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Abstract 

In this research, an integrated inventory problem is formulated for a single-vendor multiple-retailer supply chain that works according to 
the vendor managed inventory policy. The model is derived based on the economic order quantity in which shortages with penalty costs at 
the retailers` level is permitted. As predicting customer demand is the most important problem in inventory systems and there are 
difficulties to estimate it, a probabilistic demand is considered to model the problem. In addition, all retailers are assumed to share a unique 
number of replenishments where their demands during lead-time follow a uniform distribution. Moreover, there is a vendor-related budget 
constraint dedicated to each retailer. The aim is to determine the near optimal or optimal order quantity of the retailers, the order points, and 
the number of replenishments so that the total inventory cost of the system is minimized. The proposed model is an integer nonlinear 
programming problem (NILP); hence, a meta-heuristic namely genetic algorithm (GA) is employed to solve it. As there is no benchmark 
available in the literature to validate the results obtained, another meta-heuristic called firefly algorithm (FA) is used for validation and 
verification. To achieve better solutions, the parameters of both meta-heuristics are calibrated using the Taguchi method. Several numerical 
examples are solved at the end to demonstrate the applicability of the proposed methodology and to compare the performance of the 
solution approaches. 
Keywords: Supply chain management, Vendor managed inventory, Probabilistic demand, Genetic algorithm, Firefly-algorithm, Taguchi 
method.

1. Introduction 

All parts of a supply chain are coordinated with 
economic, information, production, and service flows. 
The aim of maximizing profit for each part of a supply 
chain needs effective management of such service flows 
via information sharing and coordinated decision making 
(Ramanathan 2013). Then, achievement to the better 
performance of a supply chain by aligning all data and 
motivations to backing global system targets would be 
possible (Sahin & Robinson 2002). Furthermore, retailers 
understand increasingly, that their supply chain plural 
performance determines their competitiveness (Brown et 
al. 2005). Supply chain integration and collaboration 
happens when someone uses some industrial practices 
such as the vendor managed inventory (VMI) policy. VMI 
is a well-known practice for supply chain collaboration, in 
which the vendor manages inventory at the retailer and 
decides when and how much to replenish. Under a VMI 
policy, the vendor determines the interval time and 
quantity of replenishment by accessing the retailer’s 
inventory and demand data (Darwish & Odah 2010). A 
VMI system that is designed well can reduce inventory 
levels and raise supply chain integration, through 

 
 
 
 
reducing system costs (Achabal et al. 2000; Angulo et al. 
2004; Cetinkaya & Lee 2000).  
Under the VMI conditions, the retailer is required to share 
its customer demands information and inventory levels 
with the vendor who is responsible for specifying the 
proper inventory and replenishment policies for retailer`s 
distribution center or all supply chain echelons. As firms, 
suppliers, and vendors found out that adjacent 
collaboration and integration is beneficial, there has been 
an increasing interest in research on VMI to sustain its 
eminence performance in recent years. In 1980`s, when 
the Walmart and Procter and Gamble started their 
partnership under the VMI contractual agreements, many 
retailers such as K-mart, Home Depot, and JC Penny 
employed the VMI policy (Yao et al. 2007). 
In a traditional inventory supply chain, each member 
attempts to minimize its cost function. However, when 
they employ the VMI policy, they aim to show that 
partnership is a way to reach coordination that helps 
members to align their decisions and reach to the 
minimum total cost of the supply chain (Cachon & Fisher 
2000). Another flow of research focuses on operational 
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profits as unifying shipments (Cheung & Lee 2002) and 
adjusting recent delivery rate (Chaouch 2001). The 
concentration of the research performed in this paper is 
the second aspect, however under probabilistic demands. 
In this paper, a single-vendor multiple-retailer supply 
chain problem is investigated in which the VMI policy is 
employed. The problem is modeled based on the 
economic order quantity (EOQ). As predicting customer 
demand is the most important decision in inventory 
systems, a probabilistic demand is considered. Besides, 
the replenishment cycle is assumed the same for all 
retailers. Moreover, there is a budget constraint for the 
vendor to spend it for retailers. We show that the 
proposed model is an integer nonlinear programming 
problem; hence, a genetic algorithm (GA) is employed to 
solve it. While there is no benchmark available in the 
literature, another meta-heuristic called firefly algorithm 
(FA) is used for validation and verification. In addition, 
the parameters of both algorithms are tuned using the 
Taguchi method. 
The remainder of the paper is organized as follows. In 
Section 2, a review of the literature is provided. In Section 
3, the notations and assumptions are stated. In Section 4, 
the VMI problem with stochastic demands and a unique 
replenishment cycle is formulated. In Section 5, the 
solution methodologies are expressed. In Section 6, the 
Taguchi method is applied to calibrate the parameters of 
the meta-heuristics. In Section 7, the performance of the 
solution methods are compared. Finally, conclusion and 
future research recommendations are provided in Section 
8. 

