
A New Fuzzy Method for Assessing Six Sigma Measures 
 Seyed Habib A. Rahmatia, Abolfazl Kazemi b, Mohammad Saidi-Mehrabad c, 

 Alireza Alinezhadd, 
a Instructor, Faculty of Industrial and Mechanical Engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran  

b Assistant Professor, Faculty of Industrial and Mechanical Engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran  
c Professor, Department of Industrial Engineering, Iran University of Science and Technology, Tehran, , Iran 

d Assistant Professor, Faculty of Industrial and Mechanical Engineering, Qazvin branch, Islamic Azad University, Qazvin, Iran  

Received 19 June, 2012; Revised 3 September, 2012; Accepted  2 February, 2013 

Abstract 

Six-Sigma has some measures which measure performance characteristics related to a process. In most of the traditional methods, exact 
estimation is used to assess these measures and to utilize them in practice. In this paper, to estimate some of these measures, including 
Defects per Million Opportunities (DPMO), Defects per Opportunity (DPO), Defects per unit (DPU) and Yield, a new algorithm based on 
Buckley's estimation approach is introduced. The algorithm uses a family of confidence intervals to estimate the mentioned measures. The 
final results of introduced algorithm for different measures are triangular shaped fuzzy numbers. Finally, since DPMO, as one of the most 
useful measures in Six-Sigma, should be consistent with costumer need, this paper introduces a new fuzzy method to check this 
consistency. The method compares estimated DPMO with fuzzy customer need. Numerical examples are given to show the performance of 
the method. All rights reserved 
Keywords: Six Sigma; Fuzzy set; Fuzzy estimation; DPU; DPO; Yield; DPMO.
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1. Introduction 

Six-Sigma as a comprehensive and flexible system was 
developed by Bill Smith at Motorola in 1980s and is used 
for achieving, sustaining and maximizing business success. 
Materials of Six-Sigma are close understanding of 
customer needs, disciplined use of facts, data, and 
statistical analysis, and diligent attention to managing, 
improving, and reinventing business processes (Brefogle, 
1964). Six-Sigma to improve its targets looks at them as 
different processes. Then it analyses, controls and improves 
these processes through different measures. Some of these 
measures are Capability of process (Cp, Cpk), Defects per 
Million Opportunities (DPMO), Defects per Opportunity 
(DPO), Defects per unit (DPU) and Yield, for process 
analyzing and capability of the gauge (Cg, Cgk) for gauge 
analyzing and so on. This paper examines DPU, DPO, 
DPMO and Yield in a fuzzy environment. 

   

 
 
 
 
In Six-Sigma, as an important sub title of quality issue 

(as a whole), classifying of measures depends on type of  
the data they are due to. Generally, data for quality control 
purposes are collected by observation. These data are 
classified as either variables or attributes.   Variables are 
those quality variables which are measurable. There are 
two types of variables: 1) continuous variables, 2) discrete 
variables. 

    Continuous variables are those variables which are 
capable of any degree of subdivision (Brefogle, 1964). 
Meters and liters are examples of continuous data and 
normal distribution is usually used for (direct fitting or 
estimated fitting of) these type of data (Brefogle, 1964). In 
the literature of Six-Sigma as a sub-title of quality (as a 
whole issue) there are different measures of this class. Cp, 
Cpk, and Cpm are practical measures of this class that 
reflecting the capability of a process. These measures are 
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studied in different papers such as (Chen, 2008). Among the 
aforementioned papers (Chen., K. S & Chen, T. W, 2008; 
Parchami &  Mashinchi, 2007) there are some papers that 
study these measures in fuzzy environments. (Parchami &  
Mashinchi,  2007) specifically used Buckley’s approach for 
their fuzzy estimation. 

   Discrete variables are those that exhibit gaps (Brefogle, 
1964). Number of defective rivets in a truck trailer (which 
can be any whole number 0, 1, 2…) is example of discrete 
data. Poisson distribution is usually used for these types of 
data (Brefogle, 1964). Generally, continuous variables are 
measurable while discrete data are countable. 

   Attributes are usually known as those types of data 
which are judged by visual observation. The answer is 
wrong or true, the switches are on or off are examples of 
this class. Binomial distribution is usually used for this 
class. 

   In order to determine differences among Binomial 
capability and Poisson capability, it should be mentioned 
that if we have one opportunity for evolving of defect per a 
unit these two types of capability treat approximately the 
same. However, the advantage of Poisson capability is that 
it can be used in a situation with more amounts of 
opportunities for evolving of defect per a unit (Brefogle, 
1964).  

   Measures that Poisson distribution or Poisson 
capability can be used for them are DPU, DPO and DPMO. 
This paper focused on these measures (especially on 
DPMO) and makes them fuzzy. Meanwhile, since Yield is 
related with previous measures in its nature (as a process 
measuring index) and calculations, it is also studied as a 
fuzzy measure.  

