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Abstract  

Although lot streaming scheduling is an active research field, lot streaming flexible flow lines problems have received far less attention 
than classical flow shops. This paper deals with scheduling jobs in lot streaming flexible flow line problems. The paper mathematically 
formulates the problem by a mixed integer linear programming model. This model solves small instances to optimality. Moreover, a novel 
artificial bee colony optimization is developed. This algorithm utilizes five effective mechanisms to solve the problem. To evaluate the 
algorithm, it is compared with adaptation of four available algorithms. The statistical analyses showed that the proposed algorithm 
significantly outperformed the other tested algorithms. 
Keywords: Lot streaming, Flexible flow line scheduling, Mixed integer linear programming model, Artificial bee colony optimization 

1. Introduction 

Among the different complex combinatorial optimization 
problems, shop scheduling problems are the most active 
fields of research. Their applications could be found in a 
wide variety of situations, from information services to 
manufacturing systems. Scheduling can be viewed as an 
allocation of limited resources to perform a set of jobs. 
The resources could be machines in a workshop, runways 
at an airport, crews at a construction site, or processing 
units in a computing environment, and the jobs could be 
operations in a production process, take-offs and landings 
at an airport, stages in a construction project, or 
executions of computer programs. Effective scheduling 
increases efficiency and capacity utilization since it 
decreases task times and increases profitability. 
Among different shop scheduling systems, a flow line 
problem is a multi-stage manufacturing process in which 
all jobs have the same generic recipe. That is, jobs are 
processed at stage 1, then stage 2, until the last stage. 
Traditionally, it is assumed that each stage has a single 
processor and a job is indivisible; as a result, the entire 
job must be completed before being transferred to the 
next stage. These might not be the case in many realistic 
situations.  
The indivisibility of jobs leads to low machine utilization 
and long completion times. In practical scheduling, a job 
is actually a lot composed of many identical items. A job 
could, therefore, be split into a number of smaller sublots 
where each can be treated individually. When a job sublot 
is completed, it can be immediately moved to the next 
machine. Different sublots of the same job can thus be  

 
 
 

processed simultaneously at different stages. The process 
of splitting jobs into sublots is usually called lot 
streaming. 
In real world cases, a shop with a single processor at each 
stage rarely exists. Commonly, processors are duplicated 
in parallel at stages. The purpose is to balance the 
capacity of stages, increase the overall shop floor 
capacity, reduce, if not eliminate, the impact of bottleneck 
stages and so on (Naderi et al. (2010)). The shop with 
multi processors at its stages (or at least one stage with 
more than one processor) is called a flexible flow lines. 
Najafi et al. (2012) develop a mathematical model for 
hybrid flow shop scheduling problems. Rezaeian et al. 
(2013) propose a hybrid approach based on genetic and 
imperialist competitive algorithm for flexible flow shops 
with multiprocessor tasks. Naderi and Sadeghi (2012) 
propose a multi-objective simulated annealing algorithm 
for hybrid no-wait flow shop scheduling problems with 
transportation times. More recently, Bożejko et al. (2013) 
present a parallel tabu search algorithm for hybrid flow 
shops, while Li et al. (2014) propose a hybrid variable 
neighbourhood search for the same problem. 