2. Literature Review 

In the supply chain literature, VMI is a mechanism that 
integrates the practical components of a supply chain in 
the field of inventory management, transportation 
planning, and pricing policies. Cetinkaya & Lee (2000) 
and Zavanella & Zanoni (2009) examined the benefits of 
employing VMI in coordinating the shipments from 
vendor to its retailers in a two-echelon supply chain. Fry 
et al. (2001) showed how the VMI policy could be 
beneficial in coordination between production and 
delivery of a supply chain. The advantages of using VMI 
in reducing a supply chain cost was investigated by Yao 
et al. (2007). Zhang et al. (2007) presented a single-
vendor multi-retailer supply chain model under the VMI 
contract, in which the demand rate was assumed constant 
and the buyer`s ordering cycles were different. Liao et al. 
(2011) developed a multi-objective model for a location–
inventory problem (MOLIP) under the VMI policy in a 
single-vendor multi-retailer supply chain and investigated 
the possibility of using a multi-objective evolutionary 
algorithm based on the non-dominated sorting genetic 
algorithm (NSGA-II) to solve it. Coelho et al. (2012) 
examined the benefits of VMI in consistency 
requirements of a vehicle routing problem. They analyzed 

the effect of different inventory policies, routing 
decisions, and delivery sizes. Disney & Towill (2002) 
studied a supply chain under VMI, where vendor satisfies 
the retailer`s orders and controls retailer`s inventory by 
defining the order quantity and order time of the retailer. 
Yao & Dresner (2008) examined the benefits realized for 
manufacturers and retailers under VMI and compared the 
distribution of profit between manufacturers and retailers. 
They showed that the distribution of benefits would 
depend on the replenishment frequency and the inventory 
holding cost parameters. 
Yao et al. (2007) proposed an analytical model for a 
single vendor-single retailer supply chain based on EOQ 
and showed VMI would reduce the total cost. Dong & Xu 
(2002) modeled a retailer`s inventory system with 
deterministic demands using EOQ. Darwish & Odah 
(2010) presented a one vendor-multiple retailer supply 
chain model under VMI. In this model, a penalty cost on 
exceeded inventory the vendor sends to the retailer was 
assumed, where the retailers determined the upper bound. 
They solved the problem using heuristic algorithm to 
reduce computational efforts. Pasandideh at el. (2011) 
extended the Yao et al.'s (2007) model for several 
products, while the number of orders and the warehouse 
space were constrained. They solved the problem using a 
GA. Rad et al. (2014) presented a supply chain model 
with one vendor and two retailers. They first compared 
the vendor`s ordering cost under RMI and VMI policies. 
Then, they showed that using VMI can reduce the total 
cost of the supply chain.  Sadeghi et al. (2013) 
investigated a multi-vendor multi-retailer single-
warehouse supply chain operating based on the VMI 
policy. In addition, to suite real-world inventory 
problems, Sadeghi et al. (2014) hybridized an inventory 
problem with a redundancy-allocation optimization 
problem. Diabat (2014) presented a two-echelon single-
vendor multiple-buyer supply chain under VMI. They 
tried to find the optimal sales quantity by maximizing 
profit. He developed a hybrid genetic-simulated annealing 
algorithm to solve the problem. Verma et al. (2014) 
proposed an alternative replenishment scheme in the 
supply chain in which a single vendor supplies a group of 
retailers under VMI. This scheme allows for different 
replenishment cycles for each retailer.   
In stochastic inventory environments, Taha (2006) 
presented an inventory model with shortage in a 
traditional inventory system. Under the VMI policy, Fry 
et al. (2001) presented a (z, Z) contract where the retailer 
would determine the minimum and the maximum 
inventory levels z and Z, respectively, and the suppliers 
would pay penalties if these limits are violated. They 
maximized the service level using a Markov decision 
method. Song & Dinwoodie (2008), Bichescu & Fry 
(2009), and Zhao & Cheng (2009) proposed different 
order quantity policies with uncertain demand and lead-
time. They examined two different states: VMI as a 
function of inventory levels or a function of channel 
potent (potent retailer, potent supplier, and equally potent 

Tahereh Poorbagheri et al./ Vendor Managed Inventory of...

