one of the most vital parts of today’s 
tough economy. Transportation facilitates the mobility of 
goods and people; hence, it plays a central role in 
economic infrastructures of a country. One of the novel 
topics in transportation science is Vehicle Routing 
Problem (VRP). Firstly introduced by Dantzig and 
Ramser (1959), classic VRP tries to find a set of optimal 
routes, which starts from a depot, visiting some 
customers, and finishing to that same depot. 
According to Toth and Vigo (2002), VRP can reduce up 
to 25% of transportation costs. This reason pushed 
scientists to work on different versions of VRP, each 
focusing on one industrial and economical need. One of 
the most significant but under-researched variants of 
VRP, is Time-dependent Vehicle Routing Problem 
(TDVRP), The cornerstone of TDVRP is this fact, that the 
travel speed of a vehicle is not constant, and due to 
reasons such as traffic congestions, bad weather 
conditions or road accidents, vehicles’ speed can vary 
over time. 
TDVRP was first proposed by Malandraki (1989) and 
Malandraki and Daskin (1992). This problem was 
formulated, using a mixed-integer linear programming 
model. Malandraki and Daskin (1992) used a greedy 
search method, which was based on travel times between 
nearest neighbor customers and a branch and cut 
algorithms, the drawback of Malandraki and Daskin´s  

 
 
 
work (1992) was loss of First In-First Out (FIFO) 
property. Based on this property, when a vehicle leaves 
customer ݅ to serve customer ݆ at time ݐ, any identical 
vehicle, which leaves customer ݅ to serve customer ݆ at 
ݐ + ߝ where ,ߝ ≻ 0, will arrive later. 
The above-mentioned drawback of Malandraki and 
Daskin´s work (1989) was modified by Ichoua and et al. 
(2003). They formulated a TDVRP model with soft time-
windows and a Tabu-search based solution approach, 
which was implemented on Solomon test problems. To 
modify the FIFO concept, they assumed the time 
distribution as a piecewise linear function, from which the 
speed distribution can be derived, 
Fleischman et al. (2004) proposed an incapacitated 
vehicle routing problem with and without presence of 
time-windows; and to solve this formulation they 
suggested a route construction procedure based on 
insertions and a 2-opt local search mechanism. Van 
Woensel et al. (2008) presented a Tabu-search solution 
approach for solving a capacitated time-dependent vehicle 
routing problem. The innovation of their work was 
considering a queuing theory-based assumption for 
determining the travel speeds over time. They finally 
tested their approach on a set of test problems with 32 to 
80 customers. 
Kok (2010) formulated a TDVRP mathematical model 
and solved this formulation by optimizing the departure 

* Corresponding author Email address: afsharnb@alum.sharif.edu 
 

Journal of Optimization in Industrial Engineering 16 (2014) 65-73

65



times and considering driver breaks. Finally, he also 
considered driving hours´ regulations and managed to 
obtain feasible solutions. Figliozzi (2012) proposed an 
Iterative Route Construction and improvement (IRCI) 
method for dealing with TDVRP with hard time-
windows. Testing his solution approach on a set of well-
known Solomon benchmark problems, he reported 
competitive results. Despite all researches conducted on 
VRP, multi-objective VRPs did not obtain the researchers' 
interests. There are three different approaches to solving a 
multi-criteria optimization problem: scalar methods, 
Pareto methods like NSGA II and MOSA and those, 
which do not belong to either of the aforementioned 
techniques. In multi-objective VRPs, the Pareto approach 
within an evolutionary framework is more common.  
Ulungu et al. (1999) employed a MOSA-based algorithm 
to solve a particular type of routing problems. In their 
proposed problem, a customer asks to load a quantity at 
one place and to transport it to another place. The goal of 
defining this problem was to determine the daily routes of 
a fleet of trucks, where satisfying a set of customers was 
mandatory. Żelazny (2012) employed a Memetic 
algorithm to tackle multi-objective VRP. His proposed 
genetic algorithm was able to use a local search procedure 
on non-dominated solutions in order to further improve 
the Pareto frontier. 
Jagiłło and Żelazny (2013) presented a parallel Tabu 
Search (TS) algorithm on Graphics processing Units 
(GPUs) to solve multi-criteria discrete optimization of 
Distance-Constrained VRP. Based on their computational 
results, they reported that Parallel Tabu Search on GPUs 
outperforms the classic Tabu Search Method. 
To conclude, in spite of the undeniable importance of 
vehicle routing problem and its variants in both 
manufacturing and service industry and all of the studies 
conducted on VRPs, a problem which contains nearly all 
of constraints we encounter in our real-world problems is 
still missing in the current literature. In this research, we 
consider time-varying travel speeds, hard time-windows, 
multiple depots, heterogeneous fleet and intra depot 
routes. Moreover, to solve our bi-objective formulation, 
we employ two well-known multi-criteria meta-heuristics; 
namely, Non-dominated Sorting Genetic Algorithm II 
(NSGA II) and Multi Objective Simulated Annealing 
(MOSA). To the best of our knowledge, no paper has 
been published yet, covering all the above-mentioned 
constraints and solving meta-heuristics simultaneously. 
In section 2, we define and formulate our bi-objective 
Mixed Integer Linear Programming (MILP) mathematical 
model. In section 3, we propose two meta-heuristics; 

