
Modelling and Scheduling Lot Streaming Flexible Flow Lines

Bahman Naderia,*, Mehdi Yazdania
a Assistant Professor, Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University,

Qazvin, Iran

Received 08 July, 2014; Revised 02 November, 2014; Accepted 28 February, 2015

Abstract

Although lot streaming scheduling is an active research field, lot streaming flexible flow lines problems have received far less attention
than classical flow shops. This paper deals with scheduling jobs in lot streaming flexible flow line problems. The paper mathematically
formulates the problem by a mixed integer linear programming model. This model solves small instances to optimality. Moreover, a novel
artificial bee colony optimization is developed. This algorithm utilizes five effective mechanisms to solve the problem. To evaluate the
algorithm, it is compared with adaptation of four available algorithms. The statistical analyses showed that the proposed algorithm
significantly outperformed the other tested algorithms.
Keywords: Lot streaming, Flexible flow line scheduling, Mixed integer linear programming model, Artificial bee colony optimization

1. Introduction

Among the different complex combinatorial optimization
problems, shop scheduling problems are the most active
fields of research. Their applications could be found in a
wide variety of situations, from information services to
manufacturing systems. Scheduling can be viewed as an
allocation of limited resources to perform a set of jobs.
The resources could be machines in a workshop, runways
at an airport, crews at a construction site, or processing
units in a computing environment, and the jobs could be
operations in a production process, take-offs and landings
at an airport, stages in a construction project, or
executions of computer programs. Effective scheduling
increases efficiency and capacity utilization since it
decreases task times and increases profitability.
Among different shop scheduling systems, a flow line
problem is a multi-stage manufacturing process in which
all jobs have the same generic recipe. That is, jobs are
processed at stage 1, then stage 2, until the last stage.
Traditionally, it is assumed that each stage has a single
processor and a job is indivisible; as a result, the entire
job must be completed before being transferred to the
next stage. These might not be the case in many realistic
situations.
The indivisibility of jobs leads to low machine utilization
and long completion times. In practical scheduling, a job
is actually a lot composed of many identical items. A job
could, therefore, be split into a number of smaller sublots
where each can be treated individually. When a job sublot
is completed, it can be immediately moved to the next
machine. Different sublots of the same job can thus be

processed simultaneously at different stages. The process
of splitting jobs into sublots is usually called lot
streaming.
In real world cases, a shop with a single processor at each
stage rarely exists. Commonly, processors are duplicated
in parallel at stages. The purpose is to balance the
capacity of stages, increase the overall shop floor
capacity, reduce, if not eliminate, the impact of bottleneck
stages and so on (Naderi et al. (2010)). The shop with
multi processors at its stages (or at least one stage with
more than one processor) is called a flexible flow lines.
Najafi et al. (2012) develop a mathematical model for
hybrid flow shop scheduling problems. Rezaeian et al.
(2013) propose a hybrid approach based on genetic and
imperialist competitive algorithm for flexible flow shops
with multiprocessor tasks. Naderi and Sadeghi (2012)
propose a multi-objective simulated annealing algorithm
for hybrid no-wait flow shop scheduling problems with
transportation times. More recently, Bożejko et al. (2013)
present a parallel tabu search algorithm for hybrid flow
shops, while Li et al. (2014) propose a hybrid variable
neighbourhood search for the same problem.

The lot streaming technique has been receiving
increasing attention after the pioneer work of Reiter
(1966). Some papers discuss that lot streaming can
significantly improve the schedule performance with
respect to the makespan (Potts & Baker (1989); Kalir and
Sarin (2000)). An extensive survey can be presented by
Chang and Chiu (2005). The lot streaming flow shop has
been commonly solved by meta-heuristics. Among all,