48



retailer and supplier). They concluded with an aspect 
seldom behaved in modeling papers: the value of VMI in 
strategic and operational terms is less. Bichescu & Fry 
(2009) examined decentralized supply chains that follow 
the (Q, R) inventory policies under VMI agreements. 
Within the VMI scenario, they examined the effect of 
divisions of channel power on supply chain and individual 
operator performance by examining different game 
theoretic models. Song & Dinwoodi (2008) modeled a 
supply chain problem with uncertain replenishment lead 
times and uncertain demands. They used dynamic 
stochastic programming and heuristic method in their 
study. Zhao & Cheng (2009) studied a two-level VMI 
system containing a distributer center and a retailer, both 
of which follow the order-up-to-level replenishment 
policy to maximize their overall system profit. They 
showed the benefits of VMI implementation at both 
strategic and operational levels. 
This research presents a vendor managed inventory model 
in a one-vendor multiple-retailer supply chain, in which 
the demand is considered stochastic. More specifically, 
the probability distribution function of the demand during 
the lead time is assumed a uniform distribution and that 
the unfilled demand during the lead time is a backlogged 
shortage. The model is derived based on the economic 
order quantity. The idea in this research is an extension to 
the work of Darwish & Odah (2010) to suite real-world 
inventory problem by taking advantage of the work in 
Taha (2006). 

3. The Assumptions and Notations 

The assumptions involved to model the problem are: 
1. A common replenishment cycle is assumed for all 

retailers. This common period eliminates the 
influence of the variation of the replenishment cycle. 

2. The price of the goods are fixed (no discount is 
assumed). 

3. All goods received by the retailers are sold to the 
customers. Hence, the annual demand of the retailers 
is equal to the one of the vendor. 

4. The vendor is responsible for the ordering cost of the 
retailers and determines their economic order 
quantities. 

5. Similar to Pasandideh et al. (2011) and Ben-Daya & 
Hariga (2004), the vendor’s order point is considered 
zero. 

6. The demands are assumed stochastic and follow a 
uniform distribution. 

7. Backlogging shortages are assumed to meet retailers' 
demands. 

8. The on-hand budget of the vendor dedicated to 
supply retailers' replenishments is limited.  

The indices, parameters, and the decision variables are: 
 i : Index for retailers ( 1, 2,...,i n )  
n : Number of retailers 

ix : ith retailer`s demand during lead time; (xi 

௜ܽ)ݑ~ , ܾ௜)) 
( ) :if x  The probability density function of the demand 

during lead time (a uniform distribution with 
parameters ia  and ib during the lead time) 

ip : ith retailer`s shortage cost per unit inventory 
D : Vendor`s expected demand rate  

id : ith retailer`s expected demand rate 

ik : Ordering cost of retailer i 
K : Ordering cost for the vendor 
Y :  Vendor’s total order quantity 

iy : ith retailer`s order quantity (a decision variable) 
 Total order quantity dispatched from the vendor :ݕ

to all retailers in a replenishment cycle time 
ݕ) = ∑ ௜௡ݕ

௜ୀଵ )  
m : Number of replenishments of a retailer by the 
 vendor (a decision variable) 

VI : Vendor's average inventory per unit time 

iR : Order point of retailer i (a decision variable) 
:c  Retailers' constant purchasing cost of each item 

H : The unit holding cost of the vendor per unit time 

ih : The unit holding cost of ith retailer per unit time 

:C  Vendor`s maximum on-hand budget  
TBC : The expected total purchasing cost of the vendor 

RTHC : The expected total holding cost of retailers 

RTSC : The expected total shortage cost of retailers 

RTIC : The expected total inventory cost of the retailers 

VTIC : The expected total inventory cost of the vendor 

VTOC : The expected total ordering cost of the vendor 

VMITIC : The expected total inventory cost under VMI 
 As stated above, a vendor is assumed to supply 
several retailers in order to meet their customer`s demand. 
As all goods received by the retailers are sold to end 
customers, the annual demand of retailers is equal to the 

one of the vendor, i.e. 
1

.
n

i
i

D d


 Moreover, the vendor 

defines a unique number of replenishments for the 
retailers. This is a logical assumption when there is VMI 
agreements between the vendor and retailers and the 
vendor makes decision about retailers replenishment cycle 

time. In other words, 1

1

qqi
d di

 . In addition, as the 

demand is stochastic, the vendor's prediction of product 
quantity replenished to retailers may not be enough, hence 
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shortage may occur at retailers' level. In this case, in 
addition to other inventory costs, a penalty cost is used in 
the integrated inventory system.  

4. The Mathematical Model 

According to the VMI policy, the mathematical model 
consists of two parts, one for the retailers and the other for 
the vendor. Based on the common replenishment cycle we 
have: 

1

1

i

i

y y
d d
                      (1)  

Assuming an equal annual demand for the vendor and all 
the retailers, the vendor`s order quantity is equal to the 
number of retailers' replenishments multiplied by their 
order quantities as 

1

n

i
i

Y m y


                         (2) 

In other words, 

1

1 1

n
i

i

y dY m
d

                       (3) 

The overall cost of the VMI system consists of the vendor 
and the retailers' inventory costs as 

VMI R VTIC TIC TIC                                                 (4) 

In what follows, RTIC and  VTIC  are derived.  