namely, NSGA II and MOSA to solve our model. Section 
4 deals with the computational results and discussions. 
Finally, section 5 concludes this paper. 

2. Problem Definition 

The Time-dependent Vehicle Routing Problem with hard 
time-windows, heterogeneous fleet and multiple depots 
(TDVRPTWHFM) studied in this article is defined as 
follows: ܩ	(ܰ,  is a directed graph, where ܰ is the node (ܣ
set and ܣ is the arc set. The node set ܰ consists of two 
other subsets, ܹ = {1,2,… ,݉}, the depots’ set and 
ܸ = {݉ + 1, … , ݊}, which is the customers’ set. The arcs’ 
set ܣ is also defined as ܣ = {(݅, ݆): ݅ ≠ ݆	 ∧ ݅, ݆ ∈ ܰ}. Each 
customer has a fixed and known demand ݍ௜ ≥ 0, it is also 
assumed that  depots have no demands (ݍ௜ = 0			∀݅ ∈ ܹ). 
Serving customers should take place in their time-
windows [ܽ௜ , ܾ௜], and each customer has a service time 
	௜ݏ ≥ ܨ .0 = {1, … , ݇} is the set of heterogeneous fleets’ 
types. It is assumed that there are unlimited vehicles from 
each type, each having a capacity ܥ௞, fixed cost ܿ ௞݂  and  
variable cost ܿݒ௞. Each arc from ݅ to ݆ has a fixed distance  
݀௜௝ . However, the cost of travelling this distance is 
different for each vehicle type and equals ܿ௜௝௞ ݀௜௝	x	௞ݒܿ=  . 
Travelling each arc from ݅ to ݆ has a travel time ݐ௜௝௞ , which 
depends on the travelling start time (leaving node ݅). 
Planning occurs daily and each day is divided into several 
intervals ݑ ∈ ,ܫ ܫ = {1, … ,ܷ}, which means due to daily 
traffic congestion, travelling from ݅ to ݆ has  no fixed 
travelling time and it is dependent on the travel starting 
time and the day interval, in which the travel took place. 
This problem involves the minimization of the following 
objectives in order of priority: 

1. Number of vehicles from each type 
2. Total costs, including travelling costs and vehicle 

costs 
It is worth noting that these two objective functions are 
contradictory. It means that, having more vehicles and in 
other words more routes leads to higher total travel costs.  
There are two decision variables: ݔ௜௝௞௨ is a binary decision 
variable, which indicates whether vehicle ݇, travels from 
node	݅ to ݆ in time interval ݑ. The real number ݕ௜௞ is also 
used to indicate when the vehicle ݇ arrives to customer ݅. 
The primary and secondary objective functions are 
defined by (1) and (2), respectively. The constraints are as 
follows: all customers must be served (3) and (4);

 

 (1) ݉݅݊෍෍ ෍ ෍ݔ௜௝௞௨
௎

௨ୀଵ

௡

௝ୀ௠ାଵ

௠
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௞
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(2) ݉݅݊෍෍෍෍ܿ௜௝௞
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௝ୀଵ
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௞
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(3)   ∀	݆ = ݉ + 1,… , ݊ ෍෍෍ݔ௜௝௞௨ = 1
௎