* Corresponding author Email address: bahman.naderi@aut.ac.ir

Journal of Optimization in Industrial Engineering 18 (2015) 61-69

61

one can refer the reader to genetic and simulated
annealing by Marimuthu and Ponnambalam (2005),
simulated annealing algorithm and a tabu search
algorithm by Marimuthu et al. (2007), discrete particle
swarm optimization algorithm by Tseng and Liao [18],
genetic and hybrid evolutionary algorithms by Marimuthu
et al. (2008), ant-colony optimization and threshold
accepting algorithms by Marimuthu (2009). More recent
meta-heuristics are a local-best harmony search algorithm
by Pan et al. (2011), discrete artificial bee colony
algorithm by Pan et al. (2011), shuffled frog leaping
algorithm by Pan et al. (2011), estimation of distribution
algorithm by Pan and Ruiz (2012), and differential
evolution algorithm and particle swarm optimization
algorithms by Vijay et al. (2013).
Although there are several papers in the literature of lot
streaming, they are mostly limited to classical flow shops.
Despite the applicability of flexible flow lines in different
industrial settings, the problem of lot streaming flexible
flow lines is not well studied. This paper considers the
problem of lot streaming flexible flow lines. It first
formulates the problem by a mixed integer linear
programming model. Moreover, a solution algorithm
based on artificial bee colony optimization with many
advance operators is developed. The algorithm is first
comprehensively tuned. Then, it is evaluated against the
optimal solutions obtained by the model on small
problems. On large problems, the algorithm is compared
with adaptations of our recently proposed algorithms,
shuffled frog leaping algorithm (Pan et al., 2011),
estimation of distribution algorithm (Pan and Ruiz, 2012),
differential evolution algorithm (Vijay et al., 2013) and
discrete artificial bee colony (Pan et al., 2012).
The rest of the paper is organized as follows. Section 2
reviews the literature. Section 3 formally defines and
formulates the problem. Section 4 develops the algorithm
for the problem under consideration. Section 5evaluates
the model and algorithms for performance.

2. Problem Definition and Formulation

This section describes the flexible flow line problem.
There is a set ܰ of ݊ jobs and a set ܯ of ݉ stages. At
stage ݅, there are a set of ݉௜identical machines. Every job
݆ is required to follow the exact same processing sequence
across all stages. The processing route starts from stage 1,
then stage 2 until stage ݉. Each job j is split into nj sublot
where all sublots of a job must be processed by exactly
one machine ݈ among machine available at each stage.
Let݌௝,௞,௜denote the processing time of ݇th sublot of job ݆
at stage ݅.
Each machine can process no more than one sublot
simultaneously while each sublot can be processed by no
more than one machine at a time. The setup and
transportation are negligible or included into processing
times. There is no machine failure; hence, machines are
continuously available for processing. Finally, all jobs are

available at time 0 and the process of a sublot on a
machine can be never interrupted; therefore, once the
process starts, it continues until it finishes. The objective
is to sequence jobs and schedule sublots so as to minimize
makespan.
This paper develops a mathematical model for this
problem. The application of integer programming models
in solving scheduling problems starts with the pioneer
model of Wagner (1959). Yet, regarding the limitation of
computer capacity and the lack of specified software, the
progress of research on this field is not as active as the
other solution approaches. Due to recent advances
obtained in computer capacity and advent of efficient
specialized software, the MILP model development is
each time becoming more and more interesting. Even if
one accepts this idea that mathematical models cannot be
efficient solution algorithms, they are the first natural way
to approach scheduling problems by Pan (1997). They can
explicitly describe all the characteristics of a scheduling
problem. Furthermore, mathematical models are used in
many solution methods such as branch and bound,
dynamic programming and branch and price. More
efficient MILP models would result in more effective
solution methods. The parameters and indexes used in
these models are:

This model determines the relative precedence of
jobs in pairs. The following variables are defined.

௝ܺ,௜,௕ Binary variable taking value 1 if job ݆ is
processed after job b at stage i, and 0 otherwise.

௝ܻ,௜,௟ Binary variable taking value 1 if job ݆ is
processed at stage ݅ on machine ݈ , and 0
otherwise.

 ௝,௞,௜ Continuous variable for the completion time ofܥ
kth sub-lot of job ݆ at stage ݅

The model is as follows.

݊ The number of jobs
݃ The number of stages
ܾ, ݆ Index for jobs, ݈, ݆ ∈{1, 2, … , ݊}
௝݊ The number of sub-lots of job ݆
݇ Index for sub-lots, ݇ ∈ {1,2,… , ௝݊}
݅ Index for stages, ݅ ∈{1, 2, … , ݉}
݉௜ The number of machines at stage ݅
݈ Index for machines,	݈ ∈{1, 2, … , ݉௜}
 ݅ ௝,௞,௜ The processing time of ݇-th sub-lot of job ݆at stage݌
 A large positive number ܯ

Bahman Naderi et al./ Modelling and Scheduling Lot...

