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Abstract 

Lot-sizing problems (LSPs) belong to the class of production planning problems in which the availability quantities of the production plan 
are always considered as a decision variable. This paper aims at developing a new mathematical model for the multi-level capacitated LSP 
with setup times, safety stock deficit, shortage, and different production manners. Since the proposed linear mixed integer programming 
model is NP-hard, a new version of simulated annealing algorithm (SA) is developed to solve the model named revised SA algorithm 
(RSA). Since the performance of the meta-heuristics severely depends on their parameters, Taguchi approach is applied to tune the 
parameters of both SA and RSA. In order to justify the proposed mathematical model, we utilize an exact approach to compare the results. 
To demonstrate the efficiency of the proposed RSA, first, some test problems are generated; then, the results are statistically and 
graphically compared with the traditional SA algorithm. 
 
Keywords: Lot-sizing problem; Simulated annealing; Shortage; Safety stock deficit; Production manners 

1. Introduction 

Production planning problem consists in deciding how to 
transform raw material into final goods in order to satisfy 
the demands at minimum cost. The lot-sizing problem 
(LSP) is a crucial step and a well-known optimization 
problem in production planning which involves time-
varying demands for a set of N items over T periods. In 
industrial applications, several factors may sophisticate 
making the best decisions. For instance, considering 
multi-items can lead to impossibility of satisfying 
demand. Moreover, safety stock is a complicating 
constraint as a target to reach rather than an industrial 
constraint to satisfy (Baker, 1990). Today, in most 
operational and industrial applications, one of the 
important questions in the field of production control 
being studied is to find the optimum composition of using 
production resources towards customer satisfaction and 
profiting. In reality, optimizing manners of production 
planning in line with practical restrictions have always 
been the centre of attention for industrial managers. In the 
field of production planning, the prospect of production is 
divided into three areas including short-term, mid-term, 
and long-term. Lot-sizing problems fall under mid-term 
programming prospects. The main concern of this 
research is Multi Level Capacitated Lot-Sizing Problem   

 
 
