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Abstract

This paper presents a new mathematical model for a redundancyallocation problem (RAP) withcold-standby redundancy strategy and
multiple component choices.The applications of the proposed model arecommon in electrical power, transformation,telecommunication
systems,etc.Manystudies have concentrated onone type of time-to-failure, butin thispaper, two components of time-to-failures which follow
hypo-exponential and exponential distributionare investigated. The goal of the RAP is to select available components and redundancy level
for each subsystem for maximizing system reliability under cost and weight constraints.Sincethe proposed model belongs to NP-hard class,
we proposed two metaheuristic algorithms; namely, simulated annealing and genetic algorithm to solve it. In addition, a numerical example
is presented to demonstrate the application of the proposed solution methodology.

Keywords: Redundancy allocation problem; Cold-standby; Series-parallel systems; Genetic algorithm; Simulated annealing.

1. Introduction

One of the most well-known reliability optimization
problems is redundancy allocation problem (RAP) which
involves the selection of components from among discrete
choices with appropriate levels of redundancy to
maximize system reliability under some predefined
constraints. The RAP has been studied in great detail as
an efficient means to select sound design configurations.
Furthermore, the RAP is considered for various system
structures such as series, parallel, network, parallel-series
Yalaoui et al. [27], k-out-of-n by Coit et al. [7].
Accordingly, the series-parallel RAP is investigated in
this paper. The configuration of the series-parallel system
is presented in Fig. 1.The RAP can be classified into two
groups: 1) Redundancy allocation problems without
component mixing (RAPCM): those problems where a
mix of components within a subsystem is not allowed,;
and 2) Redundancy allocation problems with a mix of
components (RAPMC): those problems in which a mix of
components is allowed within a subsystem (Kuo et al.
[16]). This problem pertains to the first classification.
Whereas in active redundancy all components are
operated from the time zero simultaneously, in the
standby redundancy arrangement the redundant
components are sequentially used in the system during
component failure times. When the component in
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Operation fails, one of the redundant units is switched on
to continue the system operation.
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Fig. 1. series-parallel system
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There are three variants of the standby redundancy;
namely, cold, warm, and hot. This paper pertains to cold-
standby redundancy strategy. In the cold-standby
redundancy, the component does not fail before it
operates by Tavakkoli-Moghaddam et al. [25]. We
classified literature review in this area based on active and
cold-standby redundancy.

In active redundancy, in order to maximize the reliability
of the system, different methods and algorithms were
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developed including dynamic programming by Fyffe et al.
[9] and Nakagawa et al. [19], integer programming by
Bulfin et al. [3], and different types of meta-heuristic
algorithms such as genetic by Ida et al. [13] and Coit et al.
[8], tabu search by Ouzineb et al. [20], variable
neighborhood search Liang et al. [17], and particle swarm
optimization by Beji et al. [2]. Also, it is worth
mentioning that an overview of research in this area can
be found in this area can be found by Kuo et al. [15].
Besides, in cold-standby redundancy, a review of more
than one hundred references descring reliability
optimization researches with different types of
redundancy is completed by Tillman et al. [26]. Among
these studies, the minority pertained to standby
redundancy. Robinson et al. [22] considered the cold-
standby redundancy which concentrates on system design
without repairable systems. Shankar et al. [23], Gurov et
al. [10] investigated the problem of imperfect switching.
Also, Coit et al. [7] presented a new problem formulation
and solution method to determine the optimal system
design configuration when a system design includes k-
out-of-n subsystems which are designed with either active
or cold-standby redundancy. Coit [6] proposed strictly
cold-standby redundancy as an integer programming
solution in the RAP area. Sharifi et al. [24] presented an
efficient model in redundancy systems for cold-standby
strategy  with hypo-exponential Time-to-failure
distribution.

In this article a new model for redundancy allocation
problems without component mixing for series-parallel
systems when redundancy strategy is cold-standbyis
proposed. Most mathematical models of general
redundancy allocation problem assume one type of time-
to-failure. Nowadays, exponential distribution is receiving
more attention. The conditions of time-to-failure within a
particular system design are much closer to the real world.
To do so, this paper proposed a new model with two time-
to-failures including exponential and hypo-exponential.
The objective function is maximizing system reliability
under cost and weight constraints. Since the RAP has
been shown to be NP-hard by Chern [5], the simulated
annealing and genetic algorithms have been proposed.
The remainder of this paper is organized as follows: In
section 2, the problem is defined and the mathematical
model is illustrated.The proposedgenetic algorithm and
simulated annealing for solving the problem are
investigated in Section 3. In section 4, the computational
experiment and the analysis of the results are provided. At
the end, some conclusions and suggestions for future
research are presented in section 5.