62

Constraint set (1) specifies the job assignment of jobs to
one machine among the machines available at each stage.
Constraint set (2) assures that the first sublot of jobs at the
first stage is greater than its processing time. Constraint
sets (3) and (4) determine the minimum completion of
each sublot at each stage regarding the completion time of
that sublot in the previous stage and the completion time
of the previous sublot of the same job in that stage.
Constraint sets (5) and (6) determine the minimum
completion time of the first sublot of each job at each
stage regarding the completion time of the last sublot of
the previous jobs processed before the job at the same
machine. Constraint set (7) calculates makespan. Finally,
constraint sets (8), (9) and (10) define the decision
variables.

3. Artificial Bee Colony Optimization

Artificial bee colony optimization (ABCO) algorithm is
one of the most recent population-based meta-heuristics
proposed by Karaboga (2005). ABCO is motivated by the
intelligent and well organized behaviour of honeybees
supplying food. They colonially make use of current food
sources and also search to discover the positions of new
sources. ABCO has shown high performance in other
problems such as flow shop scheduling problem by
Tasgetiren et al. (2011) and Liu and Liu (2013).
Honeybees colonially perform the food search. That is,
bees coordinate their activities to find food sources. Their
colony includes three groups of specialized bees:
employed bees, onlookers and scouts. The employed bees
are those bees exploiting the current food sources. They
bring loads of nectar from the food sources to the hive. In
the hive, there is a dance floor where each employed bee
dances to share information about its food source. The

dance shows the quality of food source being exploited by
the bee. Onlooker bees stay in hive and watch dances of
all employed bees. Then, each onlooker selects one food
source for further exploiting based on dances (i.e., the
quality of food sources). The probability of each food
source for being selected is the proportion of its quality.
Thus, the low quality food sources attract less onlooker
bees while the good one does more. After appropriately
exploiting a food source (i.e., the nectar amount of the
food source is exhausted), all the employed bees
associated with this food source abandon it. In this case,
the employed bee of a left food source becomes a scout
bee and performs random search for a new food source.
Once a scout/onlooker bee finds a food source, it again
becomes an employed bee.
In ABC algorithm, the food source corresponds to a
solution of the problem and its nectar amount of a food
source the objective value. In fact, employed and
onlooker bees perform exploitation search whereas scout
bees carry out exploration search. The structure of ABCO
algorithm is as follows. It starts from a population of pop
food sources (each is an encoded solution). The nectar
amount (objective value) of each food source is
determined. Then, these food sources are iteratively
exploited using two mechanisms: employed and onlooker
bee. Meanwhile, the new area is explored for new food
source using scout bee mechanism. Another enhancing
feature is the diversifying mechanism by which the food
sources are further explored.
In the employed bee mechanism, a new food source is
generated from each food source. In the onlooker bee
mechanism, positions around food sources are searched.
In the scout bee mechanism, a scout bee searches for a
new food source to replace an abandoned food source. In
diversifying mechanism, the food source is further
explored. Figure 1 shows the general procedure of the
proposed ABCO algorithm.

 ௠௔௫ܥ	݁ݖ݅݉݅݊݅ܯ
 :݋ݐ	ݐ݆ܾܿ݁ݑܵ

෍ ௝ܻ ,௜,௟

௠೔

௟ୀଵ

= 1 ∀௝,௜ (1)

௝,ଵ,ଵܥ ≥ ௝,ଵ,ଵ ∀௝݌ (2)
௝,௞,௜ܥ ≥ ௝,௞,௜ିଵܥ + ௝,௞,௜ ∀௝,௞,௜வଵ (3)݌
௝,௞,௜ܥ ≥ ௝,௞ିଵ,௜ܥ + ௝,௞,௜ ∀௝,௞வଵ,௜ (4)݌
௝,ଵ,௜ܥ ≥ ௕,௡್ܥ ,௜ + ௝,ଵ,௜݌ ܯ− ∙ ൫3 − ௝ܺ,௜,௕ − ௝ܻ,௜,௟ − ௕ܻ,௜,௟൯ ∀௜,௟,௝ழ௡,௕வ௝ (5)
௕,ଵ,௜ܥ ≥ ௝,௡ೕ,௜ܥ + ௕,ଵ,௜݌ ܯ− ∙ ௝ܺ,௜,௕ ܯ− ∙ ൫2 − ௝ܻ,௜,௟ − ௕ܻ,௜,௟൯ ∀௜,௟,௝ழ௡,௕வ௝ (6)
௠௔௫ܥ ≥ ௝,௡ೕ,௠ ∀௝ܥ (7)
௝,௞,௜ܥ ≥ 0 ∀௝,௞,௜ (8)
 ௝ܺ,௜,௕ ∈ {0, 1} ∀௝ழ௡,௕வ௝,௜ (9)
 ௝ܻ,௜,௟ ∈ {0, 1} ∀௝,௜,௟ (10)