 
(MLCLSP). In this regard, Chen and Thizy (Chen and 
Thizy, 1990) introduced a question of multi-product lot-
sizing problem with the capacity and setup time. To 
explain how the generalize ability between the exact and 
approximate answers is created, the Lagrangian relaxation 
method was utilized. They also presented a new algorithm 
to solve their MLCLSP.  
Maes and Van Wassenhove (Maes and VanWassenhove, 
1988) developed a novel algorithm to solve the problem of 
multi-product production with the capacity and setup 
time. The goal of most MLCLSPs is to find the optimum 
production plan, shortage, and inventory. Tempelmeier 
and Derstroff (Tempelmeier and Derstroff, 1996) developed a 
new method based on Lagrangian for the multi-product, 
multi-layer with lot-size and setup time. Using the 
Lagrangian relaxation, the multi product, multi layer 
problem of lots is changed into some limited one-product 
problems. To solve these problems of one-product a low 
limit is used for the value of the objective function and 
also high limits are results of the sense of the new method 
of the finite timing procedure. The quality of this method 
was tested in problems with various sizes. Berretta and 
Rodrigues (Berretta and Rodrigues, 2004) produced a 
method to solve the problem of the volume of multi-layer 
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production with capacity. In their model, costs and setup 
times were taken into consideration. Based on the 
complexity of the problem, the memetic algorithm was 
presented on the basis of meta-heuristic methods. Tang 
(Tang, 2004) proposed a multi-item lot-sizing model. To 
solve his model, simulated annealing algorithm was 
presented. 
Absi and Kedad-Sidhoum (Absi and Kedad-Sidhoum, 2007) 
presented a mixed integer mathematical formulation for 
the MLCLSP with capacity constraint, and lower and 
upper bounds for productions. They developed a branch 
and bound algorithm for the model without considering 
the safety stock as well. Following this, Absi and Kedad-
Sidhoum (Absi and Kedad-Sidhoum, 2008) presented a 
mixed integer mathematical formulation for the multi-
product problem with capacity limitation, taking into 
consideration setup and shortage costs to make their 
model more realistic. Since the proposed model is NP-
hard, they used a simple branch and bound heuristic to 
solve the problem. Atthe end, some numerical examples 
were presented to show the implication of the method in 
solving the problem. Aksen et al. (Aksen et al.  2003) 
presented a new mathematical formulation for MLCLSP 
with shortage costs. Loparic et al. (Loparic et al. 2001) 
presented a dynamic programming algorithm with a 
difficulty degree of T2 to optimize the MLCLSP with 
safety stock. Sural et al. (Sural et al. 2009) presented a 
Lagrangian relaxation method to solve the problem of 
production with setup time to minimize on-hand 
inventory. 
Nowadays, to increase customer satisfaction, using safety 
stock, from the supply chain viewpoint, has widely 
become important. Since the safety stock concept is 
considered to be a new trend in the literature of such 
problems, considering safety stock can be a contribution 
of the presented model. In this regard, Absi and Kedad-
Sidhoum (Absi and Kedad-Sidhoum, 2009) followed their 
previous work with developing a new model for multi-
item lot-sizing with considering setup time and shortage 
costs and safety stock. To solve the model, they used the 
dynamic programming approach and analyzed the 
implication of the proposed model. Han et al. (Han et al. 
2009) have used the particle swarm optimization 
algorithm to solve the problem of multi-item lot size 
without capacity. To demonstrate the performance of the 
proposed algorithm, the comparison procedure with the 
genetic algorithm was analyzed. Choudhary and Shankar 
(Choudhary and Shankar, 2011) applied integer linear 
programming approach to solve a multi-period 
procurement lot-sizing problem for a single product that is 
procured from a single supplier considering rejections and 
late deliveries under all-unit quantity discount 
environment. The goal of this proposed model is to relate 
goals of costs and decision making in the suitable number 
of production and delivery scheduling to reduce total 
costs according to discounts, economic deals, and supply 
management. Moreover, the optimum model in analyzing 
the effect of variety on model parameters such as rejection 

rate, demand, inventory capacity, and holding costs is for 
a multi-period problem to arrange a production program. 
This analysis helps to make a decision to identify chances 
of reducing costs to a great extent. To show the 
implication of the proposed model, a numerical example 
was provided. The proposed approach provides flexibility 
to decision maker in multi-period procurement lot-sizing 
decisions through tradeoff curves and sensitivity analysis. 
Recently, Wu et al. (Wu et al. 2011) proposed two new 
mixed linear programming models and presented a new 
optimization technique which reached high quality 
answers within a logical time. Rezaei and Davoodi 
(Rezaei and Davoodi, 2011) have also proposed two 
multi-objective mixed integer non-linear programming 
models for the multi-item lot size with multi-supplier 
problem. Each model was produced based on three 
objective functions including costs, quality, and service 
level and a group of constraints. In the first model, 
shortage is not allowed, but in the second model, all the 
demand during the stock-out period is backordered. With 
regards to complexity of the models, an innovative 
genetic algorithm is presented to obtain a set of Pareto-
optimal solutions. Comparison of results indicates that, in 
a backordering situation, buyers are better able to 
optimize their objectives than a situation where there is no 
shortage. 
Due to the variety of products in the current manner under 
review, each product might be produced through different 
manners, and the costs of each unit and the value of 
resources used depend on the selected production manner. 
Paying attention to the kind of production manner to make 
a mathematical model for the problem can increase the 
implication of the problem. In most wide industrial 
applications, one of the most important questions is to 
identify the best value of production. In this research, an 
integer linear programming model is developed for the 
multi-item lot-sizing while taking into consideration many 
industrial limitations. The goal is to minimize the total 
production cost, inventory costs, shortage costs, safety 
stock deficit costs, and setup costs. As another 
contribution, we follow to develop simulated annealing 
algorithm in the production planning literature. The main 
characteristic of the proposed algorithm are (I) initializing 
with a population of solutions rather than one solution, 
(II) generating several neighbor’s solutions, and (III) 
considering calibrated parameters. All this facts led us to 
find better solutions. 
The paper is organized as follows: In the next section, the 
MLCLSP model with considerations of setup time, 
holding, shortage costs, and different production manners 
is presented. Section 3 elaborates on a developed SA 
algorithm to solve the model. In Section 4, we first tune 
the parameters of both algorithms and then the results are 
analyzed in terms of graphical and statistical comparison 
in Section 5. The final section provides conclusions and 
directs for future researches. 
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2. Problem Formulation 