௨ୀଵ

௡

௜ୀଵ

௞

௞ୀଵ

 

(4)    ∀	݅ = ݉ + 1,… , ݊ ෍෍෍ݔ௜௝௞௨ = 1
௎

௨ୀଵ

௡

௝ୀଵ

௞

௞ୀଵ

 

(5)   ∀	݇ = 1,… , ݇ ෍ ෍ ෍ݔ௜௝௞௨ ≤ 1
௎

௨ୀଵ

௡

௝ୀ௠ାଵ

௠

௜ୀଵ

 

(6)   ∀	݇ = 1,… , ݇ ෍ ෍෍ݔ௜௝௞௨ ≤ 1
௎

௨ୀଵ

௠

௝ୀଵ

௡

௜ୀ௠ାଵ

 

ݎ	∀ (7) = ݉ + 1,… , ݊ ∀	݇ = 1, … , ݇ ෍෍ݔ௜௝௞௨ −෍෍ݔ௥௝௞௨ = 0
௎

௨ୀଵ

௡

௝ୀଵ

௎

௨ୀଵ

௡

௜ୀଵ

 

ݑ	∀ (8) = 1,… , ܷ ∀	݇ = 1,… , ݇ ܽ௜ 	෍ݔ௜௝௞௨
௡

௝ୀଵ

	 ≤ ௜௞ݕ	 	 ≤ 	 ܾ௜ 	෍ݔ௜௝௞௨
௡

௝ୀଵ

 

ݑ	∀ (9) = 1,… ,ܷ ∀	݇ = 1,… , ௜௞ݕ ݇ + ௜ݏ + ௜௝௞ݐ ൫ݕ௜௞ + ௜൯ݏ − ௝௞ݕ ≤ 1)ܯ −  (௜௝௞௨ݔ

ݑ	∀ (10) = 1,… , ܷ ∀	݇ = 1,… , ௜௞ݕ ݇ + ௜ݏ − ௨ܶ 	 ≤ 1)ܯ − ௜௝௞ݔ ) 
												∀	݅, ݆	 ∈    ܣ

ݑ	∀      (11) = 1,… , ܷ  ∀	݇ = 1,… , ௜௞ݕ ݇ + ௜ݏ ≥ ௨ܶିଵ	ݔ௜௝௞௨ 

												∀	݅, ݆	 ∈      ܣ

(12)   ∀	݇ = 1,… , ݇ ෍ݍ௜ 	෍෍ݔ௜௝௞௨ 	 ≤ ௞ܥ

௎

௨ୀଵ

௡

௝ୀଵ

௠

௜ୀଵ

 

each vehicle should leave one of the depots in all time 
intervals at most once (5); each vehicle should arrive at 
one of the depots in all time intervals at most once (6); 
when a vehicle arrives to a customer, it should also leave 
that customer (7); customers should be served in their 
associated Time-windows (8); service start time must 
allow for travel time between customers (9); the 
connection between departure time (ݕ௜௞ +  ௜) with theݏ
time interval, so that the appropriate piece of the 
travelling time is employed (10) and (11). These 
constraints, which were introduced by Balseiro et al. 
(2011), guarantee if a vehicle leaves node ݅ to reach node 
݆ in second interval, it will start its next route in second or 
third interval, because time never goes back. Vehicle’s 
capacity should not be violated (12). 

3. Solution Approach 

Toth and Vigo (2002) explain that the classic Vehicle 
Routing problem is derived from the famous Travelling 
Salesman Problem (TSP). Since the TSP is an NP-Hard 
combinatorial optimization problem, VRP and its variants 
belong to this group of problems. Belonging to NP-hard 
problems, finding exact solutions for TDVRPTWHFM is 

not only time-consuming, but also impossible in cases that 
the size of problems get bigger. So, to solve our bi-
objective formulation, we decided to employ two well-
known multi-objective meta-heuristic approaches; 
namely, Non-dominated Sorting Genetic Algorithm II 
(NSGA II) and Multi-objective simulated Annealing 
(MOSA). 