The lot streaming technique has been receiving 
increasing attention after the pioneer work of Reiter 
(1966). Some papers discuss that lot streaming can 
significantly improve the schedule performance with 
respect to the makespan (Potts & Baker (1989); Kalir and 
Sarin (2000)). An extensive survey can be presented by 
Chang and Chiu (2005). The lot streaming flow shop has 
been commonly solved by meta-heuristics. Among all, 
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one can refer the reader to genetic and simulated 
annealing by Marimuthu and Ponnambalam (2005), 
simulated annealing algorithm and a tabu search 
algorithm by Marimuthu et al. (2007), discrete particle 
swarm optimization algorithm by Tseng and Liao [18], 
genetic and hybrid evolutionary algorithms by Marimuthu 
et al. (2008), ant-colony optimization and threshold 
accepting algorithms by Marimuthu (2009). More recent 
meta-heuristics are a local-best harmony search algorithm 
by Pan et al. (2011), discrete artificial bee colony 
algorithm by Pan et al. (2011), shuffled frog leaping 
algorithm by Pan et al. (2011), estimation of distribution 
algorithm by Pan and Ruiz (2012), and differential 
evolution algorithm and particle swarm optimization 
algorithms by Vijay et al. (2013). 
Although there are several papers in the literature of lot 
streaming, they are mostly limited to classical flow shops. 
Despite the applicability of flexible flow lines in different 
industrial settings, the problem of lot streaming flexible 
flow lines is not well studied. This paper considers the 
problem of lot streaming flexible flow lines. It first 
formulates the problem by a mixed integer linear 
programming model. Moreover, a solution algorithm 
based on artificial bee colony optimization with many 
advance operators is developed. The algorithm is first 
comprehensively tuned. Then, it is evaluated against the 
optimal solutions obtained by the model on small 
problems. On large problems, the algorithm is compared 
with adaptations of our recently proposed algorithms, 
shuffled frog leaping algorithm (Pan et al., 2011), 
estimation of distribution algorithm (Pan and Ruiz, 2012), 
differential evolution algorithm (Vijay et al., 2013) and 
discrete artificial bee colony (Pan et al., 2012). 
The rest of the paper is organized as follows. Section 2 
reviews the literature. Section 3 formally defines and 
formulates the problem. Section 4 develops the algorithm 
for the problem under consideration. Section 5evaluates 
the model and algorithms for performance. 

2. Problem Definition and Formulation 

This section describes the flexible flow line problem. 
There is a set ܰ  of ݊  jobs and a set ܯ of ݉  stages. At 
stage ݅, there are a set of ݉௜identical machines. Every job 
݆ is required to follow the exact same processing sequence 
across all stages. The processing route starts from stage 1, 
then stage 2 until stage ݉. Each job j is split into nj sublot 
where all sublots of a job must be processed by exactly 
one machine ݈ among machine available at each stage. 
Let݌௝,௞,௜denote the processing time of ݇th sublot of job ݆ 
at stage ݅. 
Each machine can process no more than one sublot 
simultaneously while each sublot can be processed by no 
more than one machine at a time. The setup and 
transportation are negligible or included into processing 
times. There is no machine failure; hence, machines are 
continuously available for processing. Finally, all jobs are 

available at time 0 and the process of a sublot on a 
machine can be never interrupted; therefore, once the 
process starts, it continues until it finishes. The objective 
is to sequence jobs and schedule sublots so as to minimize 
makespan. 
This paper develops a mathematical model for this 
problem. The application of integer programming models 
in solving scheduling problems starts with the pioneer 
model of Wagner (1959). Yet, regarding the limitation of 
computer capacity and the lack of specified software, the 
progress of research on this field is not as active as the 
other solution approaches. Due to recent advances 
obtained in computer capacity and advent of efficient 
specialized software, the MILP model development is 
each time becoming more and more interesting. Even if 
one accepts this idea that mathematical models cannot be 
efficient solution algorithms, they are the first natural way 
to approach scheduling problems by Pan (1997). They can 
explicitly describe all the characteristics of a scheduling 
problem. Furthermore, mathematical models are used in 
many solution methods such as branch and bound, 
dynamic programming and branch and price. More 
efficient MILP models would result in more effective 
solution methods. The parameters and indexes used in 
these models are: 

This model determines the relative precedence of 
jobs in pairs. The following variables are defined. 

௝ܺ,௜,௕ Binary variable taking value 1 if job ݆  is 
processed after job b at stage i, and 0 otherwise. 

௝ܻ,௜,௟ Binary variable taking value 1 if job ݆  is 
processed at stage ݅  on machine ݈ , and 0 
otherwise. 

 ௝,௞,௜ Continuous variable for the completion time ofܥ
kth sub-lot of job ݆ at stage ݅ 

The model is as follows. 