Journal of Optimization in Industrial Engineering 18 (2015) 61-69

63

Procedure: Artificial bee colony optimization
Initialization
While the stopping criterion is not met do

Employed bee mechanism
Onlooker bee mechanism
Scout bee mechanism
Intensifying mechanism

End for
Fig. 1. The procedure of the proposed ABCO

3.1 Encoding and initialization

To design a meta-heuristic the first two steps are to
develop schemes to encode a solution of the original
problem and decode an encoded solution to calculate the
objective function value. The better these schemes are, the
more effective the meta-heuristic becomes. To develop
these schemes, the problem must be structurally analysed.
The problem under consideration includes two decisions
of assigning and sequencing.
The following encoding scheme is used. A solution is
represented by a string including the permutation of job
numbers from 1 to n. For example, consider a problem
with n = 8. One possible solution can be

4 6 3 1 2 8 5 7

In this scheme, each job number represents its
corresponding job. By scanning from left to right, the
sequence of jobs at the first stage is determined. To
specify the assigning decision, the following rule is used.
The job is assigned to the first available machine. To
determine the sequence of jobs at subsequent stages, the
following rule is applied. The jobs are sorted at ascending
order of completion time of the previous stage. That is, if
a job is completed sooner, it is processed at the next stage
sooner. The assignment of subsequent stages, the
algorithm also uses the first available machine rule. To
have initial solutions, pop solutions are generated as
follows. Jobs are randomly sorted. The first job is
scheduled. Then, jobs, one by one, are put into all
possible positions among scheduled jobs. The best
position is selected. Figure 2 shows the pseudo code of
initialization mechanism.

Procedure: Initialization mechanism
For݇ = 1 to ݌݋݌

Sort jobs randomly in set ܬ and set ܦ = ∅.
For݆ = 1 to ݊

Take the ݆th job out of set ܬ
Test all possible positions in set ܦ.
Insert the job in the best position in set ܦ

Endfor
Endfor

Fig. 2. Initialization mechanism

3.2. Employed bee mechanism

The purpose of employed bee mechanism is to exploit the
current food source. To implement this idea, a new
solution is generated from vicinity of the current food
source. For each solution ݅, one element ݆ (real number) is

randomly selected and combined with the corresponding
element of another randomly selected food source ݇. Note
that ݇ ≠ ݅. To do that, the following operators are used:

Step 1: Select two cut points between [1, n] randomly.
Step 2: Copy the job numbers among these two cut

point from food source i to the new food source.
Step 3: Copy the remaining job numbers according to

food source k to new food.

Let us illustrate the procedure by an example with n=8.
Suppose food sources ݅ and ݇are as follows:

Food source ݅: 4 6 3 1 2 8 5 7

Food source ݇: 5 1 2 8 6 7 4 3

If the two randomly selected points are 3 and 7 in the first
step, there is the following incomplete food source.

New food source: 3 1 2 8 5

In the third step, the rest of job numbers are copied from
food source ݇. The complete food source becomes:

New food source: 6 7 3 1 2 8 5 4

If this new food source is better than food source ݅, it is
accepted and food source i is deleted. Otherwise, the new
food source is rejected.

3.3. Onlooker bee mechanism

After searching current food sources, employed bees start
to share the information about their food sources with
onlooker bees. Then, they evaluate the nectar information
obtained from all employed bees. According to the nectar
amount of food sources, each onlooker bee chooses one
food source. To determine the probability of each food
source for being selected, the probability function, shown
in Eq. (11) is used:

௜݌ =
௜ݐ݂݅

∑ ௡ௌேݐ݂݅
௡ୀଵ

 (11)

Where	fit୧ is the nectar amount (objective value) of food
source i (solution i).
The selected food source undergoes the following local
search by the onlooker bee. The jobs (one by one, without
repetition and at random order) are taken out of
permutation and put into another randomly selected
position. If for a job a better position is found, the search
restarts. If all jobs are tested and no improvement is made,
the local search ends.