3.1 The NSGA II Approach 

Srinivas and Deb (1995) proposed a Genetic Algorithm 
based method to solve multi-criteria optimization 
problems, called Non-dominated Sorting Genetic 
Algorithm (NSGA). This algorithm could find several 
Pareto solutions in each iteration. However, the algorithm 
functioned in a very complex way and it lacked elitism 
selection procedures. These drawbacks made Deb et al. 
(2002) to modify the previous algorithm and propose its 
second version; namely, Non-dominated Sorting Genetic 
Algorithm II (NSGA II). They also added Crowded 
Distance to their algorithm, a new feature which leads the 
searching process and chooses the solutions from the most 
crowded regions, i.e. regions with more densely populated 
solutions. Followings are the different parts of our 
algorithm design. 
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3.1.1 Solutions’ Representations 

The goal of solving TDVRPTWHFM is assigning 
vehicles to the customers, with regard to less total travel 
costs and fewer number of routes. To assign vehicles to 
the customers, we employed a two-string chromosome, in 
which the first string is vehicles assigned to the customers 
and the second string represents the available customers. 
As mentioned earlier in Part 2, there are ݇ vehicle types 
available in each depot, so the probability density function 

of selecting vehicles is uniform. Accordingly, in the first 
string a number between 1 and ݇ shows the corresponding 
vehicle type assigned to that customer. In the second 
string, a randomly generated number between 0 and 1 
depicts the sequence of servicing the customers. 
Sequencing the customers first happens in discrete space 
and by employing Smallest Position Value (Tasgetiren et 
al. 2009) it will then be transformed to the continuous 
space. Figure 1 shows the above-mentioned procedures.

 

 
Fig 1-A. The proposed two-string chromosome before sorting the randomly generated the numbers in the second string 
 Fig 1-B. The proposed two-string chromosome after sorting the randomly generated the numbers in the second string 

 Fig 1-C. Proposed two-string chromosome with the sequenced customers 
 

 3.1.2 Initial Population 

 The first step in Genetic Algorithm is forming the initial 
population. There are two different ways to form the 
initial population: seeding method, which lets genetic 
algorithm search in space, where solutions are more likely 
or generating the initial population randomly. In this 
research, we formed the initial population by generating 
two-string chromosomes corresponding to the population 
size (PopSize). 

3.1.3 Parents’ Selection Mechanism 

After forming the first generation, some of the individuals 
must be selected to form the next generation. Because of  
our bi-objective formulation, the selection criteria are 
based on the followings: 
1) Location of solutions in a Pareto front: Lower Pareto 

fronts are superior to the upper ones. 
2) Crowded Distance: If there are two solutions in the 

same lower Pareto front, one with the least crowded 
distance, i.e. solution located in a less sparse region 
of the front, will be selected. 

3.1.4  Reproduction 

 After selecting the parents, the new generation should be 
formed by changing some of the parents’ characteristics. 
In our algorithm design, we used both Mutation and 
Recombination as follows: 

3.1.4.1 Mutation 

Start 
1. Two genes are selected randomly from the second 
strings of the each parent. (Fig.2-A) 
2. These two genes will be multiplying by two 
randomly generated numbers between 0 and 1, and 
new solutions are formed. (Fig. 2-B) 
3. For each ݇, 
4. The vehicle type assigned to each customer 
changes, and in each case the objective functions are 
calculated. 
5. end for 
6. The less objective function and its associated 
vehicle type assignment are chosen. 

End 
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Fig 2. The proposed Mutation 

3.1.4.2 Crossover 

The following Pseudo-code shows, how parents are 
chosen for recombination 
Start 

1. To select parents for recombination, it is 
started from the lowest front. 
2. if the individuals in the first front ( ݂݊) are 
fewer than the individuals which should 
be selected by recombination (݊ܿ ), 
3. All of the individuals in the first front will be 
selected and the rest individuals are 

selected from the second front with the lowest 
crowded distance. 
4. else 
5. Individuals with the less crowded distance will 
be selected. 
6. end if 

End 
After selecting parents for recombination, as Figure 3 
illustrates, a two-point crossover will be implemented on 
our proposed two-string chromosomes. 