4.1. Retailers' inventory cost  

In an integrated inventory system, the retailers' total 
inventory cost includes holding and shortage costs. The 
total holding costs of the retailers is as follows: 

 
1 2

n
i

R i i i
i

yTHC h R E x


     
     (5) 

where, based on the uniform distribution the expected 
number of items a retailer holds in its storage is 

 
2

i i
i

a bE x 
       (6) 

This cost is merged into the vendor's holding cost and it 
will be a part of vendor`s cost. Moreover, the total 
shortage cost of the retailers is: 

1

( ) ( )
i

i

bn
i i

R i i i i
i i R

p dTSC x R f x dx
y

 
   

 
      (7) 

Hence, the total annual inventory cost of the retailers is 
obtained using the following equation: 

 R
1

1

2

( ) ( )
i

i

n
i

i i i
i

bn
i i

i i i i
i Ri

y
TIC h R E x

p d
x R f x dx

y





   



  
    

  
      



    

(8) 

 

4.2. Vendor’s inventory cost 

As the vendor`s ordering cost includes the retailers 
ordering cost and that the annual number of 

replenishments is ,
D
Y

 the vendor's ordering cost is 

obtained by 

 
1

n

V i
i

DTOC K m k
Y

          
      (9) 

Sadeghi et al. (2013) showed that the average annual 
inventory of the vendor in the case of discrete orders is: 

 1
2V

m
I y

 
  
   

   (10)  

in which, 
1

n
ii

y y


 . Therefore, the annual holding 

cost of the vendor is: 

 1
2V

m
HI H y

 
  

 
                  (11) 

Moreover, the vendor pays the total annual purchasing 
cost of the products. Thus, 
TBC cY      (12) 
Consequently, the mathematical formulation of the 
problem at hand becomes: 

 

 
1

1
2

n

VMI i
i

Min TIC cY K m k

mD
H y

Y



  


 

 
 
 

  
      


 

 
1

1

2

( ) ( )

n
i

i i i
i

n
i i

i i i i
i Ri

y
h R E x

p d
x R f x dx

y







  



  
    

  
  

  



 
  (13) 

Subject to 
cY C                                                                         (14) 

Inserting 
1

n
ii

y y


  
and  1

1
1

n i
i

d yY m
d

   in (13), 

we have: 
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 

 

1
1

1

1

1 1

1
11

1
2

n i
VMI i

n

i
i

n

i
i

y d
Min TIC cm

d

d
K m k

my

m
H y d

d







 

 




 
 
 

 
 
 

  
  

  







 

1

1 1

{ }
2

n
i

i i i
i

y dh R E x
d

  
   

  
                  (15) 

1

1 1

( ) ( )
i

i

bn
i

i i i i
i R

p d x R f x dx
y

  
       
   

Subject to 

1

1 1

n
i

i

d ycm C
d

 
 

 
                     (16) 

 ; 1,2,...,i iR y i n      (17) 

 1, , 0and ; 1, 2,...,iR y m Integer i n    (18) 

Taha (2006) originally developed this model for a 
traditional stochastic inventory problem. However, the 
nonlinear integer-programming (NLIP) model presented 
above is derived for a single-vendor multi-retailer 
inventory system under the policy in which there is a 
capital on-hand constraint for the vendor. As a NLIP 
model is hard (if not impossible) to solve using an 
analytical approach, a GA is utilized in the next section 
for a near optimum solution.  

5. A Solution Algorithm 

Exact methods due to their time consuming computational 
processes are unable to solve INLP problems of large 
sizes. This makes one to have no choice, except using an 
evolutionary algorithm (EA). Nachiappan & Jawahar 
(2007) employed a GA to find a near-optimum solution of 
a single-vendor multiple buyers supply chain problem 
under the VMI policy. Sue-Ann et al. (2012) compared 
the performance of a particle swarm optimization (PSO) 
algorithm to the one of a hybrid GA and artificial immune 
system (GA–AIS). Pasandideh et al. (2011) examined a 
GA to solve an INLP problem in a two-echelon single-
supplier single-vendor multi-product VMI inventory 
system. Sadeghi et al. (2013) proposed a hybrid PSO as 
well as a GA to solve a multi-retailer multi-vendor single 
warehouse VMI inventory problem.   
Due to the familiarity of GA and its good performance to 
solve INLPs, it is used in this paper to find an 
approximate solution of the problem at hand. Beside, in 
order to validate the results obtained, a firefly algorithm, 

the one that has never been utilized to find a near-
optimum solution of an INLP under VMI, is employed. 
To have a better approximate solution, the parameters of 
both algorithms are fine-tuned using the Taguchi method.  