2. Problem Definition
In this section, the mathematical model of the series-

parallel system withs subsystem under cost and weight
constraints  is  illustrated.In  the  proposedmodel,
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redundancy
switching.
For this problem, component time-to-failure is distributed
according to hypo-exponential and  exponential.
Inaddition, the following assumptions are provided:

strategy iscold-standby  with  perfect

Assumptions:

e Failed components do not damage the system, and
are not repaired.

»  Failures of individual components are s-independent.

» The states of the elements and the system are either
good or have failed.

*  The RAP without component mixing is considered.

e Components are cold-standby redundant.

*  The supply of components is unlimited.

» The components of reliabilities, weights and costs,
are known and deterministic.

3.1. Mathematical Model

Nomenclature

i index of subsystem i=1,2,...,s;
s humber of subsystems;
n; number of components used in

Subsystem i n; 6{112'--~,”Max,i}‘i
n(n,n,,....ng)N;
m;  number of available component choices for a

subsystemi ;
z; index of component

subsystemi , z; € {1,2,...,m;};

2(z,25,...,25);

Nuax,i UPPer bound for n; (ni < Nytax.i );

t mission time (fixed);

ri’j(t)reliability at timet for the j" available component

choice used for a

fonr subsystemi ;

i jscale  parameter the exponential  distribution
for j™ available component for

subsystemi ;

a; j, 3, j parameters the hypo-exponential

distribution for j™ available

component for subsystemi ;
w system-level constraint limit for weight;
C system-level constraint limit for cost;

Cij, W;; cost and weight for the j™ available component for

the subsystem j"i
R(t,z,n)system
vectors z andn ;

reliability at timetfor designing
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The mathematical formulation can be formulated as
follows:

Max Z = R(t,z,n)

st:
Zcizi n<C
i
D w, n <W

1
ni S {1,2,...,nMaX’i}
Zie{l,z,...,mi}
Objective function (1) is defined to maximize the

reliability system.Constraint (2) considers the available
cost. Constraint (3) considers the available weight.

3. Metaheuristics

In this section, two metaheuristic algorithms including
genetic algorithms and simulated annealingare proposed
to solve the problem. In the next subsection, we describe
the algorithms for our problem.

3.2. Genetic Algorithm (GA)

GA is a stochastic search algorithmbased on the
mechanism of natural selection and natural genetics.The
basic concepts of GA were introduced by Holland [11].
With regards to the growing interest and simplicity of the
GA and its ability for discovering goodsolutions fast, this
metaheuristic is selected as one of the solving
methodologies.In the next subsections, we present the
required steps for solving the problem by a GA.

3.2.1. Chromosome Representation

Each possible solution to this problem is a collection of
selected components, and n; parts in parallel for each

subsystem. n; parts can be chosen only in one
combination amongst the m; available components. The

solution encoding is 2xs matrix. The first and second
rows demonstrate type of selected components, and
thenumber of selected components, respectively. The
columns represent subsystem. Fig.2 presents an example
of encoding solution with 14 subsystems. Thismatrix
represents a prospective solution with four of thethird
component used in parallel forthe first subsystem; two of

1 2
Type of component selected 3 2
Number of component 4 2

[

| %]

the second component used in parallel for the second
subsystem, etc.

3.2.2. Initial Population

A GA requires a population of potential solutions of the
given problem to be initialized. The initial population of
individuals is randomly generated by a number of
chromosomes (population size or pop size).

3.2.3. Constraint-handling and Fitness Function

This evaluation is achieved through the computation of
the cost associated with each chromosome, using the
fitness function. The offspring produced by the GA
operators is likely to be infeasible. The most common
approach in the GA community to handle constraint is to
use penalties. The idea of this method is to transform a
constrained optimization problem into an unconstrained
one by adding or multiplying a certain value to/by the
objective function based on the amount of constraint
violation presented in a certain solution by Ozgur [21]. In
this study, we use the multiplicative form of the penalty
function (Pen(S)) and the fitness function (fitn(S)) with
the following form:
fitn(s) = f(s)x Pen(s)
Pen(s)=0if f is feasible
Pen(s)> 0 otherwise
Where f(s) the objective is function in Eq. (1) and
s represents a solution. In this approach, we search for
the solution that maximize fitn(s).