 

 
Fig 3. Two-point Crossover 

3.1.5 Objective Functions 

 To evaluate the fitness of each generation, the following 
pseudo-code was implemented.  
Start 

  Set of customers which have not been ࡿ .1
served yet. 
 {} ≠ ࡿ ࢋ࢒࢏ࢎ࢝ .2
 ܭ ∋ each vehicle ࢘࢕ࢌ .3
4. one depot is selected randomly 
5. customers are selected randomly and assigned 
to the vehicle 
6. checking the vehicle’s capacity 
7. checking the customers’ time windows 
8. checking depots’ time windows 
9. end of ࢘࢕ࢌ 
10. deleting served customers from ࡿ 

End 
Based on this pseudo-code, first set	ܵ, the set of 
customers, who have not been served yet, is formed. Next, 
for all available vehicle types and till the set ܵ is not 
empty, one depot will be chosen randomly. Then, a 
customer is selected and assigned to one of vehicles 
randomly. If the vehicle’s capacity is not exceeded, the 

arrival time of vehicle at the depot will be checked. If and 
only if, all of these conditions are met, that served 
customer will be removed from the set ܵ and travel costs 
and vehicle capacity will be updated. If due to the full 
capacity of the current vehicle, we cannot use it anymore, 
a new vehicle will be chosen and one router will be added 
to the number of routes. 

3.1.6 Survival Selection Mechanism 

To replace the older generation, from all the individuals 
(parents and offsprings) some individuals will be selected. 
The selection mechanism is exactly like parents’ 
selection. 

3.1.7 Stopping Criteria 

To be able to judge about the performance of our meta-
heuristic approaches, we set time limit as a termination 
criterion. The stopping criteria for large test problems are 
three minutes and for other types it will be calculated, 
respectively. 
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3.1.8 Parameter Tuning 

Since NSGA II has three parameters, Population size 
(PopSize), Crossover Rate ( ௖ܲ), and Mutation Rate ( ௠ܲ)), 
we designed an experiment based on the Taguchi (1986) 
method on 48 randomly generated large size test 
problems, with  respect to maximizing the signal to noise 
ratio . The output data were analyzed by Minitab and the 
tuned parameters were selected. Table 1 and Figure 4 
show the experiment levels and the Minitab software 
output. 
Table 1 
 Levels of Taguchi Experiment 

  Levels of Experiment 
 Low Middle Up 

 200 100 50 ݁ݖ݅ܵ݌݋ܲ
௖ܲ  0.8 0.85 0.9 
௠ܲ  0.025 0.05 0.075 

 
                    Fig 4. Minitab Output for Taguchi Experiment 

According to Figure 4, the middle level is accepted and 
the optimal values for mentioned parameters 
are	ܲ݁ݖ݅ܵ݌݋ = 100,	 ஼ܲ = 0.9, and ௠ܲ = 0.075.	 

3.2 Multi-objective Simulated Annealing Approach 

The second part of our solution approach considers one of 
the most novel multi-criteria solution methods, Multi-
objective Simulated Annealing (MOSA). First introduced 
by Serafini (1992), this solution approach tries to adapt 
the well-known Simulated Annealing approach to solve 
multi-objective problems. One of the advantages of 
MOSA over other evolutionary algorithms is that, MOSA 
does not need lots of memory space and uses no more 
complicated algorithms to develop Pareto Optimal Front 
(POF) solutions. 
Our MOSA solution approach, as Nam and Park (2000) 
offer, consists of the following three phases 

3.2.1 Neighbor generating and Annealing 

Since TDVRPHFMD is a finite state combinatorial 
optimization problem, the most general neighbor 
generating method is permute operation, which must 

satisfy the reachability and symmetry conditions. So, 
equation (13) is the most frequently used one for the 
annealing phase in such problems: 
௞ܶ = ௞ߙ ଴ܶ (13) 

Where	0 < ߙ < 1 is the cooling rate and ଴ܶ  is the initial 
temperature. 