In this section, first the problem, assumptions, parameters, 
and decision variables are thoroughly discussed, and then 
the proposed linear programming model is defined. 
Nowadays, in most production centers, the need to answer 
the question of appointing a combination of the 
production of commodities is felt more than ever before. 
In order to close the gap between the conditions of the 
problem and the real world conditions, in this research, 
the multi-item lot size problem is studied with 
considerations of production line equilibrium and capacity 
limitations. Not only has there been a consideration of 
different production manners for products, but also the 
model has been designed in the conditions of having 
safety stock and shortage being allowed. The main goal is 
to present a mathematical model to optimize production, 
inventory, and shortage quantities as well as determine the 
best production manner in which summations of 
production, setup, inventory, and shortage costs are 
minimized. 
 
2.1. Assumptions 
 
o Demand is deterministicand occurs at a constant rate. 
o Shortage is backlogged. 
o Shortage and inventory costs must be taken into 

consideration at the end. 
o Raw material resource with given capacities are 

considered. 
o Shortage is allowed for one period. 
o The quantity of inventory and shortage at the 

beginning of the planning horizon is zero. 
o The quantity of shortage at the end of the planning 

horizon is zero. 

2.2. Parameters 

T: Number of periods in the planning horizon, t=1, 
…,T 

N:  Number of products, i=1, …,N 

J:  Number of production manner, j=1, …,J 

dit:  The demand for product i in the period t 

φit: Unitary shortage cost of product i in period t 

yit
 :  Unitary safety stock deficit cost of product i in 

period t 

Lit : The quantity of the safety stock of product i in 
the period t 

δit : The difference of safety stock of product i in the 
period t and the previous period 

αijt: The production cost of each unit of product i in 
the period t through the manner j 

βijt: The setup cost of the production of product i in 
the period t through the method j 

yit
 :  The unit holding cost of product i in the period t 

Ct : The capacity of the source at hand in the period t 

vi : The quantity of the source used by each unit of 
the product i 

fij : The quantity of wasted source for product i 
produced through the manner j 

M : A large number 

2.3. Decision Variables 

Xijt: Production quantity for product i in the period t 
through the manner j 

0 or 1yijt  : One is when the product i is produced in the 

period t through the manner j. Zero is when the 
something else happens. 

rit:  The quantity of shortage of product i in the 
period t  

Sit
 : The quantity of overstock deficit of product i in 

the period t  
Sit
 :  The quantity of safety stock deficit of product i 

in the period t 
 
To show the network structure of the MLCLSP, Fig. 1 is 
plotted. In this figure, the nodes represent the periods of 
the planning prospect, and arcs relate to any of the 
model’s decision variables, depending on the signals just 
discussed. Nevertheless, the production parameters of 
demand and the difference of safety stock in two 
consecutive periods is represented. 
 