4)

3.2.4. Selection Operator

In the next phase of the genetic algorithm, the
chromosomes for the next generation are selected. In this
paper, a ‘roulette wheel selection” procedure has been
applied for the selection operator.

3.2.5. Crossover Operator

The crossover operator is the basic operator of producing
new chromosomes in a GA. It operates on two-parent
solutions with probability p, and generates offspring by

recombining both parent solution features.This operator
first generates a random crossover mask and then
exchanges relative genes between parents according to the
mask by Hou [12]. For instance, the crossover is
performed as depicted in Fig.3.

Subsystem

5 6 7 & 9 10 11 12 13 14
2112112334
4 421212434

Fig. 2. chromosome representation
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2123111141122 3 1 1231112432224
4 3 443 6 65 61 32235 231353 6 65 6 5 3235
101 00001011011
1 0110011110110
1222141243 232 4 2 2221411411323
23151686 56 5 42 3 5 4 3 4 43 6 65 614225

Fig. 3. Example of crossover operator

3.2.6. Mutation Operator

Mutation is the second operation in a GA method
thatexplores the solution spaces which are not explored by
crossover operator. It operates on one parent solution with
probability p,, . In this paper, the swap mutation operator

was used. In swap operator, two position row matrixes are
selected randomlyand their contents are swapped.For
instance, the mutation is performed as depicted in Fig.4.

3.2.7. Stopping Criteria
In this research, the stopping criteria are defined as the

number of generations. The algorithm will be stopped,
when that reaches a predefined number of generations.

3.3. Simulated Annealing (SA)
SA is a well-known local search metaheuristic, as

presented by Aarts et al. [1]. SA is based on the Monte
Carlo method introduced by Metropolis et al. [18]. This

idea was originally used to simulate a physical annealing
process and was applied to combinatorial optimization for
the first time in the 1980s independently by Kirkpatrick et
al. [14], and Cerny [4]. The pseudo code of SA algorithm
is presented in Fig.5, where the following notation is
used:

s =The current solution, s*=The best solution,
s,, =Neighboring solution, f(s):The value of objective
function at solutions, n=Repetition counter, T, =Initial
temperature, L =Number of repetition allowed at each
temperature level, p=Probability of accepting s, when it
is not better than s .

For Applying SA to the problem under consideration,
some requirements should be defined including a solution
representation, fitness function, and the neighborhood
identification of the current solution. In what follows we
present the requirements of the SA algorithm for this
problem.

e
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Fig. 4. example of mutation operator

Initialize the SA control parameter (T,,L)

Select an imitial solution, s,

SetT =Ty ; Sets = s;; Set 5* = s5;; Caleulate f(s,);
While the stop criterion is notreached do:

Setn = 1;
Whilen < L do:

geneate solution s, in the neighborhood of 5,; Calculate A= f(s,) — f(s):

I A= 0
5=5,
Else

generate a random number, r € (0,1)

if(r=p=eT)
s=s5.n=n+1;
End
End
i (f(s) < f(s*))
5= 5,
End
End
reduce the temperature T;
End

Fig. 5. Pseudo-code SA
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3.3.1. Chromosome Representation

The solution representation in SA algorithm is the same as
one in genetic algorithm.

3.3.2. Neighbour Generation

Neighbosolutionfrom the current solution performs
according to pseudo-code presented in Fig.6.

Generate a random number, I € (O,l)
Ifr>05
first row is selected, Generate a random number, b (O,l)

Ifb>0.5

two elements are selected and swapped
else
one element are selected and its value replaced with a random

numberbetweenland M;

end
else

second row is selected, Generate a random number, ( € (O,l)
If q<0.5

one element are selected and its value replaced with a random
number between 1and Npay j

else
two elements are selected and swapped.
End
End

Fig. 6. Pseudo-code of neighbor solution

3.3.3. Constraint-handling and Fitness Function

This section is like above mentioned the section 4.2.3
genetic algorithm.