݊ The number of jobs 
݃ The number of stages 
ܾ, ݆ Index for jobs, ݈, ݆ ∈{1, 2, … , ݊} 
௝݊  The number of sub-lots of job ݆ 
݇ Index for sub-lots, ݇ ∈ {1,2,… , ௝݊} 
݅ Index for stages, ݅ ∈{1, 2, … , ݉} 
݉௜ The number of machines at stage ݅ 
݈ Index for machines,	݈ ∈{1, 2, … , ݉௜} 
 ݅ ௝,௞,௜ The processing time of ݇-th sub-lot of job ݆at stage݌
 A large positive number ܯ
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Constraint set (1) specifies the job assignment of jobs to 
one machine among the machines available at each stage. 
Constraint set (2) assures that the first sublot of jobs at the 
first stage is greater than its processing time. Constraint 
sets (3) and (4) determine the minimum completion of 
each sublot at each stage regarding the completion time of 
that sublot in the previous stage and the completion time 
of the previous sublot of the same job in that stage. 
Constraint sets (5) and (6) determine the minimum 
completion time of the first sublot of each job at each 
stage regarding the completion time of the last sublot of 
the previous jobs processed before the job at the same 
machine. Constraint set (7) calculates makespan. Finally, 
constraint sets (8), (9) and (10) define the decision 
variables. 

3. Artificial Bee Colony Optimization 

Artificial bee colony optimization (ABCO) algorithm is 
one of the most recent population-based meta-heuristics 
proposed by Karaboga (2005). ABCO is motivated by the 
intelligent and well organized behaviour of honeybees 
supplying food. They colonially make use of current food 
sources and also search to discover the positions of new 
sources. ABCO has shown high performance in other 
problems such as flow shop scheduling problem by 
Tasgetiren et al. (2011) and Liu and Liu (2013). 
Honeybees colonially perform the food search. That is, 
bees coordinate their activities to find food sources. Their 
colony includes three groups of specialized bees: 
employed bees, onlookers and scouts. The employed bees 
are those bees exploiting the current food sources. They 
bring loads of nectar from the food sources to the hive. In 
the hive, there is a dance floor where each employed bee 
dances to share information about its food source. The 

dance shows the quality of food source being exploited by 
the bee. Onlooker bees stay in hive and watch dances of 
all employed bees. Then, each onlooker selects one food 
source for further exploiting based on dances (i.e., the 
quality of food sources). The probability of each food 
source for being selected is the proportion of its quality. 
Thus, the low quality food sources attract less onlooker 
bees while the good one does more. After appropriately 
exploiting a food source (i.e., the nectar amount of the 
food source is exhausted), all the employed bees 
associated with this food source abandon it. In this case, 
the employed bee of a left food source becomes a scout 
bee and performs random search for a new food source. 
Once a scout/onlooker bee finds a food source, it again 
becomes an employed bee.  
In ABC algorithm, the food source corresponds to a 
solution of the problem and its nectar amount of a food 
source the objective value. In fact, employed and 
onlooker bees perform exploitation search whereas scout 
bees carry out exploration search. The structure of ABCO 
algorithm is as follows. It starts from a population of pop 
food sources (each is an encoded solution). The nectar 
amount (objective value) of each food source is 
determined. Then, these food sources are iteratively 
exploited using two mechanisms: employed and onlooker 
bee. Meanwhile, the new area is explored for new food 
source using scout bee mechanism. Another enhancing 
feature is the diversifying mechanism by which the food 
sources are further explored. 
In the employed bee mechanism, a new food source is 
generated from each food source. In the onlooker bee 
mechanism, positions around food sources are searched. 
In the scout bee mechanism, a scout bee searches for a 
new food source to replace an abandoned food source. In 
diversifying mechanism, the food source is further 
explored. Figure 1 shows the general procedure of the 
proposed ABCO algorithm. 

 
 
 
 
 

 ௠௔௫ܥ	݁ݖ݅݉݅݊݅ܯ
 :݋ݐ	ݐ݆ܾܿ݁ݑܵ

 
෍ ௝ܻ ,௜,௟

௠೔

௟ୀଵ

= 1 ∀௝,௜ (1) 