5.1. Genetic algorithm 

Holland (1962) was the first who introduced GA. Since 
then, interest in solution approaches based on the 
principles of evolution and heredity has been grown. GA 
is a type of evolutionary computation that mimics the 
principles of natural genetics. It is a random evolutionary 
search algorithm. In what follows the steps involved in 
GA are described. 

5.1.1. Initial conditions 

In this step, the GA parameters, i.e. the population size 
Npop, the crossover probability Pc, the mutation probability 
Pm, the stopping criterion, the selection policy, the 
crossover operation, the mutation operation, and the 
number of iteration are set. Some of these parameters are 
tuned using the Taguchi method in Section 5. 

5.1.2. Chromosomes 

In GA, a chromosome is a series of genes that are possible 
appropriate or inappropriate solution. Chromosome 
demonstration is an initial part of the GA method. In this 
paper, a chromosome is a vector of (n+2) positive integer 
elements (genes). The first gene represents the order 
quantity of the first retailer, y1, the second gene expresses 
the rate of replenishment, m, and the other genes indicate 
the order points of all retailers. For a problem with five 
retailers, the chromosome structure is shown in Fig. 1. 

1 1 2 3 4 5

22 43 12 11 7 8 12

y m R R R R R 
        
  

 

Fig. 1: A typical chromosome 

5.1.3. Initial population and evaluation 

In a GA, once a chromosome is generated a fitness value 
is assigned to it. In optimization problems, the fitness 
value is the value of the objective function.  
Chromosomes are usually generated randomly to 
construct the initial population consisting of Npop 
chromosomes. However, some of them may be infeasible, 
i.e. may not satisfy the constraints. In order to generate 
feasible chromosomes, the death penalty approach is 
taken in this paper. In this method, a big value is added to 
the objective function value of any infeasible 
chromosome. In this case, the constrained optimization 
problem becomes a non-constraint problem. 

5.1.4. Crossover 

In a crossover operation, a pair of chromosomes mate to 
form offspring. The pair is selected randomly from the 
generation with probability Pc. While there are many 
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different types of crossover operators, a two-point 
crossover operator is used in this paper. An example of 
this operation is shown in Fig. 2 for a 4-retailers problem. 
Two steps are shown in this figure; (1) selecting two 
random points for the cut, and (2) displacing the string 
between the cut-off points of the two parents; leading to 
the creation of two offspring. 

[3 22 44 55 12 13] [3 22 23 67 12 13]

[23 1 23 67 14 13] [23 1 44 55 14 13]

Parents Offspring

 


 

  

Fig. 2. An example of the crossover operation 

 

5.1.5. Mutation 

Mutation is the second operation in a GA to prospect new 
solutions. It operates on each of the chromosomes resulted 
from the crossover operation. In mutation, a gene is 
replaced with another gene randomly with probability Pm.  
Fig. 3 shows a representation of the mutation operator for 
a 4-retailer problem. 

[3 22 44 55 12 13] [3 22 78 55 12 13]

[23 1 23 67 14 13] [23 1 23 67 37 13]

Parents Offspring



Fig. 3. An example of the mutation operation 

5.1.6. Chromosome selection 

In this step of the GA methodology, chromosomes are 
selected for the next generation. The selection performs 
with respect to the fitness value of the chromosomes. The 
roulette wheel selection method is used in this paper to 
select Npop chromosomes with the best fitness values 
among the parents and offspring. 

5.1.7. Stopping criterion 

In the last step of GA, we examine whether the method 
has found a solution which meets the user’s expectations. 
To do this, a set of conditions are defined such that if they 
are satisfied then a good solution is obtained. In this 
paper, we stop when we observe convergence in 100 
iterations. Note that the parameters of GA are tuned using 
Taguchi method. 
As there is no benchmark available in the literature to see 
how GA performs in solving an INLP of the VMI at hand 
and to validate the results obtained, a firefly algorithm 
(FA) is used in the next section. In order to have a fair 
comparison, the parameters of FA is calibrated using the 
Taguchi method as well. As pointed out previously, this 
algorithm has never been applied to solve a INLP problem 
under VMI. 

5.2. Firefly algorithm  

The firefly algorithm (FA), one of the most widely used 
EA inspired by the social behavior of fireflies, was first 
proposed by Yang (2008, 2009). It simulates the attraction 

behavior of the fireflies. Moreover, Yang (2010) proposed 
a FA to solve non-linear problems with some singularity 
and stochastic components. He used a stochastic test 
function along with the global optimum solution to 
validate FA. Farhoodnea et al. (2014) proposed a discrete 
FA in a multi-objective optimization problem and 
compared its performance to the ones of other algorithms 
including a continuous FA. They showed that the discrete 
FA was the most efficient algorithm. However, to the best 
knowledge of the authors no FA is used in the literature to 
solve a stochastic integer problem such as the one in this 
research.  
The firefly with more brightness attracts the others, 
therefore there is an efficient explore in the search space. 
In FA, the attractiveness caused by the brightness pattern 
of the firefly species is simulated by a mathematical 
formula.  Similar to the chromosomes in GA, the fireflies 
in FA are considered solution candidates. Moreover, the 
brightness function in FA acts similarly to the fitness 
function in GA. Three rules are used in the 
implementation of a FA (Yang 2008, 2009, 2010); 

1) All fireflies are unisexual (all fireflies attracts each 
other regardless of their gender.) 