4. A Numerical Example

To evaluate the performance of the GA and SA, 33 test
problems were provided by varying incrementally the
available weight from 100 to 132 while fixing the
available cost = 75 in order to maximize system reliability
at t = 250 hours. This example is an adapted version of an
example provided by Fyffe et al. [5].In these problems,
there is series-parallel system with 14 subsystems.Each
subsystem has two, three or four components of choice
and the number maximum of component within a
subsystem has been defined to be three.The switch
operates and fails as perfect switchingis used. The data
test problems are given in Table 1.All the test problems
are coded MATLAB 7.8.0 (R2009a). Due to the
stochastic nature of the proposed algorithms, for each of
the test problems it is run 4 times and the best solution
amongst them is considered as the final solution. The
computational results for two algorithms are shown in
Tables2and 3.The results show that there is no significant
difference among the standard deviation of the two
algorithms solutions. To compare the results of the best
solution, we performed a paired T-test. Fig.8. shows the
results of T-test. Because of the p-value (0.187) greater
than «(0.5)so, two algorithms have similar results and no

one is better than the other one. Fig.7 shows the standard
deviation of the two proposed algorithms.

Table 1
Component data for example
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i o.0022 0.0003 0.0013 0.0009 - - 0.0002 0.0019 - - - 0.0017  0.0020
& |- 0.0007 - 0.0008  0.0003 - 0.0002  0.0004  0.0009
g Bi |- 00025 - 0.0075  0.0042 - 0.0068 0.008  0.0046
g oI5 1 5 2 2 1 3 5 1 6 3 1 2 5
T i |3 2 7 8 7 2 3 8 10 8 5 3 8
£ paf H E H H E H H H
T 0.0009  0.0014 - 0.0001 0.0016 0.0020 00010 - 0.0010 0.0020 - -
o “ 100001 - - 0.0005  0.0009 - 0.0004 0.0008  0.008
3 £ |0.0068 - - 0.0011  0.0023 - - 0.0006 - 0.0006  0.0044
=3 %o 6 3 5 5 1 1 2 5 4 5 1 2 4
ﬁ i |10 2 10 10 7 7 7 10 9 5 5 4 5 5
~ vif |H E H H E E E H E H H
T 00012 - - 0.0014 0.0011 0.0022  0.0006 0.0016  0.0011  0.0007
o % (00007 - - 0.0003 -
3 E: lo.0031 - - 0.0065 - - -
=3 |6 5 - 1 5 4 2 2 1 6
= \-
i e 9 - 4 8 10 9 3 2 8
- v |H E - H E E
i |- - - 0.0005 0.0004 - 00014 -
o % |0.0001 00007 - - 0.0009 0.0005
3 % 00022 00022 - - - 0.0039 - 0.0065
g | |4 3 - 2 2 3 5 3
‘:TE s 7 - 10 4 2 7 4
= |xf M H - E E H E H
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Table 2
GA performance for example
_ o Trial
= g . 8 1 2 3 4
oo = © R W ¢ R W C R W [ R W [¢ B SD
1 100 75  0.8920 99 59 0.8918 91 71 0.8874 99 68 0.8920 99 59 0.8921 0.0022