Bahman Naderi et al./ Modelling and Scheduling Lot...

64

3.4. Scout bee mechanism

The employed and onlooker bees leave a food source
already exhausted and search for a new food source. In
this case, the bee is called a scout. A food source is
exhausted if it is not improved for a number of
consecutive iterations. In this case, the employed bee of
that food source abandons the current food source and
discovers a new food source randomly.
In the standard format, scout bees replace an exhausted
food source with a new randomly selected food source. In
this paper, another alternative is proposed. The aim is to
make use of current knowledge of food sources. 20 new
food sources from the best food source by a procedure are
generated as follows. Three randomly selected jobs are
randomly relocated into three new positions. Among these
new food sources, the best one is selected. The criterion to
determine if a food source is exhausted or not is as
follows. After finding no improvement for a number of
five iterations in row, a food source undergoes scout bee
mechanism.

3.5. Intensifying mechanism

To further give capability of intensification to ABCO, the
following mechanism is developed. At each iteration, all
new food sources generated by scout bee mechanism as
well as two other randomly selected food sources undergo
the intensifying mechanism. This mechanism is a
simulated annealing-like procedure to further explore the
solution space. In this mechanism, the initial solution, say
ߠ , is the selected food source. In this solutionߠ , one
randomly selected job is relocated into a new random
position. If this new solution, say ߠᇱ , is better than
solution ߠ, it is accepted. Otherwise, it is accepted with
probability of

ܲఏᇲ = 0.1 − ௙൫ఏᇲ൯ି௙(ఏ)

௙(ఏ)
= ଵ.ଵ௙(ఏ)ି௙൫ఏᇲ൯

௙(ఏ)
			 (12)

Where f(θ) is the makespan of solution θ. The maximum
probability of acceptance for a worse solution is 0.1. The
worse, a solution is, the less its probability becomes. The
procedure of generating new solution continues until no
better solution is found in 30 consecutive moves. At the
end, the final solution is compared with the initial food
source of intensifying mechanism. If it is better than the
initial one, it is accepted. Otherwise, it is rejected. Figure
3 shows the pseudo code of intensifying mechanism.

Procedure: Intensifying mechanism
Take food source ݅ as solution ߠ and Set ݇ = 1;
While݇ <= 1

Generate a new solution ߠᇱ by relocating one randomly selected job from solution ߠinto a new random position.
If݂(ߠᇱ) < then(ߠ)݂

Replace solution ߠ with solution ߠᇱ
If݂(ߠ) < ݂(݅)

Replace food source ݅ with solution ߠ and set ݇ = 0;
End if

Else
Probably replace solution ߠ with solution ߠᇱ

End if
Set ݇ = ݇ + 1;

End while
Fig. 3. The pseudo code of intensifying mechanism

4. Experimental Evaluations

This section evaluates the proposed model and
algorithm, called ABCO, for performance. This
experimental evaluation includes three different parts.
First the parameters of the proposed algorithm are tuned.
Then, using a set of small instances, the model’s
capability in solving the problem is evaluated. The
algorithm is evaluated against the optimal solution
obtained by the model. Finally, the algorithm is further
evaluated by comparing its performance with adaptation
of four recent algorithms in the literature of lot streaming
flow shops: shuffled frog leaping algorithm (SFL) by Pan
et al. (2011), estimation of distribution algorithm (EDA)
by Pan and Ruiz (2012), differential evolution algorithm
(DEA) by Vijay et al. (2013), discrete artificial bee
colony (DABC) by Pan et al. (2011).

The proposed ABCO and the four algorithms brought

from the literature are compared coded using Borland
C++. The model is also coded into CPLEX 12.1. The
model and algorithms are run on a PC with 2.40 GHz
Intel Core i3 Duo and 4 GB of RAM memory. The
stopping criterion for the meta-heuristics is set to
nଶm	milliseconds elapsed CPU time. For the model, the
stopping criterion is set to 1000 seconds of computation
time limit. The relative percentage deviation (RPD) is
used as the performance measure. RPD is calculated as
follows.

ܦܴܲ = 100൬
௠௔௫ܥ − ܯܮ

ܯܮ
൰																																															(13)

Whereܥ௠௔௫ and ܯܮ are makespan of solution found by
the algorithm and the lowest makespan found by any of
algorithms for an instance.