      Buckley, in his papers (Buckley, 2005), has defined 
(1 )100%  confidence intervals for a parameter as a 
family of cuts of a triangular shaped fuzzy number.  

In this paper his approach is applied to find fuzzy 
estimates of DPMO, DPO, DPU and Yield.  Estimating of 
sigma as it is clear from the name of Six-Sigma is a crucial 
issue. To estimate sigma, Six-Sigma uses different type of 
measures and DPMO is the most practical one. If we can 
implement Six-Sigma effectively, it results in at most 3.4 
defects per million opportunities. After calculating DPMO, 
we can translate it to sigma by means of a handy table like 
Table 1. 
       Then, since DPMO should be consistent with customer 
need, this paper, to complete assessing of DPMO in fuzzy 
environment, introduces a fuzzy comparing method that 
uses Buckley’s hypostasis testing idea (Buckley, 2005) 
with some adaption to make calculations easier for this 
especial study. Buckley in his paper introduced a general 
method to compare fuzzy statistic with fuzzy critical value 
in a hypothesis testing.  
 

 

 

 

Table 1 
Conversion of DPMO to Sigma 

Sigma Quality level DPMO (Defect per  Million Opportunities) 
2 308,537 
3 66,807 
4 6,210 
5 233 
6 3.4 

   The organization of this paper is as follows. Section 2 
reviews the classical Six Sigma and DPMO. Section 3 
discusses Buckley's approach and presents the cuts   
of fuzzy estimation for DPMO. Section 4, using Buckley's 
approach, proposes a new algorithm for fuzzy estimation of 
DPMO based on predefined  cuts   and illustrates it by 
two examples. Section 5, presents a method for comparing 
the fuzzy estimated DPMO with a fuzzy number which 
presents customer's specification and a numerical example 
is given to illustrate the method. Section 6 concludes the 
paper. 

2. Classical  Six-Sigma 

 Each business is like a child who is learning how to ride 
his/her bike, and we as parents (business owners) are there 
to help and offer encouragement. We want to see the kid 
succeeds and the system owner wants to see its offspring 
thrive. For beginning we give the kid a push and for a while 
s/he rides beautifully, balanced, head and erect. “Look I’m 
doing” is what we hear just before the kid runs off and runs 
into a bush. Of course we know the only way to learn 
biking is falling off and running into the bushes. Likewise, 
companies work but they should get back on the path fast 
enough and try again. Now, what both successful bike 
riding and business managing are due, is a closed loop 
system in which both internal and external types of 
information (feedback) tell the rider/manager how to 
correct course, steer successfully (Brefogle, 1964).  

      In order to create a closed loop system, Six-Sigma 
looks at its target as a process and defines different types of 
measures. These measures cause Six-Sigma to become 
enough sensitive to reduce the company’s wobbling and 
keeps it safely on the path of success. In Six-Sigma’s 
vocabulary, the wobbling of a business is translated as 
variation and bad variation which have negative impacts on 
customers called defect. Management by looking at 
variation can get a fuller understanding of their process 
performance (Brefogle, 1964). Finally, what Six-Sigma is 
looking for is to reduce and narrow variation to such a 
degree that six sigma (or standard deviation) can be 
squeezed within the limits defined by the customer 
specification (or need) like Fig. 1.  

     In Six-Sigma, we should first clearly define what the 
customer wants as an explicit requirement. Then, we should 
count the measures of our system to recognize the quality 
of our performance in related to customer satisfaction. 

Seyed Habib A. Rahmati et al./ A New Fuzzy Method for...

40



Mostly mentioned measures are due to defects. Therefore, 
in the rest of this section different definitions and 
formulation of measures which are studied in the paper are 
introduce and the relationship among them is discussed. 

      A defect is any instance or event in which the 

product or process fails to meet a customer requirement 
(Brefogle, 1964). 

 
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.The distinctive impact of Six Sigma on process performance 
 

     Counting defects, we can calculate the "yield" of the 
process (percentage of items without defects), and then 
calculate the DPMO and finally use a handy table like 
Table 1 to determine the Sigma level. Sigma levels of 
performance are often expressed in Defects per Million 
Opportunities or DPMO. DPMO simply indicates how 
many errors would show up if an activity were to be 
repeated a million times (Brefogle, 1964). DPMO has two 
types named discrete and continuous which are defined as 
follows: 

Continuous DPMO is the one that can be measured on 
an infinity-divisible scale or continuum: e.g., weight, time, 
height, temperature, ohms. 

      A discrete DPMO is anything else that doesn't fit the 
criteria for "continuous." Discrete items might include 
characteristics or attributes, count of individual items, etc." 

 
and recognized as Eq.1. 

 
(1 ) *1000000DPMO yrt                                   (1) 

 
Where 

 
rty = Yield: the area under the probability density curve 

between tolerances 
 
Yield in Discrete DPMO is proven from Poisson 

distribution as Eq.2. 