2 101 75  0.9028 101 71 0.9028 101 63 0.9028 101 63 0.8983 101 60 0.9028 0.0022
3 102 75  0.8866 100 75 0.8901 102 66 0.8830 100 63 0.9066 102 64 0.9066 0.0104
4 103 75  0.9064 103 72 0.9045 103 69 0.9030 103 65 0.9030 103 65 0.9064 0.0016
5 104 75  0.9045 103 69 0.9042 104 63 0.9131 104 65 0.9087 103 64 0.9131 0.0041
6 105 75  0.9062 105 75 0.9019 105 75 0.9084 104 74 0.9085 104 73 0.9085 0.0030
7 106 75  0.9148 106 71 0.8925 106 62 0.9148 106 71 0.9105 106 73 0.9148 0.0106
8 107 75  0.9069 107 65 0.9107 106 61 0.9071 107 62 0.9051 106 65 0.9107 0.0023
9 108 75 09218 108 65 0.9175 108 67 0.9022 107 74 0.9155 108 66 0.9218 0.0084
10 109 75  0.9256 109 67 0.9257 109 66 0.9154 108 67 0.9209 109 75 0.9257 0.0048
11 110 75  0.9057 109 67 0.9173 110 67 0.9137 110 65 0.9220 102 67 0.922 0.0068
12 111 75  0.9127 110 75 0.9173 110 67 09173 110 67 0.9209 109 75 0.9209 0.0033
13 112 75  0.9109 112 73 0.9062 108 75 0.9064 111 73 0.9164 111 74 0.9164 0.0048
14 113 75  0.9190 112 73 0.9341 113 73 0.9344 113 73 0.9257 113 65 0.9344 0.0073
15 114 75  0.9384 114 68 0.9209 113 74 0.9265 114 69 0.9211 114 73 0.9384 0.0082
16 115 75  0.9164 114 69 0.9362 115 73 0.9384 114 68 0.9242 115 68 0.9384 0.0103
17 116 75  0.9450 116 69 0.9298 115 69 0.9298 115 68 0.9364 116 75 0.945 0.0072
18 117 75  0.9450 116 69 0.9286 117 69 09281 116 75 0.9324 116 67 0.945 0.0078
19 118 75  0.9387 117 75 0.9084 117 75 0.9476 118 71 0.9383 118 67 0.9476 0.0171
20 119 75  0.9355 118 73 0.9280 118 75 0.9341 118 74 0.9429 118 70 0.9429 0.0061
21 120 75  0.949 120 76 0.9497 120 71 0.9496 120 71 0.9383 119 75 0.9497 0.0056
22 121 75 0.9427 120 70 0.9416 121 73 09497 120 71 0.9275 115 75 0.9497 0.0093
23 122 75 0.9417 122 64 0.9288 118 75 0.9469 118 75 0.9463 122 62 0.9469 0.0084
24 123 75  0.9414 123 73 0.9447 123 64 0.9605 123 73 0.9499 122 73 0.9605 0.0083
25 124 75  0.9519 123 70 0.9510 124 74 0.9460 124 62 0.9499 122 73 0.9519 0.0025
26 125 75  0.9513 122 74 0.9485 125 61 0.9571 125 64 0.9351 121 75 0.9571 0.0093
27 126 75  0.9611 126 75 0.9455 126 70 0.9544 125 72 0.9525 126 72 0.9611 0.0064
28 127 75  0.9540 126 73 0.9455 126 70 0.9565 127 72 0.9525 126 70 0.9565 0.0047
29 128 75  0.9652 127 75 0.9436 126 73 0.9581 127 74 0.9604 127 74 0.9652 0.0092
30 129 75  0.9582 129 75 0.9964 129 75 0.9495 129 75 0.9563 129 72 0.9964 0.0211
31 130 75  0.9656 130 74 0.9675 130 74 0.9649 129 75 0.9617 129 66 0.9675 0.0024
32 131 75  0.9482 130 74 0.9675 130 74 0.9675 130 74 0.9615 131 66 0.9675 0.0091
33 132 75  0.9640 132 65 0.9581 132 75 0.9640 132 65 0.9675 130 74 0.9675 0.0038
Table 3
SA performance for example