Fig. 1.Structure of the MLCLSP 
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2.4. The proposed Model 
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Equation (1) shows the objective function which 
minimizes the total cost considered by the production 
plans which are included unit production costs with 
different production manner, inventory costs, shortage 
costs, and setup costs. Constraints (2) are the inventory 
flow conservation equations through the planning horizon. 
Constraints (3) show the inventory flow conservation 
equations in the last period of planning horizon, which are 
written without considering the shortage. The sources 
capacities are shown in Constraints (4). Constraints (5) 
ensure the quantity of production of i in the period t 
should not exceed the maximum value allowed. 
Constraints (6) and (7) define upper bounds on 
respectively, the demand shortage and the safety stock 
deficit for product i in period t. Constraints (8) 
characterize the variable's domains. 

3. A Revised Simulated Annealing  

Since the proposed model is an NP-hard one regarding its 
computational complexity [12], to solve the model a 
simulated annealing (SA) algorithm was developed and to 
prove its implication, the results of this algorithm were 
statistically analyzed with the results of the classic SA 
algorithm as well as an exact approach. 
The concept of SA, introduced by Kirkpatrick et al. 
(Kirkpatrick et al. 1983) is actually a comparison between 
the physical annealing process in solids and the solving of 

complex optimization problems. The SA algorithm is a 
method to improve being placed in the local optimum 
point. On the other hand, in local optimization algorithms, 
the new solution is only accepted when the objective 
function is improved. This is while in the SA algorithm, 
not only solutions which do not improve the objective 
function are accepted, but also unsuitable solutions are 
possibly accepted. This probability function can be seen 
in Eq. (9). 

 ( ) exp( )                                                 (9)
f

P f
T


   

Where Δf is the value of change in the objective function 
and T shows the temperature. Even if this possibility is 
larger than a random number between zero and one, it is 
accepted. The algorithm generally works in a way that in 
every repetition, the SA algorithm produces a neighbor 
state such as s’ and based on a possibility, the problem 
moves from s to s’ or stays in s. This process is repeated 
until an almost optimum solution is reached or the 
maximum number of repetitions is conducted. On the 
other hand, the T parameter should be selected in a way 
that it accepts most neighboring states and, at the end, 
with the gradual reduction in the parameter T, the 
algorithm reports suitable solutions. 
In this article, in order to reach higher quality solutions, 
two new concepts in applying the SA algorithm have been 
taken into consideration. The first concept is in 
initialization phase of the algorithm in which the 
algorithm starts with a group of solutions as a population. 
The other concept states that in the neighboring 
production phase, for each solution, many neighbors are 
produced at once. Finally, after the solution evaluation 
phase, the best solutions are selected and are moved to the 
next repetition as the selected solutions group. The 
expansion of these two concepts and considering them as 
an important part of the SA algorithm increases the search 
ability of the algorithm in reaching high quality solutions. 
Now, in order to describe the proposed algorithm, the 
steps to implement the algorithm have been discussed in 
detail in the subcategories below. 

3.1. Initialization 

In this section, the inputs of the algorithm include the 
preliminary temperature (T0), the temperature reduction 
rate (β), the maximum value of repetitions (nIt), the 
number of the population (nPop), and the number of 
neighboring (nMv). 

3.2. Solution representation 

The most important part in improving the implementation 
of meta-heuristic algorithms is solution representation. In 
this paper, the illustration of the solution structure is in the 
single-string (A) type, which its length is equal to the total 
number of periods. Each part of the strand itself contains a 
string (Bt) which its length equals the total number of 
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different manner of production. On the other hand, the 
components of the (Bt) string can define the production 
program, depending on the type of decision variable (e.g., 
accidental figures of zero and one for the setup decision 
variable) (Tavakkoli-Moghaddam et al. 2009). In order for 
the structure to become clearer, the schematic of the 
solution group of a specific problem with three products 
and three different methods of production for each of the 
products in five periods is shown in Fig. 2. 

 
Fig. 2.An example of solution representation 

3.3. Neighborhood Structure 

In order to create neighboring, the structure of the 
replacement neighboring is adapted, that is, two random 
numbers are created in the integer range of one to the 
number of periods (e.g. Figures 2 and 5) and the place of 
the cell of these two figures are exchanged. Moreover, in 
the neighborhood structure, we consider a repair process 
to ensure finding feasible solution. The proposed repair 
process attempts to change the decision variables in order 
to balance the infeasible constraints.  Fig. 3 illustrates the 
way in which the neighboring structure works. 