௝,ଵ,ଵܥ  ≥ ௝,ଵ,ଵ ∀௝݌  (2) 
௝,௞,௜ܥ  ≥ ௝,௞,௜ିଵܥ +  ௝,௞,௜ ∀௝,௞,௜வଵ (3)݌
௝,௞,௜ܥ  ≥ ௝,௞ିଵ,௜ܥ +  ௝,௞,௜ ∀௝,௞வଵ,௜ (4)݌
௝,ଵ,௜ܥ  ≥ ௕,௡್ܥ ,௜ + ௝,ଵ,௜݌ ܯ− ∙ ൫3 − ௝ܺ,௜,௕ − ௝ܻ,௜,௟ − ௕ܻ,௜,௟൯ ∀௜,௟,௝ழ௡,௕வ௝ (5) 
௕,ଵ,௜ܥ  ≥ ௝,௡ೕ,௜ܥ + ௕,ଵ,௜݌ ܯ− ∙ ௝ܺ,௜,௕ ܯ− ∙ ൫2 − ௝ܻ,௜,௟ − ௕ܻ,௜,௟൯ ∀௜,௟,௝ழ௡,௕வ௝ (6) 
௠௔௫ܥ  ≥ ௝,௡ೕ,௠ ∀௝ܥ  (7) 
௝,௞,௜ܥ  ≥ 0 ∀௝,௞,௜ (8) 
 ௝ܺ,௜,௕ ∈ {0, 1} ∀௝ழ௡,௕வ௝,௜ (9) 
 ௝ܻ,௜,௟ ∈ {0, 1} ∀௝,௜,௟ (10) 
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Procedure: Artificial bee colony optimization 
Initialization 
While the stopping criterion is not met do 

Employed bee mechanism 
Onlooker bee mechanism 
Scout bee mechanism 
Intensifying mechanism 

End for 
Fig. 1. The procedure of the proposed ABCO 

 
3.1 Encoding and initialization 

To design a meta-heuristic the first two steps are to 
develop schemes to encode a solution of the original 
problem and decode an encoded solution to calculate the 
objective function value. The better these schemes are, the 
more effective the meta-heuristic becomes. To develop 
these schemes, the problem must be structurally analysed. 
The problem under consideration includes two decisions 
of assigning and sequencing.  
The following encoding scheme is used. A solution is 
represented by a string including the permutation of job 
numbers from 1 to n. For example, consider a problem 
with n = 8. One possible solution can be 

 
4 6 3 1 2 8 5 7 

 
In this scheme, each job number represents its 
corresponding job. By scanning from left to right, the 
sequence of jobs at the first stage is determined. To 
specify the assigning decision, the following rule is used. 
The job is assigned to the first available machine. To 
determine the sequence of jobs at subsequent stages, the 
following rule is applied. The jobs are sorted at ascending 
order of completion time of the previous stage. That is, if 
a job is completed sooner, it is processed at the next stage 
sooner. The assignment of subsequent stages, the 
algorithm also uses the first available machine rule. To 
have initial solutions, pop solutions are generated as 
follows. Jobs are randomly sorted. The first job is 
scheduled. Then, jobs, one by one, are put into all 
possible positions among scheduled jobs. The best 
position is selected. Figure 2 shows the pseudo code of 
initialization mechanism. 
 
Procedure: Initialization mechanism 
For݇ = 1 to ݌݋݌ 

Sort jobs randomly in set ܬ and set ܦ = ∅. 
For݆ = 1 to ݊ 

Take the ݆th job out of set ܬ 
Test all possible positions in set ܦ. 
Insert the job in the best position in set ܦ 

Endfor 
Endfor 

Fig. 2. Initialization mechanism 

3.2. Employed bee mechanism 

The purpose of employed bee mechanism is to exploit the 
current food source. To implement this idea, a new 
solution is generated from vicinity of the current food 
source. For each solution ݅, one element ݆ (real number) is 

randomly selected and combined with the corresponding 
element of another randomly selected food source ݇. Note 
that ݇ ≠ ݅. To do that, the following operators are used: 

Step 1: Select two cut points between [1, n] randomly. 
Step 2: Copy the job numbers among these two cut 

point from food source i to the new food source. 
Step 3: Copy the remaining job numbers according to 

food source k to new food. 
 

Let us illustrate the procedure by an example with n=8. 
Suppose food sources ݅ and ݇are as follows: 

Food source ݅: 4 6 3 1 2 8 5 7 
 

Food source ݇: 5 1 2 8 6 7 4 3 
 

If the two randomly selected points are 3 and 7 in the first 
step, there is the following incomplete food source. 

 
New food source:   3 1 2 8 5  

In the third step, the rest of job numbers are copied from 
food source ݇. The complete food source becomes: 

 
New food source: 6 7 3 1 2 8 5 4 

 
If this new food source is better than food source ݅, it is 
accepted and food source i is deleted. Otherwise, the new 
food source is rejected. 