2) The attractiveness of the fireflies is proportional to 
their brightness, where the brighter one attracts the 
less-brighter one. If the distance between them 
increases, the brightness and attractiveness will 
decrease. A particular firefly who does not find the 
more brightness one will move randomly over the 
entire search space. 

3) The brightness of a firefly is determined by the 
objective function of the problem.  

Similar to GA, the initial responses or fireflies in FA are 
first generated randomly. Each firefly has a location and a 
light attractiveness, equal to the response and the cost 
function of a given problem, respectively. Thus, in the 
second step, the light intensity of each firefly as a 
response candidate is determined using the cost function 
(Eq. 15). In the third step, the new position of the fireflies 
is obtained with respect to each other using Eq. (19) 
explained in the next subsection. In order to find the 
fireflies with the best light intensity in the initial 
population, they are ranked in the fourth step. These steps 
are repeated until a stopping criterion is met. The stopping 
criteria of this paper are a pre-determined number of 
iterations along with the convergence of the response in 
100 iterations. 

5.2.1. Updating firefly location      

Denoting the current location of the ith firefly by ix , the 

new position  x   is defined based on pair wise 
comparisons of the flies using the following equation: 

 0

mr
i i j i ix x e x x         (19) 
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In Eq. (19), 0  is the light attractiveness,   is the light 

absorption coefficient, r  (or ijr ) is the distance between 
the two specified fireflies i and j, and m defines the type 
of the light source taking a value between zero and two. 
Moreover, i is a random vector for deviation of the 
movement of the firefly i to firefly j, which is controlled 
by . One can assume   as the mutation coefficient of 
the movement, where it is a factor of randomness supplied 
by the user. While in this paper 0r  , 1  , and 

2m   are chosen, the mutation coefficient   , the 

light attractiveness coefficient   , the initial population 

of fireflies, the number of iterations  It , all are tuned 
using the Taguchi method in the next section. 

6. Parameter Tuning 

As the parameters of a meta-heuristic algorithm play an 
important role on the quality of the solution obtained, they 
must be tuned using a calibration method such as response 
surface methodology (RSM) or Taguchi (Taguchi et al. 
2005). The parameters to be calibrated act as controllable 
factors in the design of experiments (DOE) (Montgomery 
2005). As the required number of experiments in the 
Taguchi method is less than the one in RSM, the first is 
utilized in this paper. Many studies employed the Taguchi 
approach to tune the parameters of meta-heuristic 
algorithms. A few recent and relevant are: Naderi et al. 
(2009), Rahmati et al. (2013), and Fazel Zarandi et al. 
(2013).  

6.1. The Taguchi method 

Taguchi (1993) improved a family of fractional factorial 
matrices in experiments to reduce the number of 
experiments required to determine the optimal levels of 
the factors that significantly affect a response. Taguchi 
uses orthogonal arrays to study a large number of decision 
variables by use of a small number of experiments. 
Taguchi categorized the factors into two main classes: 1) 
controllable factors, and 2) noise factors. While omitting 
the noise factors are impossible, Taguchi attempts to 
minimize the effects of the noise factors and to determine 
the optimal level of the significant controllable factors. 
Taguchi changes the repetitive data to the values which 
are the variation`s measure of the results. Taguchi et al. 
(2005) aims to maximize the ratio of the signal or 
controllable factors to noise (S/N). This ratio computes 
the variation of the response. According to the type of the 
problems, there are three standards values of this ratio, 
(S/N), including; 
(1) Nominal is the best; the aim is to reduce the amount 

of variability around the specific objective value. In 
this case the S/N is defined as 

2

1

110log ( )
n

T i
i

SN y y
n 

 
   

 
   (20) 

(2) Smaller is the better; it is using for experiments 
whose objective function is the minimization type. 
In this case the S/N is defined as 

2

1

110 log
n

S i
i

SN y
n 

 
   

 
    (21) 

(3) Larger is the better; it is using for experiments 
whose objective function is the maximization type. 
The S/N is defined here as 

2
1

1 110 log
n

L
i i

SN
n y

 
   

 
    (22) 

In Eqs. (20)-(22), n denotes the number of iterations, iy  
represents the obtained response in ith iteration, and y  is 
the average response in all iterations. Note that as the 
objective function of the problem at hand is of a 
minimization type, the smaller is the better-type in Eq. 
(21) is used in this research. 