 
Fig. 3.An example ofneighborhood structure 

3.4. Neighboring solutions evaluation 

The process of evaluating produced solutions is in a way 
that if any neighboring solution is better than the current 
solution in hand, or if the possibility function is larger 
than the steady random number, we move to a new 
solution, and if the neighboring solution is not better than 
the current solution, or if the possibility function is 
smaller than the steady random number, we choose the 
current solution. However, in both states, there is the 
possibility of choosing the worse solution. 

3.5. Cooling schedule 

In order to reach better solution, the algorithm reduces 
temperature in consecutive repetitions through the use of 
Eq. (10) so that the convergence process is accomplished. 

   ;  2,  0 1                            (10)1T T hh h       

β represents the temperature decrease rate and h is the 
main counter of the algorithm’s loop. Finally, after 
reaching a predetermined value of temperature, the 
algorithm will be stopped. 
In the next section, experimental problems with different 
dimensions are implemented by the SA algorithm and we 
have used statistical analyses to demonstrate the 
performance of the proposed solving methodology. 

4. Parameter Calibration 

Nowadays, several procedures in the design of 
experiments (DOE) are implemented to calibrate the 
algorithms. As an alternative, in a full factorial 
experiment as the number of considered factors increases, 
the number of level combinations increases very rapidly 
resulting in very large computational efforts (Montgomery, 
2005). To decrease the number of required experiments, a 
fractional factorial experiment is used in which only a 
portion of the total possible combinations are considered. 
Taguchi (Taguchi, 1986) presented a number of designs to 
examine a large number of factors with a very small 
number of observations. To determine the best level of 
each factor, Taguchi approach utilizes signal-to-noise 
(S/N) ratio as a measure of variations in Eq. (11). 

2         (11)10/  10 log ( )S N ratio objectivefunction   

In this paper, to obtain the optimum values of the 
parameters, we use the relative percentage deviation 
(RPD) as a common performance measure to evaluate the 
algorithms. RPD shows that how much an algorithm is 
different from the best obtained solution on average and is 
calculated according to the Eq. (12). 

lg
100                           (12)

A Minsol solRPD
Minsol


   

Where Minsol represents the best solution obtained for 
each run and Algsol is the obtained solution for a run by a 
given algorithm. In this respect, it should be mentioned 
that the proposed RSA and SA algorithms contain four 
and two parameters, respectively. The both algorithms 
parameters along with their levels are provided in Tables 
1-2. 
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Table 1 
Parameters levels for SA  
Factors   Levels 

  Level 1 Level 2 Level 3 

0T          (A)  750 1000 1250 

           (B)  0.9 0.95 0.99 
  
  
Table 2 
parameters levels for RSA 
Factors   Levels 

  Level 1 Level 2 Level 3 

0T          (A)  750 1000 1250 

           (B)  0.9 0.95 0.99 

popn       (C)  5 10 15 

Moven     (D)    2  4  6 

 
Considering four factors in three levels there are (34)=81 
different combinations for just one problem that leads to 
the huge computational efforts. Using Taguchi’s plan, 
these 81 combinations are reduced to 9. In order to 
conduct the experiment, we consider test problems 5 and 
8 for SA and test problems 3 and 8 for RSA. Hence, the 
algorithms are run three times, then, the average of these 
three run is reported. 
 

Table 3     
Experimental results obtained by RSA 

NO. A B C D RPD  
(TP 3) 

RPD  
(TP 8)  

1 1 1 1 1 0.057 0.187 

2 1 2 2 2 0.160 0.104 

3 1 3 3 3 0.053 0.039 

4 2 1 2 3 0.130 0.032 

5 2 2 3 1 0.307 0.087 

6 2 3 1 2 0 0.026 

7 3 1 3 2 0.335 0.072 

8 3 2 1 3 0.164 0.094 

9 3 3 2 1 0.242 0 

 
Table 4     

Experimental results obtained by SA 
RPD  
(TP 8) 

RPD  
(TP 5)  B  A  NO.  