3.3. Onlooker bee mechanism 

After searching current food sources, employed bees start 
to share the information about their food sources with 
onlooker bees. Then, they evaluate the nectar information 
obtained from all employed bees. According to the nectar 
amount of food sources, each onlooker bee chooses one 
food source. To determine the probability of each food 
source for being selected, the probability function, shown 
in Eq. (11) is used: 

௜݌ =
௜ݐ݂݅

∑ ௡ௌேݐ݂݅
௡ୀଵ

 
    (11) 

Where	fit୧ is the nectar amount (objective value) of food 
source i (solution i).  
The selected food source undergoes the following local 
search by the onlooker bee. The jobs (one by one, without 
repetition and at random order) are taken out of 
permutation and put into another randomly selected 
position. If for a job a better position is found, the search 
restarts. If all jobs are tested and no improvement is made, 
the local search ends. 
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3.4. Scout bee mechanism 

The employed and onlooker bees leave a food source 
already exhausted and search for a new food source. In 
this case, the bee is called a scout. A food source is 
exhausted if it is not improved for a number of 
consecutive iterations.  In this case, the employed bee of 
that food source abandons the current food source and 
discovers a new food source randomly. 
In the standard format, scout bees replace an exhausted 
food source with a new randomly selected food source. In 
this paper, another alternative is proposed. The aim is to 
make use of current knowledge of food sources. 20 new 
food sources from the best food source by a procedure are 
generated as follows. Three randomly selected jobs are 
randomly relocated into three new positions. Among these 
new food sources, the best one is selected. The criterion to 
determine if a food source is exhausted or not is as 
follows. After finding no improvement for a number of 
five iterations in row, a food source undergoes scout bee 
mechanism. 

3.5. Intensifying mechanism 

To further give capability of intensification to ABCO, the 
following mechanism is developed. At each iteration, all 
new food sources generated by scout bee mechanism as 
well as two other randomly selected food sources undergo 
the intensifying mechanism. This mechanism is a 
simulated annealing-like procedure to further explore the 
solution space. In this mechanism, the initial solution, say 
ߠ , is the selected food source. In this solutionߠ , one 
randomly selected job is relocated into a new random 
position. If this new solution, say ߠᇱ , is better than 
solution ߠ, it is accepted. Otherwise, it is accepted with 
probability of 

ܲఏᇲ = 0.1 − ௙൫ఏᇲ൯ି௙(ఏ)

௙(ఏ)
= ଵ.ଵ௙(ఏ)ି௙൫ఏᇲ൯

௙(ఏ)
			                  (12) 

Where f(θ) is the makespan of solution θ. The maximum 
probability of acceptance for a worse solution is 0.1. The 
worse, a solution is, the less its probability becomes. The 
procedure of generating new solution continues until no 
better solution is found in 30 consecutive moves. At the 
end, the final solution is compared with the initial food 
source of intensifying mechanism. If it is better than the 
initial one, it is accepted. Otherwise, it is rejected. Figure 
3 shows the pseudo code of intensifying mechanism.

 
 

Procedure: Intensifying mechanism 
Take food source ݅ as solution ߠ and Set ݇ = 1; 
While݇ <= 1 

Generate a new solution ߠᇱ by relocating one randomly selected job from solution ߠinto a new random position. 
If݂(ߠᇱ) <  then(ߠ)݂

Replace solution ߠ with solution ߠᇱ 
If݂(ߠ) < ݂(݅) 

Replace food source ݅ with solution ߠ and set ݇ = 0; 
End if 

Else 
Probably replace solution ߠ with solution ߠᇱ 

End if 
Set ݇ = ݇ + 1; 

End while 
Fig. 3. The pseudo code of intensifying mechanism 

4. Experimental Evaluations 

This section evaluates the proposed model and 
algorithm, called ABCO, for performance. This 
experimental evaluation includes three different parts. 
First the parameters of the proposed algorithm are tuned. 
Then, using a set of small instances, the model’s 
capability in solving the problem is evaluated. The 
algorithm is evaluated against the optimal solution 
obtained by the model. Finally, the algorithm is further 
evaluated by comparing its performance with adaptation 
of four recent algorithms in the literature of lot streaming 
flow shops: shuffled frog leaping algorithm (SFL) by Pan 
et al. (2011), estimation of distribution algorithm (EDA) 
by Pan and Ruiz (2012), differential evolution algorithm 
(DEA) by Vijay et al. (2013), discrete artificial bee 
colony (DABC) by Pan et al. (2011). 