3.2.2 Transition Probability 

In single objective Simulated Annealing problems, one 
can use the Metropolis or Logistic method for transition 
phase. However, since these functions support only scalar 
cost functions, they are not directly applicable to multi-
objective optimization problems.  The following equation 
shows the transition probability from state ݅ to	݆: 

௧ܲ(݅, ݆) = ݉݅݊{݁(ି
஼(௜,௝)
் ) , 0} (14) 

Where ܿ(݅, ݆) is the cost criterion for transition from state 
݅ to	݆  and	ܶ is the annealing temperature.  Nam and Park 
(2000) evaluated six different schemes and later in their 
article, they suggest using random, average and fixed 
criteria. However, since the cost function in our 
TDVRPHFMD problem is the sum of travel costs and 
costs of using certain vehicles and it can be always 
calculated with fixed amounts, so the cost criterion in our 
problem is a fixed one. 

3.2.3 Deciding whether to stay or move in non-
dominated situation 

It was pointed out earlier that in multi-objective 
optimization problems we confront non-dominated 
solutions. If the new state is the same level of value as the 
current state, there can be two different scenarios: move 
to a new state or stay in the current state. Nam and Park 
(2000) suggested that the move state is better, because in 
stay state the algorithm is not able to search the solutions, 
which are in the middle of Pareto frontier, but in move 
state the algorithm can move freely and continue the 
search in the middle part of the Pareto fronts. The 
following shows the pseudo-code of the proposed MOSA. 

Start 
1. S=ܵ଴ 
2. T= ଴ܶ  
3. Repeat 
4.   Generate a neighbor S’=N(S) 
5.   If C(S’) dominates C(S) 
6.                 move to S’ 
7.   else if C(s) dominates C(S’) 
8.                  move to S’ with the transition 

probability ௧ܲ(ܥ(ܵ), ,(′ܵ)ܥ ܶ) 
9.    else if C(S) and C(S’) do not dominate 

each other  
10.               move to S’ 
11.   end if 
12. T= annealing (T) 

End repeat (until the termination is satisfied) 
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3.2.4 Solution Representation 

Since we propose two meta-heuristic approaches to solve 
the TDVRPHFMD problem, introduced in this paper and 
in order to judge which approach is better, all the possible 
conditions are chosen to be the same. So, the solution 
representation in MOSA is like the NSGA II 
representation. Figure 5 shows the representation of the 
two string solution: 

 
Fig 5-A. The proposed two-string representation before sorting the 

randomly generated the numbers in the second string 
Fig 5-B. The proposed two-string chromosome after sorting the 

randomly generated the numbers in the second string 
 Fig 5-C. Proposed two-string chromosome with the sequenced 

customers 

3.2.5 Parameter Tuning for MOSA 

Since simulated annealing has only two parameters; 
namely, initial temperature ( ଴ܶ) and cooling rate (ߙ), in 
order to tune these parameters we used trial and error 
method.  Based on the results, we considered ଴ܶ =
1200	and ߙ = 0.9 

4. Results 

To evaluate the performance of our proposed algorithms 
and also to be able to compare the efficiency of these two 
different approaches, we tested our solution approach on 
three various problem types; namely, small, medium and 
large. These test problems are generated randomly by 
 and run on Lenovo computer with a 2.40 7.12 ®ܤܣܮܶܣܯ
GHz ்݁ݎ݋ܥ ®݈݁ݐ݊ܫெ i5 CPU and 4 GB RAM. Table 2 
presents the detailed information about the test problems.  
Since the two proposed meta-heuristics function 
differently, and in order to be able to compare the 
efficiency of these two algorithms, we considered running 
time as the stopping criterion. We set the running time of 
large size test problems equal to three minutes or 180 
seconds and by using the following equations, we 
calculated the running time of other problem types. 

ߠ =
180
75	ݔ	4

= 0.6 (15) 

 

Table 2 
 Specifications of Randomly Generated Test Problems 
 Number of 

Problems 
Number of 
Customers 

Number of 
Depots 

Time 
(Seconds) 

Large Size 10 15 2 18 
Medium 

Size 10 45 3 81 

Small Size 10 75 4 180 

 
In equation (15), 180 is the running time set for solving 
large size test problems, while numbers 4 and 75 are the 
numbers of depots and customers in large size test 
problems, respectively. After multiplier ߠ was calculated, 
running time of small and medium size test problems are 
calculated by using equation (16). 