4.1. Experiment for parameter tuning

The correct choice of parameters significantly impact on
the performance of meta-heuristics. One advantage of the

Journal of Optimization in Industrial Engineering 18 (2015) 61-69

65

proposed ABCO is having only one parameter of
population size (pop) of bees. To do the experiment, there
are 48 instances by generating two instances for each of
the following 24 combination sizes.
݊ = {20,50,80,120},݉ = {2,4,8},݉௜ = {2,ܷ(1,4)},

Processing times are generated from a uniform
distribution between (1, 99). The number of sublots for
each job comes from a uniform distribution between (2,
4).5 levels for pop= {5,20,40,70,100} are considered. All
24 instances are solved by four different ABCs. The
results are analysed by analysis of variance (ANOVA)
and least significant deviation (LSD) statistical tests.
Figure 4 shows the average RPD obtained by ABC of
each level as well as the LSD intervals. As it can be seen,
pop of 20 is the best level with average RPD of 0.94%
although it is statistically similar to pop of 40.

Fig. 4. The average RPD obtained by ABCO with different pop

4.2. Experiment with small-sized instances

This subsection evaluates the proposed model and
general performance of the tested algorithms on a set of
small sized instances. Note that the tested meta-heuristics
do not guarantee the optimality. In this regard, there are12
instances, two instances for each of the following
combination.

݊ = {6,8,10},݉ = {2,4}, ݉௜ = {2}.
The number of sublots and processing times are generated
from uniform distributions over (2, 4) and (1, 99),
respectively.

Table 1 shows the results obtained by the model and
algorithms. In this table, for the model, there are two
columns. The column “time” shows the computational
time of the model elapsed to optimally solve the
corresponding instance. The column “gap” shows the
optimality gap of model for those unsolved instances. The
model optimally solves all the instances up ݊ = 10 and
݉ = 2 in less than 35 seconds. It also solves one of two
instances with ݊ = 10 and ݉ = 4 in 294 seconds. In sum,
the model solves 11 instances out of 12 ones. Regarding
the algorithms, ABCO and EDA solve 9 instances out of
the 11 instances to optimality. SLF presents the worst
performance with average optimality gap of 1.1%.

4.3. Experiment with large sized instances

This section further compares the five tested
algorithms (SFL, EDA, DEA, DABC and ABCO) on
large-sized instances. As large-sized instances, there
are120 instances, five instances for each of the following
24combination sizes.
݊ = {20,50,80,120},݉ = {2,4,8},݉௜ = {2,ܷ(1,4)},

Processing times and the number of sublots are generated
from uniform distributions between (1, 99) and (2, 4),
respectively.

Table 2 shows the results, averaged for each
combination of n and m (10 data per average). As it can
be seen, the proposed ABCO outperforms the other
algorithms with average RPD of 0.59%. The second best
is EDA with RPD of 1.07%. Among the remaining
algorithms, DEA and DABC provide the average RPD of
2.32% and 2.5%, respectively. The worst performing
algorithm is SFL with average RPD of 3.07%. The paper
conducts the ANOVA and LSD tests to compare the
algorithms. Figure 5 shows the means plot with LSD
intervals. As can be seen from the table, the proposed
ABCO provides statistically better results among the
tested algorithms.

To further evaluate the algorithms, the relation
between the performance of the algorithms and the
problem size is analysed. First, the influence of ݊ over the
different algorithms is assessed. Figure 6 presents the
average RPD obtained by any of algorithms in different
sizes of ݊. There is a clear trend that the proposed ABCO
provides better results in larger sizes of ݊.

Table 1
The optimality gap of the model and the tested algorithms

N m
 Model Algorithms (Opt. gap %)

Time (sec) Opt. gap SFL EDA DEA ABCO DABC
6 2 <1 0% (2) 0.0 0.0 0.0 0.0 0.0
 4 <1 0% (2) 0.0 0.0 0.0 0.0 0.0
8 2 5.73 0% (2) 0.9 0.0 0.0 0.0 1.4
 4 20.18 0% (2) 1.3 0.0 1.6 0.0 0.0
10 2 34.07 0% (2) 2.5 1.7 1.4 2.1 3.1
 4 294.41 7.54% (1) 2.7 1.5 1.5 1.5 2.1

Average 1.10 0.44 0.68 0.52 1.01

0.8

1

1.2

1.4

1.6

R
P

D

5 20 40 70 100
pop

Bahman Naderi et al./ Modelling and Scheduling Lot...