 
 
 

 
The proposed ABCO and the four algorithms brought 

from the literature are compared coded using Borland 
C++. The model is also coded into CPLEX 12.1. The 
model and algorithms are run on a PC with 2.40 GHz 
Intel Core i3 Duo and 4 GB of RAM memory. The 
stopping criterion for the meta-heuristics is set to 
nଶm	milliseconds elapsed CPU time. For the model, the 
stopping criterion is set to 1000 seconds of computation 
time limit. The relative percentage deviation (RPD) is 
used as the performance measure. RPD is calculated as 
follows. 

ܦܴܲ = 100൬
௠௔௫ܥ − ܯܮ

ܯܮ
൰																																															(13) 

Whereܥ௠௔௫ and ܯܮ  are makespan of solution found by 
the algorithm and the lowest makespan found by any of 
algorithms for an instance. 

4.1. Experiment for parameter tuning 

The correct choice of parameters significantly impact on 
the performance of meta-heuristics. One advantage of the 
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proposed ABCO is having only one parameter of 
population size (pop) of bees. To do the experiment, there 
are 48 instances by generating two instances for each of 
the following 24 combination sizes. 
݊ = {20,50,80,120},݉ = {2,4,8},݉௜ = {2,ܷ(1,4)}, 

Processing times are generated from a uniform 
distribution between (1, 99). The number of sublots for 
each job comes from a uniform distribution between (2, 
4).5 levels for pop= {5,20,40,70,100} are considered. All 
24 instances are solved by four different ABCs. The 
results are analysed by analysis of variance (ANOVA) 
and least significant deviation (LSD) statistical tests. 
Figure 4 shows the average RPD obtained by ABC of 
each level as well as the LSD intervals. As it can be seen, 
pop of 20 is the best level with average RPD of 0.94% 
although it is statistically similar to pop of 40. 

 

 
Fig. 4. The average RPD obtained by ABCO with different pop 

4.2. Experiment with small-sized instances 

This subsection evaluates the proposed model and 
general performance of the tested algorithms on a set of 
small sized instances. Note that the tested meta-heuristics 
do not guarantee the optimality. In this regard, there are12 
instances, two instances for each of the following 
combination. 

݊ = {6,8,10},݉ = {2,4}, ݉௜ = {2}. 
The number of sublots and processing times are generated 
from uniform distributions over (2, 4) and (1, 99), 
respectively. 

Table 1 shows the results obtained by the model and 
algorithms. In this table, for the model, there are two 
columns. The column “time” shows the computational 
time of the model elapsed to optimally solve the 
corresponding instance. The column “gap” shows the 
optimality gap of model for those unsolved instances. The 
model optimally solves all the instances up ݊ = 10 and 
݉ = 2 in less than 35 seconds. It also solves one of two 
instances with ݊ = 10 and ݉ = 4 in 294 seconds. In sum, 
the model solves 11 instances out of 12 ones. Regarding 
the algorithms, ABCO and EDA solve 9 instances out of 
the 11 instances to optimality. SLF presents the worst 
performance with average optimality gap of 1.1%.  

4.3. Experiment with large sized instances 

This section further compares the five tested 
algorithms (SFL, EDA, DEA, DABC and ABCO) on 
large-sized instances. As large-sized instances, there 
are120 instances, five instances for each of the following 
24combination sizes. 
݊ = {20,50,80,120},݉ = {2,4,8},݉௜ = {2,ܷ(1,4)}, 

Processing times and the number of sublots are generated 
from uniform distributions between (1, 99) and (2, 4), 
respectively. 