6.2. Taguchi method implementation 

The Taguchi implementation is taken place in 5 steps. 
First, the parameters that affect the response significantly 
are defined. Second, we the levels of the parameters are 
determined via a trial and error process. Third, in this step 
the smallest orthogonal array is chosen to minimize the 
experimentation time. Fourth, the obtained design is used 
to find a solution. Finally, the results are analyzed based 
on the (S/N) strategy.  
The GA parameters that affect the solution significantly 
are the population size (Npop), the maximum number of 
iterations (It), the mutation probability (Pm), and the 
crossover probability (Pc). In Table 1, the three levels of 
these parameters that are obtained using a trial and error 
procedure are shown. Similarly, the significant parameters 
and their levels in FA are shown in Table 2. The 
parameters are the attractiveness coefficient β0, the 
mutation coefficient , the number of the fireflies (Npop), 
and the maximum number of iterations (It). 
Table 1 
GA parameters and their levels 

Variable Level 
 It 1000 1250 1500 

Npop 30 40 50 
Pc 0.6 0.7 0.8 
Pm 0.1 0.15 0.2 

 
Table 2 
FA parameters and their levels 

Variable Level 
It 1000 1250 1500 

Npop 30 40 50 
α 0.1 0.15 0.2 

0β 1 1.5 2 
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With reference to the Taguchi standard arrays table, the 

9L  orthogonal arrays, as the most suitable design, is used 
to tune the FA and GA parameters. Table 3 contains the 
input data for a 5-retailers problem as an example. For 
this example, the experimental results of five replications 
along with their (S/N) ratio are shown in Tables 4 and 5 
for GA and FA, respectively. In these tables, the values 1, 
2, and 3 correspond to the three levels of each parameter. 

Table 3 
Input data 

K ki di hi H Ei Pi N 
467 386 827 7 4 41 8 5  

 377 864 9  41 10   
 115 983 9  50 9   
 322 825 8  41 6   
 181 995 9  40 7   

Figures 4 and 5 depict the average (S/N) ratios obtained in 
Tables 4 and 5, respectively. As lesser values of (S/N) 
ratio is desired, then based on Fig. 4 the optimal values of 
GA parameters are obtained as: It=1500; Npop=30; 
Pc=0.8, Pm=0.2. Similarly, according to Fig. 5, the 
optimal values of the FA parameters are determined as: 
It=1500; Npop=30; α=0.2, β=2. 
 
Consequently, the GA solution based on its tuned 
parameters is shown in Table 6. 
 
 
 
 
 
 
 

Table 4 
The result of the experiments using GA 

It Npop Pc Pm y1 y2 y3 y4 y5 Mean S/N 
1 1 1 1 2665811 263575 2687814 2719583 3070514 2755894 -888198 
1 2 2 2 2617221 2620681 2635078 262421 2724388 2644316 -884473 
1 3 3 3 2611465 261983 2623587 3019879 2619876 2698927 -886392 
2 1 2 3 2618148 2720891 28613 3010232 2733002 2788715 -889182 
2 2 3 1 2678594 2652474 3015537 2720477 264793 2743002 -887756 
2 3 1 2 2718853 2621761 2615101 2613584 2869312 2687722 -885936 
3 1 3 2 2865286 273949 2862794 2651224 288676 2801111 -889512 
3 2 1 3 2620594 3151842 2618402 2617201 2633491 2728306 -88744 
3 3 2 1 2722148 2614263 2885894 2624702 2737274 2716856 -88687 

Table 5 
The result of the experiments using FA 

It Npop α β0 y1 y2 y3 y4 y5 Mean S/N 
1 1 1 1 35060496 3519668 39016553 34037816 35036054 36390378 -91228571 
1 2 2 2 33217334 35700333 34569874 37642106 35296791  3456443 -90775436 
1 3 3 3 32479609 3239399 33261783 33961788 32246373 32868709 -90337352 
2 1 2 3 34537297 34442518 34067877 35004651 34029403 34416349 -9073576 
2 2 3 1 34548896 34148599 36386571 34752204 3365086 34697426 -90809028 
2 3 1 2 34652564 35339062 33711428 35983244 35134409  34964141 -90874499 
3 1 3 2 3430755 36752477 35831313 35080564 35633705 35521122 -91011999 
3 2 1 3 34991837  34853412  32583577 34800727 34925054  34430922 -90742113 
3 3 2 1 37054262 35232055 35084181 35297718 34707404 35475124 -91000774 

 

 
Fig. 4. The average S/N ratio for GA vs. different values of its parameters 
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Fig. 5. The average S/N ratio for FA vs. different values of its parameters 