66

Table 2
The average RPD of the tested algorithms

Fig. 5. Means plot with LSD intervals for the different algorithms

Fig. 6. Means plot of algorithms versus the number of jobs

5. Conclusion

The current literature on lot streaming scheduling has
focused on flow shop problems. In flow shops, it is
assumed that there is only one processor at each working
stage. Yet, in practice, shops duplicate machines in
parallel at each stage. This paper extended the problem of

lot streaming flow lines with parallel machines. The
problem has been mathematically formulated by a mixed
integer linear programming model. The model is based on
the concept of relative-sequence of jobs. Using
commercial software CPLEX, the model solved instances

0

0.5

1

1.5

2

2.5

3

3.5

R
P

D

SFL EDA DEA ABCO ABC

0

1

2

3

4

١٠.٠٠ ۴١٠٠.٠٠ ٧٠.٠٠ ٠.٠٠

SFL

EDA

DEA

ABCO

DABC

R
P

D

The number of jobs

N M
Algorithms
SFL EDA DEA ABCO DABC

10 2 3.11 0.55 2.28 0.56 2.22
 4 2.98 0.83 2.24 0.85 2.46
 8 3.27 0.77 1.97 0.48 2.1
40 2 3.13 0.89 1.56 0.52 2.61
 4 2.97 0.99 2.26 0.68 2.14
 8 2.52 1.01 2.51 0.73 2.27
70 2 2.59 0.93 2.62 0.69 2.55
 4 2.84 1.25 2.45 0.44 2.45
 8 3.24 1.33 1.98 0.52 2.81
100 2 3.22 1.47 2.96 0.62 2.87
 4 3.4 1.29 2.46 0.41 2.35
 8 3.59 1.53 2.5 0.56 3.17

Ave. 3.07 1.07 2.32 0.59 2.5

Journal of Optimization in Industrial Engineering 18 (2015) 61-69

67

up to 8 jobs to optimality in less than 35 seconds and
instances with 10 jobs in less than 294 seconds.

In addition to the model, a novel artificial bee colony
algorithm was developed to solve larger instances. This
algorithm was developed with 5 mechanisms of
initialization, employed bee, onlooker bee, scout bee and
intensifying. The proposed algorithms were compared
with 4 available algorithms (shuffled frog leaping,
estimation and distribution, differential evolution and
particle swarm optimization algorithms). Among the
tested algorithms, the artificial bee colony and estimation
and distribution algorithms outperform the others with
average RPD of 0.58% and 1.07%, respectively, over 120
large instances. In small instances the proposed algorithm
yields the best results with RPD of 0.52%. The statistical
tests showed that the proposed algorithm significantly
obtains better results than the others.

As an interesting future research direction, one can
study the more realistic version of the problem with other
assumptions like setup times. Since there are two or more
objectives to optimize simultaneously in practical
industrial settings, the problem can also be extended to
the multi objective case. Regarding the proposed solution
method, the artificial bee colony can be applied to solve
other scheduling related problems.

References

[1] Bożejko, W., Pempera, J., Smutnicki, C., (2013). Parallel
tabu search algorithm for the hybrid flow shop problem,
Computers and Industrial Engineering, 65(3), 466-474

[2] Chang, J.H., Chiu, H.N. (2005). A comprehensive review
of lot streaming. International Journal of Production
Research, 43(8), 1515–1536.

[3] Liu, Y.F., Liu, S.Y. (2013). A hybrid discrete artificial bee
colony algorithm for permutation flowshop scheduling
problem. Applied Soft Computing, 13(3), 1459-1463.

[4] Li, J.Q., Pan, Q.K., Wang, F.T. (2014). A hybrid variable
neighborhood search for solving the hybrid flow shop
scheduling problem, Applied Soft Computing, 24, 63-77.

[5] Kalir, A.A., Sarin, S.C. (2000) Evaluation of the potential
benefits of lot streaming in flow-shop systems.
International Journal of Production Economics, 66, 131-
142.

[6] Karaboga, D. (2005). An idea based on honey bee swarm
for numerical optimization. Technical Report-TR06,
Erciyes University, Engineering Faculty, Computer
Engineering Department.

[7] Marimuthu, S., Ponnambalam, S.G. (2005).Heuristic
search algorithms for lot streaming in a two-machine
flowshop. International Journal of Advanced
Manufacturing Technology, 27, 174–180.