Table 2 shows the results, averaged for each 
combination of n and m (10 data per average). As it can 
be seen, the proposed ABCO outperforms the other 
algorithms with average RPD of 0.59%. The second best 
is EDA with RPD of 1.07%. Among the remaining 
algorithms, DEA and DABC provide the average RPD of 
2.32% and 2.5%, respectively. The worst performing 
algorithm is SFL with average RPD of 3.07%. The paper 
conducts the ANOVA and LSD tests to compare the 
algorithms. Figure 5 shows the means plot with LSD 
intervals. As can be seen from the table, the proposed 
ABCO provides statistically better results among the 
tested algorithms. 

To further evaluate the algorithms, the relation 
between the performance of the algorithms and the 
problem size is analysed. First, the influence of ݊ over the 
different algorithms is assessed. Figure 6 presents the 
average RPD obtained by any of algorithms in different 
sizes of ݊. There is a clear trend that the proposed ABCO 
provides better results in larger sizes of ݊. 

 
Table 1 
The optimality gap of the model and the tested algorithms 

N m 
 Model  Algorithms (Opt. gap %) 

Time (sec) Opt. gap  SFL EDA DEA ABCO DABC 
6 2  <1 0% (2)  0.0 0.0 0.0 0.0 0.0 
 4  <1 0% (2)  0.0 0.0 0.0 0.0 0.0 
8 2  5.73  0% (2)  0.9 0.0 0.0 0.0 1.4 
 4  20.18 0% (2)  1.3 0.0 1.6 0.0 0.0 
10 2  34.07 0% (2)  2.5 1.7 1.4 2.1 3.1 
 4  294.41 7.54% (1)  2.7 1.5 1.5 1.5 2.1 

Average  1.10 0.44 0.68 0.52 1.01 
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Table 2 
The average RPD of the tested algorithms 

 
 

 
Fig. 5. Means plot with LSD intervals for the different algorithms 

 
 

 
Fig. 6. Means plot of algorithms versus the number of jobs 

5. Conclusion 

The current literature on lot streaming scheduling has 
focused on flow shop problems. In flow shops, it is 
assumed that there is only one processor at each working 
stage. Yet, in practice, shops duplicate machines in 
parallel at each stage. This paper extended the problem of  

 
 
 

lot streaming flow lines with parallel machines. The 
problem has been mathematically formulated by a mixed 
integer linear programming model. The model is based on 
the concept of relative-sequence of jobs. Using 
commercial software CPLEX, the model solved instances 
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The number of jobs 

N M 
Algorithms 
SFL EDA DEA ABCO DABC 

10 2 3.11 0.55 2.28 0.56 2.22 
 4 2.98 0.83 2.24 0.85 2.46 
 8 3.27 0.77 1.97 0.48 2.1 
40 2 3.13 0.89 1.56 0.52 2.61 
 4 2.97 0.99 2.26 0.68 2.14 
 8 2.52 1.01 2.51 0.73 2.27 
70 2 2.59 0.93 2.62 0.69 2.55 
 4 2.84 1.25 2.45 0.44 2.45 
 8 3.24 1.33 1.98 0.52 2.81 
100 2 3.22 1.47 2.96 0.62 2.87 
 4 3.4 1.29 2.46 0.41 2.35 
 8 3.59 1.53 2.5 0.56 3.17 

Ave. 3.07 1.07 2.32 0.59 2.5 
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up to 8 jobs to optimality in less than 35 seconds and 
instances with 10 jobs in less than 294 seconds.  

In addition to the model, a novel artificial bee colony 
algorithm was developed to solve larger instances. This 
algorithm was developed with 5 mechanisms of 
initialization, employed bee, onlooker bee, scout bee and 
intensifying. The proposed algorithms were compared 
with 4 available algorithms (shuffled frog leaping, 
estimation and distribution, differential evolution and 
particle swarm optimization algorithms). Among the 
tested algorithms, the artificial bee colony and estimation 
and distribution algorithms outperform the others with 
average RPD of 0.58% and 1.07%, respectively, over 120 
large instances. In small instances the proposed algorithm 
yields the best results with RPD of 0.52%. The statistical 
tests showed that the proposed algorithm significantly 
obtains better results than the others.  

As an interesting future research direction, one can 
study the more realistic version of the problem with other 
assumptions like setup times. Since there are two or more 
objectives to optimize simultaneously in practical 
industrial settings, the problem can also be extended to 
the multi objective case. Regarding the proposed solution 
method, the artificial bee colony can be applied to solve 
other scheduling related problems. 
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