0.190 0.380 1  1  1  
0.171 0.246 1  2  2  
0.139 0.563 1  3  3  
0.114 0.453 2  1  4  
0.108 0.395 2  2  5  
0.103 0.126 2  3  6  
0.102 0.173 3  1  7  
0.055 0 3  2  8  

0 0.124 3  3  9  
 
After RPDs are calculated for each combination, they are 
transformed into the S/N ratio. Then, in order to identify 

the significant factors, we implement an ANOVA F-test 
on the S/N ratio data with a 95% confidence limit. In 
order to clarify the trend of Taguchi implementation, Figs. 
4-5 plot the best value of algorithm parameters. The best 
level of all parameters is specified in Table 5. 
 
 

  
Fig. 4. Mean of S/N ratio levels for SA parameters 

 

  
Fig. 5. Mean of S/N ratio levels for RSA parameters 

 
Table 5 
Best level for parameters  

Optimum 
amount Parameters  Solving 

methods  
1000  0T  

RSA  
0.99    

10  popn  

6  Moven  

1250  0T  
SA  

0.95    

5. Analysis of the Results 

In this section, in order to prove the suitable implication 
of the proposed solving method, first some experimental 
problems with different dimensions were generated, and 
then the acquired computational results were analyzed 
through the solving methods, including the classical SA 
algorithm, exact approach, and RSA. 
For this reason, 17 test problems in different dimensions, 
including problems with small, medium, and large 
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dimensions, were presented, and for each of the solving 
methods, the objective function values are achieved and 
compared. Table 6 shows the computational outcome 
obtained from the experimental problems created from 
each of the solving methods. To appoint the outcomes of 
SA and RSA, proposed algorithms were coded with the 
Matlab (R2010a) software and run on a notebook with 
four GB RAM and two GB processor.  
Fig. 6 graphically depicts the way both proposed 
algorithms act on produced experimental problems. 
Generally, the picture states the RSA algorithm presents a 
better performance solution than the classical SA 
algorithm regarding all problems from the perspective of 
quality (especially in the case of problems with large 
dimensions). To prove this matter, the presented statistical 
analysis (the variance analysis outcome) were reported for 
problems with small, medium, and large dimensions, in 
Tables 7, 8, and 9, which according to the values of the 

survey (or P-Value) we can reach the conclusion that the 
algorithm has shown its usefulness in different problems 
as compared to the classical algorithm, and statistical 
results also are significantly different for problems with 
large dimensions. To clarify the matter, confidence 
distances for different sizes have been illustrated in Fig. 7, 
Fig. 8, and Fig. 9. The point worth noticing is that with 
the increase in the dimensions of the problem, the 
difference of values of objective functions in these two 
algorithms follow an increasing process as well (Fig. 10). 
At the end, it is important to note that although the 
proposed RSA algorithm searches a wider range, it also 
needs more computational time, but due to the features of 
meta-heuristic algorithms, which from the perspective of 
time, are superior to perspectives of exact optimization, 
the algorithm can be considered a useful solving process 
to reach higher quality answers. 
 

 
Table 6 
Computational results of solving methodologies 

Problem 
No.  