[8] Marimuthu, S., Ponnambalam, S.G., Jawahar, N. (2007).
Tabu search and simulated annealing algorithms for
scheduling in flow shops with lot streaming. Proceedings
of the Institution of Mechanical Engineers Part B—Journal
of Engineering Manufacture, 221(2), 317–331.

[9] Marimuthu, S., Ponnambalam, S.G., Jawahar, N. (2008).
Evolutionary algorithms for scheduling m-machine flow

shop with lot streaming. Robotics and Computer-
Integrated Manufacturing, 24(1), 125–139.

[10] Marimuthu, S., Ponnambalam, S.G., Jawahar, N. (2009).
Threshold accepting and Ant-colony optimization
algorithms for scheduling m-machine flow shops with lot
streaming. Journal of Materials Processing Technology,
209, 1026–1041.

[11] Naderi, B., Ruiz, R., Zandieh M. (2010). Algorithms for a
realistic variant of flowshop scheduling. Computers and
Operations Research, 37,236–246.

[12] Naderi, B., Sadeghi, H. (2012). A Multi-objective
simulated annealing algorithm to solving flexible no-wait
flowshop scheduling problems with transportation times,
Journal of Optimization in Industrial Engineering, 5(11),
33-41.

[13] Najafi, E., Naderi, B., Sadeghi, H.,Yazdani, M. (2012). A
mathematical model and a solution method for hybrid flow
shop scheduling, Journal of Optimization in Industrial
Engineering, 5(10), 65-72.

[14] Pan, C.H. (1997). A study of integer programming
formulations for scheduling problems. International
Journal of Systems Science, 28, 33–41.

[15] Pan, Q.K., Wang, L., Gao, L., Li, J. (2011). An effective
shuffled frog-leaping algorithm for lot-streaming flow
shop scheduling problem. International Journal of
Advanced Manufacturing Technology, 52,699–713.

[16] Pan, Q.K., Tasgetiren, M.F., Suganthan, P.N., Chua, T.J.
(2011). A discrete artificial bee colony algorithm for the
lot-streaming flow shop scheduling problem. Information
Sciences, 181, 2455–2468.

[17] Pan, Q.K., Suganthan, P.N., Liang, J.J., Tasgetiren, M.F.
(2011). A local-best harmony search algorithm with
dynamic sub-harmony memories for lot-streaming flow
shop scheduling problem. Expert Systems with
Applications, 38, 3252–3259.

[18] Pan, Q.K., Ruiz, R. (2012). An estimation of distribution
algorithm for lot-streaming flow shop problems with setup
times. Omega, 40, 166–180.

[19] Potts, C.N., Baker, K.R. (1989). Flow-shop scheduling
with lot streaming. Operations Research Letters, 8(6),
297–303.

[20] Reiter, S. (1966). System for managing job-shop
production. Journal of Business, 39(3), 371–393.

[21] Rezaeian, J., Seidgar, H., Kiani, M. (2013). Scheduling of
a flexible flow shop with multiprocessor task by a hybrid
approach based on genetic and imperialist competitive
algorithms, Journal of Optimization in Industrial
Engineering, 6(13), 1-13.

[22] Tasgetiren, M.F., Pan, Q.K., Suganthan, P.N., Oner, A.
(2011).A discrete artificial bee colony algorithm for the
total flowtime minimization in permutation flow shops.
Information Sciences, 181(16), 3459-3475.

[23] Tseng, C.T., Liao, C.J. (2008). A discrete particle swarm
optimization for lot-streaming flowshop scheduling
problem. European Journal of Operational Research, 191,
360–373.

[24] Yoon, S.H., Ventura, J.A. (2002). An application of
genetic algorithms to lot streaming flow shop scheduling.
IIE Transactions, 34, 779–787.

[25] Vijay Chakaravarthy, G., Marimuthu, S., Sait,
A.N.(2013).Performance evaluation of proposed
Differential Evolution and Particle Swarm Optimization
algorithms for scheduling m-machine flow shops with lot
streaming. Journal of Intelligent Manufacturing, 24, 175–
191.

Bahman Naderi et al./ Modelling and Scheduling Lot...

68

[26] Wagner, H.M. (1959). An integer linear-programming
model for machine scheduling. Naval Research Logistics
Quarterly, 6, 131–140.

Journal of Optimization in Industrial Engineering 18 (2015) 61-69

69