Trial
[} (=)
T =T_. 8 1 2 3 4
£e 32 O R W [ R W C R W [¢ R W C B SD
1 100 75  0.8899 100 64 0.8899 100 99 0.8964 99 62 0.8961 99 72 0.8964 0.0036
2 101 75  0.8981 101 72 0.8866 100 75 0.9028 101 63 0.8981 101 72 0.9028 0.0068
3 102 75  0.9028 101 63 0.9028 101 63 0.9028 101 63 0.8948 101 68 0.9028 0.0040
4 103 75  0.9030 130 65 0.9045 103 69 0.9002 103 69 0.9045 103 69 0.9045 0.0020
5 104 75  0.9084 104 74 0.9045 103 69 0.9005 103 59 0.8997 103 75 0.9084 0.0040
6 105 75 0.9022 105 69 0.9069 105 60 0.9084 104 74 0.9084 104 74 0.9084 0.0029
7 106 75 09115 106 65 0.9148 106 71 09148 106 71 0.9150 106 74 0.915 0.0016
8 107 75  0.9190 107 66 0.9086 107 66 0.9007 107 66 0.9148 106 71 0.9194 0.0079
9 108 75 09117 108 65 0.9154 108 67 09117 108 65 0.8932 108 75 0.9154 0.0100
10 109 75 0.9019 109 71 0.9218 108 65 0.9046 108 69 0.9108 108 75 0.9218 0.0088
11 110 75 0.9137 110 65 0.9256 109 67 09171 110 73 0.9257 102 66 0.9257 0.0060
12 111 75 0.9220 110 67 0.9278 111 66 0.9220 110 67 0.9235 110 71 0.9278 0.0027
13 112 75 09323 111 67 0.9238 112 73 09194 112 66 0.9238 112 73 0.9320 0.0053
14 113 75 0.9302 113 68 0.9242 113 67 0.9140 112 67 0.9302 113 68 0.9302 0.0076
15 114 75 0.9257 114 67 0.9257 113 74 09211 114 73 0.9202 113 74 0.9257 0.0029
16 115 75  0.9319 115 75 0.9369 115 69 0.9153 115 68 0.9369 115 69 0.9369 0.0102
17 116 75 0.9362 115 73 0.9450 116 69 0.9282 116 75 0.9369 115 69 0.945 0.0068
18 117 75 0.9179 116 67 0.9366 117 69 0.9387 117 75 0.9366 117 69 0.9387 0.0097
19 118 75  0.9384 118 72 0.9476 118 71 0.9469 118 75 0.9391 118 68 0.9476 0.0049
20 119 75 09275 115 75 0.9391 118 68 09310 119 75 0.9211 118 75 0.9391 0.0075
21 120 75  0.9497 120 71 0.9371 117 71 09496 120 71 0.9370 120 69 0.9497 0.0072
22 121 75 0.9185 117 75 0.9404 121 75 09537 121 72 0.9347 120 69 0.9537 0.0145
23 122 75 0.9303 122 72 0.9393 120 71 09513 122 74 0.9499 122 73 0.9513 0.0098
24 123 75  0.9430 122 74 0.9447 123 64 0.9320 123 74 0.9519 123 70 0.9519 0.0082
25 124 75  0.9519 123 70 0.9439 124 72 09477 123 71 0.9430 122 74 0.9519 0.0040
26 125 75  0.9497 125 71 0.9305 124 74 09332 125 73 0.9453 124 73 0.9497 0.0092
27 126 75 0.9217 126 71 0.9409 125 74 09545 126 75 0.9455 126 70 0.9545 0.0138
28 127 75  0.9404 125 74 0.9334 126 73 0.9566 127 72 0.9501 127 73 0.9566 0.0102
29 128 75  0.9444 127 75 0.9620 128 73 09541 128 75 0.9511 128 66 0.962 0.0072
30 129 75 09613 128 75 0.9652 127 75 09613 128 75 0.9607 128 73 0.9652 0.0020
31 130 75  0.9368 130 73 0.9675 130 74 09675 130 74 0.9446 129 75 0.9675 0.0157
32 131 75 0.9453 131 75 0.9588 131 74 09534 131 65 0.9675 130 74 0.9675 0.0093
33 132 75  0.9675 130 74 0.9640 132 65 0.9640 132 65 0.960 132 65 0.9675 0.0030
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0.025
I'\ 0.02
—— (A \ lx 0.ols
0.01
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3332313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1
Fig. 7. Standard deviation of the fitness functions for two proposed algorithms.
Paired T for G - 54
N Mean Sthew 5E HMean
(£ 33 0.937909 0.024245 0.0042:21
58 33 0.93613% 0.021573 0.003755
Difference 33 0.001770 0.007538 0.001312
95% CI for mean difference: (-0.000903; 0.004443)
T-Test of mean difference = 0 (wvs not = 0): T-Walue = 1.35 P-Walue = 0,157

Fig. 8. Result of the paired T-test

5. Conclusion

This paper proposes a new mathematical model for
redundancy allocation problem for the series-parallel
system with redundancy cold-standby strategy. In the
proposed  formulation,two  typesof  time-to-failure
including exponential and hypo-exponential are
investigated.To solve the model, two metaheuristic
algorithms including GA and SA are provided.The
computational results indicated that the quality of
solutionsof two algorithms is similar. Considering the
paired T-test outputs, both algorithms are efficient for this
type of reliability optimization problem.
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