ݐ = .݉.ݒ  (16) ߠ

Where ݒ and ݉ are the number of customers and depots 
in small and medium test problems. 
In small size test problems, we compared the results with 
outputs obtained from solving our mathematical 
formulation using ܵܯܣܩ® software and ݔ݈݁݌ܥ® solver. 
The metrics used to compare the performance of small 
size test problems was relative Percent Deviation (RPD), 
which was introduced by Naderi et al. (2011). Equation 
(15) shows the RPD concept. 

ܦܴܲ = ஺௟௚ೞ೚೗ି௠௜௡ೞ೚೗
௠௜௡ೞ೚೗

 x 100 (17) 

Since in small size problems two different approaches 
(meta-heuristics and ܵܯܣܩ® output) are compared 
together, a new modification to RPD is necessary. 
Equation (18) depicts the new modification to RPD. 

ܦܴܲ =
஺௟௚భି௠௜௡(஺௟௚భି஺௟௚మ)

௠௜௡(஺௟௚భି஺௟௚మ)
 x 100 (18) 

In each table, ݃ܽ݌	1, and ݃ܽ݌	2 compare the performance 
of each two solutions by considering number of routes 
(the first objective) and travel cost (the second objective), 
respectively. The value  ݃ܽ݌	3 is a simple average of 
 In each table one solution approach .2	݌ܽ݃ and 1	݌ܽ݃
(shown above word ݃ܽ݌	) was considered as the first 
algorithm. 

Table 3 
Average of  gaps for small size test problems for NSGA II and Model 

 NSGA II Vs. Model Model Vs. 
NSGA II 

1௔௩௘	݌ܽ݃ 	(%) 17.71 15.00 
2௔௩௘	݌ܽ݃ 	(%) 15.24 0.58 
3௔௩௘	݌ܽ݃ 	(%) 16.48 7.79 

 
Table 4 
 Average of  gaps for small size test problems for MOSA and Model 

 MOSA Vs. Model Model Vs MOSA 
1௔௩௘	݌ܽ݃ 	(%) 23.19 0.00 
2௔௩௘	݌ܽ݃ 	(%) 4.56 5.68 
3௔௩௘	݌ܽ݃ 	(%) 13.88 2.84 

 
To compare the efficiency of NSGA II and MOSA, we 
employed the following metrics: 
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4.1 Spacing 

First introduced by Schott (1995), Spacing is one of the 
metrics used to measure the distance variance of 
neighboring vectors in a known Pareto front. Equation 11 
defines the Spacing metric. 

ܵ = ඨ 1
݊ − 1

	෍(݀̅ − ݀௜)ଶ
௡

௜ୀଵ

 (19) 

and 

݀௜ = ݉݅ ௝݊(| ଵ݂௜(⃑ݔ) − ଵ݂
௝(⃑ݔ)|+| ଶ݂௜(⃑ݔ) −

ଶ݂
௝൫ݔ)|ሬሬሬሬሬ⃑ ൯ 

(20) 

Where ݅, ݆ = 1, … , ݊, ݀̅ is the mean of all ݀௜ and ݊ is the 
number of vectors in the known Pareto front. When ܵ =
0, all members are spaced evenly apart. The advantage of 
using this metric is that the researcher does not need to 
know the true Pareto front. 

4.2 Generational Distance (GD) 

This metric, which was proposed by Van Veldhuizen and 
Lamount (1998), reports how far on average the known 
Pareto front is from the true Pareto front. It is obvious that 
this metric requires the researcher to know the true Pareto 
front. The following equation shows the generation 
distance metrics. 

ܦܩ = ඨ∑ ݀௜ଶ௡
௜ୀଵ

݊
 (21) 

Where ݊ the number of vectors is in known Pareto front,  
݀௜ is the Euclidean distance between each number and the 
closest member of the true Pareto front. When ܦܩ = 0, 
known Pareto front and true Pareto front are the same.  

Tables 5 and 6 show the average of these two metrics for 
NSGA II and MOSA for the small, medium, and large test 
problems. 