Problem 
size product method period 

CPU Time (Second) Objective function value The gap 
between 

SA & 
RSA Lingo  SA RSA Lingo SA RSA 

1 

Small 

2 2 3 ≈0 1.44 2.47 2057072 2057072 2057072 0 
2 3 2 5 ≈0 2.36 4.45 4970620 6861514 5767352 1094162 
3 3 3 5 1 2.40 5.51 5282963 8972893 7691883 1281010 
4 5 2 6 3 8.21 12.50 10286650 15394429 14245656 1148773 
5 5 3 6 15 23.46 34.58 9715882 19968815 16027097 3941718 
6 

Medium 

5 2 12 - 31.13 47.26 - 36360170 30205808 6154362 
7 5 3 12 - 32.51 61.08 - 56904449 46622287 10282162 
8 10 2 12 - 40.11 86.20 - 74365993 62183899 12182094 
9 10 3 5 - 43.08 54.36 - 39182321 33809806 5372515 

10 10 3 12 - 37.45 88.54 - 139326141 115386577 23939564 
11 12 2 12 - 48.23 95.13 - 90525497 72633105 17892392 
12 

Large 

15 3 12 - 58.16 108.52 - 222272814 167454335 54818479 
13 20 3 12 - 62.29 121.08 - 285356409 217178037 68178372 
14 22 3 12 - 76.34 136.48 - 316380464 238597664 77782800 
15 25 3 12 - 80.48 152.31 - 368069030 283219015 84850015 
16 30 2 12 - 78.05 174.56 - 246503341 177706572 68796769 
17 30 3 12 - 85.27 186.37 - 438705298 329881502 108823796 

[65,85]; [200000, 260000]; [100, 250]; [50,80]Uniform Uniform Uniform y Uniformijt ijt itit        

[60,180]; [1000,3000]; [200,1000]; [1,5]; [0.1,1]y Uniform d Uniform L Uniform f Uniform V Uniformit it it ij i
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Fig.6.The SA and RSA algorithms Process on various test problems 

 
 

Table 7 
Analysis of variance for test problems with small size 

Source DF           SS            MS      F       P 
Small Size        1 5.57361E+12   5.57361E+12   0.13   0.726 

Error     8 3.37492E+14   4.21864E+13   

Total     9 3.43065E+14    

 

 
Fig.7. The output of analysis of variance for test problems with small size 

 
Table 8 
Analysis of variance for test problems with medium size 

Source   DF           SS            MS      F       P 
Medium Size       1 4.79095E+14   4.79095E+14   0.39   0.549 
Error     10 1.24376E+16 1.24376E+15   
Total     11 1.29166E+16    

 

 
Fig.8.The output of analysis of variance for test problems with medium size 

 
Table 9 
Analysis of variance for test problems with large size 

Source   DF           SS            MS      F       P 
Large Size       1 1.78834E+16   1.78834E+16 3.45   0.093 

Error     10 5.17635E+16   5.17635E+15   

Total     11 6.96469E+16    
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Fig.9.The output of analysis of variance for test problems with large size 

 
Fig. 10. The differentiation of both RSA & SA in term of OFVs 

 
6. Conclusion and Future Researches 

Due to the great importance of production planning 
problems in today’s world, this research attempted to 
propose a new integer programming model in the 
MLCLSP. A characteristic of the presented model is that, 
it pays attention to different operational and industrial 
constraints in the production level. One of the general 
aspects of multi-item lot-sizing problems in the literature 
is matters related to inventory, shortage, and safety stock 
costs. Due to the proposed model being multi-product, 
different production manners can exist for various 
products. Therefore, a new mathematical model in the 
multi-item lot-sizing problem framework was presented 
considering setup time, safety stock, shortage, different 
production manners, and different industrial constraints. 
The main goal is to optimize production, inventory, and 
shortage quantities as well as to determine the best 
production manner in which summations of production, 
setup, inventory, and shortage costs are minimized. To 
solve the model, an RSA algorithm was developed in the 
literature of lot-sizing problems. It is implemented on 
experimental problems of different dimensions, and then 
is compared with the classical SA as well as exact 
approach. Computational results show the suitable 
performance of the proposed RSA algorithm to reach 
higher quality answers. For future research in the field of 
formulation, the problem itself can be transformed into a 
multi-objective model by adding other goals of service 
level, so that it gets closer to real world situations.  
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