Table 6 
Solutions using Tune-parameter GA    

Y1                  R1        R2        R3         R4           R5  m   
  186   37        41        36         42         38    1  
116 47        52        58         43         60 4  
112                          43         45        34        44         45         6  
155             42          48       34         47         41           2  
178 38           43       33        44         35        1  

7. Performance Evaluation and Comparison  

 In order to validate the results obtained using GA and to 
evaluate and compare its performance with the one of the 
FA, 9 different problems sizes of the example given in 
Taha (2006) are solved using the parameter-tuned GA and 
FA, each 10 times. Five different measures, namely the 
average solution, the required CPU-time, the best solution 
obtained, the relative percentage deviation (RPD), and the 
relative deviation index (RDI) are used for the comparison 
study. The RPD is defined as: 

100sol sol

sol

Alg BestRPD
Best


    (23) 

in which solAlg is the objective function obtained by 

either GA or FA and solBest  is the best value of the 
objective function among the solutions obtained for a 
specific problem. Off course less value of RPD is desired. 
Moreover, RDI is defined as: 

100sol sol

sol sol

Alg MinRDI
Max Min





   (24) 

In which, solMin  and solMax  respectively represent the 
minimum and the maximum values of the objective 
function for a specific problem. An algorithm with RDI 
closer to zero is the better one (Naderi et al. 2009).  
Table 7 contains the values of the six measures for GA 
and FA, when they are employed to solve 9 problems of 
different sizes.  
The results in Table 7 show that GA is the better 
algorithm in terms of the required CPU time, the best 
solution obtained, and the average cost. Figures 6-10 
show this conclusion graphically.  

Table 7 
GA and FA comparison 

 

 GA FA 

Problems CPU Time 
STDEV 
(standard 
deviation) 

Best F Ave F RPD   RDI   
CPU 
Time 

STDEV 
(standard 
deviation) 

Best F Ave F RPD  RDI  

5 10 916 16388 17019 4 32 12 610 18921 20232 7 58 
10 15 2092 26237 27803 6 23 13 584 34001 34749 2 41 
15 17 6744 40351 44547 10 23 18 1693 49270 52372 6 48 
20 25 6556 40390 45228 12 23 25 4809 60394 64515 7 29 
25 27 6359 45081 49859 11 25 29 6299 82196 88781 8 28 
30 28 16687 83788 96790 16 26 31 24810 96876 119930 24 32 
35 30 27735 108313 140326 30 45 32 21762 124358 148199 19 35 
40 33 11264 115789 129013 11 41 34 34367 127592 160810 26 31 
45 35 41627 177141 221391 25 34 36 70427 188408 255725 36 37 
             
Average: 24 13331 72609 85775 14 30 26 18374 86891 105035 15 38 
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Fig. 6. CPU time comparison of the two algorithms 

 
Fig. 7. Comparison of the best solutions obtained by the two algorithms 

 

 
Fig. 8. Comparison of the average cost obtained by the two algorithms 
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Fig. 9. Comparison of the two algorithms in terms of PRD values 

 

Fig. 10. Comparison of the two algorithms in terms of RDI values 

 
Note that in this research all programs are coded in 
MATLAB 2012 and that a PC with 4 GHZ, Core i3 CPU 
is used to run the programs in Windows 7.   

8. Conclusion and Future Research 

In this paper, an integrated stochastic inventory model in 
a one-vendor multiple-retailer two-echelon supply chain 
was developed based on the vendor-managed inventory 
policy. In this model, retailers faced stochastic demands 
and there was a limitation on the vendor`s budget. The 
aim was to determine the time, the number of the retailers' 
inventory replenishments, the replenishment quantities, 
and the reorder points such that the total cost of the chain 
would be minimized. As this model shown to be a non-
linear integer programming; hard to be solved using exact 
methods, a genetic algorithm was utilized for a near-
optimum solution. Moreover, as there was no benchmark 

available in the literature, a relatively new algorithm 
called firefly was used for validation and verification. 
While the parameters of both algorithms were tuned using 
the Taguchi method, we showed that GA was the better 
algorithm in terms of five measures. The main reason may 
be the paired comparison of the fire flies algorithm 
through the whole solution space that makes this 
algorithm slower than GA. Moreover, the firefly 
algorithm is a powerful local search in which the 
brightness should be associated with the objective 
function. Consequently, sometimes it may be trapped into 
several local optima and cannot find a global optimum 
solution.  
For future research in this area, we recommend the 
followings: 

(a) Extending the model for a multi-vendor multi-
retailer two echelon supply chain  

(b) Investigating the possibility of a central warehouse 
for the supply chain 
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(c) Investigating the effects of using discount or 
inflation 

(d) Modeling the problem based on the economic 
production quantity (EPQ) 
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