Table 5 
The average of Spacing Metric for NSGA II and MOSA 

Test Problems NSGA II MOSA 
Small Size 3,95E+05 3,78E+05 
Medium Size 4,30E+05 3,60E+05 
Large Size 4,24E+05 3,69E+05 

 
Table 6 
 The average of Generational Distance Metric for NSGA II and MOSA 

Test Problems NSGA II MOSA 
Small Size 64.15 64.77 
Medium Size 52.13 64.13 
Large Size 50.44 61.70 

4.3. Discussion 

To test how valid our mathematical model is, we 
compared the results obtained from NSGA II and MOSA 
with the results of our MILP model, solved by using 
 solver for small size test ®ݔ݈݁݌ܥ software and ®ܵܯܣܩ

problems. Table 3 shows that our NSGA II approach 
works in 16.48 % of cases worse than MILP model, while 
MILP model has a worse performance in 7.79% of the 
cases. When it comes to the objective functions, it is clear 
that in terms of number of routes and total travel costs, 
MILP has a better performance than NSGA II. 
According to Table 4, our MILP model has a better 
performance than MOSA, as well. In terms of number of 
routes, MILP model always finds fewer routes. In fact 
MOSA has a worse performance, in terms of number of 
routes in 23.19 % of cases However, in terms of total 
travel costs, MOSA has a better performance and is able 
to find routes with less total travel costs. In 4.56 % of 
cases, MOSA has a worse performance in terms of total 
travel costs, while MILP model, works in 5.68% of the 
cases worse than MOSA. These two tables show that the 
MILP model is robust and valid, and comparable to our 
NSGA II and MOSA approaches, which can find nearly 
good solutions in only 18 seconds of running times. 
As mentioned in the results section, to judge the 
efficiency of two Meta-heuristics, we have used Spacing 
and Generational Distance metrics. The reason why we 
employed these metrics is that, in multi-objective 
optimization problems, there are some non-dominated 
solutions which have no special superiority to each other. 
Based on Table 5, which summarizes the information 
about the average Spacing metrics for NSGA II and 
MOSA for three types of problems, MOSA has a less 
Spacing metrics than NSGA II in all of three problem 
types. Less spacing metrics shows that solutions are 
distributed more evenly. This is an important fact, 
because more evenly distribution of solutions causes the 
algorithm to reach further space and diversifies the 
solution search procedure. 

Table 6 compares the efficiency of NSGA II and MOSA 
based on Generational Distance metric. Generational 
Distance metrics measure how far the solutions from the 
true Pareto front are. According the Table 6, NSGA II has 
less Generational Distance than MOSA in all three 
problem types. In other words, the solutions which are 
found by NSGA II are closer to true Pareto front, 
compared to MOSA. 

5. Conclusion 

In this paper, a novel variant of vehicle routing problems, 
Time-dependent Vehicle Routing Problem with hard 
time-windows, heterogeneous fleet and multiple depots 
(TDVRPTWHFM) with intra depot routes was 
formulated. To the best of our knowledge, no paper has 
been published yet, which considered all of these 
assumptions simultaneously. To solve this bi-objective 
particular formulation, we employed two well- known 
multi-objective meta-heuristics; namely, NSGA II and 
MOSA. We tested our approaches on three different 
randomly generated problem types (small, medium and 
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large size). In small size test problems, we compared our 
solutions with our mathematical formulation output, 
obtained by solving MILP model by using ܵܯܣܩ® 
software and ݔ݈݁݌ܥ® solver. The results showed both 
robustness of the model and the algorithms. To judge 
which multi-objective meta-heuristic (NSGA II or 
MOSA) is better, we compared the performance of 
algorithms, using Spacing and Generational Distance 
metrics. Results illustrated that MOSA found more evenly 
distributed solutions, which let MOSA search more 
diversely, while NSGA II was capable of finding closer 
solutions to the true Pareto front. For future research, it is 
advised to expand this problem and work on other 
variants of vehicle routing problem, such as Time-
dependent Pick-up and Delivery Problem with stochastic 
demands or Time-dependent Vehicle Routing Problem 
with heterogonous fleet and traffic restriction, in which 
some routes are not open in some time intervals, or not all 
the vehicles can pave all the routes. 
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