( )
!

x
dpo

rt
ey yield p X o e e

x




            (2)                                    

and continuous DPMO is proven from normal 
distribution as: 
     

( ) ( ) ( )
X a

y yield p X a p p Z zrt
 

 

 
                                                             

                                                                                       (3) 
                                                                   

 It should be noticed that what this paper discusses is 
discrete DPMO. 

     References use point estimates to estimate DPO, 
yield and DPMO, nevertheless, point estimate can't account 
the uncertainty due to sampling variability properly. 
Therefore, we can't make good inferences about the true 
value of DPMO. So this paper to guard against uncertainty, 
uses confidence intervals and builds a new algorithm which 
not only covers the characteristics of point estimates but 
also interval estimates.        

3. Buckley's Estimation Approach  

     In what follows, with modification, fuzzy estimation 
based on Buckley's approach (Buckley,  2005) is presented. 
First some notation is introduced. A triangular shaped 
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fuzzy number N is a fuzzy subset of the real numbers R 
satisfying: 

 
     (i)  N(x) =1 for exactly one x R 
     (ii) For (0,1]  , the cut  of N is a closed and 

bounded interval, which I denote by                                                                                                  

1 2[ ( ), ( )],N n n   where ( )1n  is increasing and 

2 ( )n  is decreasing continuous functions.   
Triangular shaped fuzzy number is used for parameter 

estimation. Let X be a random variable with p. d.f. (p.m.f .) 
( ; )f x  for single parameter  . Assume that   is 

unknown and must be estimated from a random sample 
, , , ...,1 2 3X X X Xn . Let y=u( , , , ...,1 2 3X X X Xn ) be a 

statistic used to estimate  .Given the values of these 
random variable , e.g. ,X xi i  1 i n  ,we can obtain a 

point estimate. ˆ ( , , , ..., )1 2 3y u x x x xn   for  . Since 
we never expect this point estimate be exactly equal to , 
we often also compute a  (1 )100%  confidence interval 
for . 

This paper denotes a (1 )100%  confidence interval 

for   by 1 2[ ( ), ( )]    , for 0 1  .Thus the interval 
ˆ ˆ[ , ]1   is 0% confidence interval for and 0   is a 

100% confidence interval for , where  is the whole 
parameter space. Then we have a family of 
(1 )100% confidence intervals for  ,where 0 1  .If 
we place these confidence intervals, one on top of the other, 
we obtain a triangular shaped fuzzy number   whose 

cuts are the following confidence intervals: 

1 2[ ( ), ( )]        for 00 1:       and 

1
ˆ ˆ[ , ].    

      Hence we use more information about  rather than a 
point estimate, or just a single interval estimate. It is easy to 
generalize Buckley's method in the case where  is a vector 
of parameters (Buckley, 2005). 
      It should be mentioned that this paper uses  here 
since , usually employed for confidence intervals, is 
reserved for , cuts  of fuzzy numbers . The rest of the 
section computes (1 )100% confidence intervals for 
DPO, yield and DPMO. In section 4 these intervals are 
used as cuts  of the fuzzy estimators of DPMO. 
 
3.1. Cuts of a fuzzy estimate for DPO 
 

      According to normal approximation to the Poisson 
we can obtain following confidence intervals for parameter 
of Poisson distribution named DPO   for a determined 
level of  : 

{ , }
2 2

dpo dpo
dpo Z dpo Z

n n     for 0< <1.           (4) 

 
Since most of the time   is unknown and we should 
estimate it by sampling and also since according to MLE 
approach the point estimator of   is X dpo , we had 
better use dpo  instead of DPO as follows: 

 { , }
2 2

dpo dpo
dpo Z dpo Z

n n     for 0< <1 .        (5) 

 
3.2. Cuts of a fuzzy estimate for yield 

 
    To have a left-right fuzzy number which represents fuzzy 
yield (discrete one) confidence interval of DPO is used as 
follows: 

             

( ) ( )
2 2{ , }

dpo dpodpo Z dpo Zn n
e e

    

for 
0< <1.               (6) 

 
 

and the examples, which give in the next section, show how 
it creates a fuzzy number.     

 
3.3. Cuts of a fuzzy estimate for DPMO 

 
     Now according to what was mentioned in this section 
and previous section (equation 2) we can define 

cuts  for discrete DPMO as follows: 
                    

( ) ( )
2 2{(1 ( )) *1000000, (1 ( ))

*1000000}

dpo dpodpo Z dpo Zn n
e e

    

 

 for 0< <1 .                (7) 
 

 
4. A New Algorithm to Estimate Fuzzy DPO, Yield and 
DPMO 

 
      Let i

  for (0,1)   and i=1, 2, 3 be as in section 3. In 
the next part Buckley’s approach is extended to create a 
new algorithm to find fuzzy estimates for DPO, yield and 
discrete DPMO. 
 
4.1 FESSM Algorithm 
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(1) Let 0
i = R


 , 1

i  = ˆ ˆ[ , ]i i   for i=1,2,3 
1ˆ dpo   , 2ˆ yield  , 3ˆ dpmo   and  R


 is the set of 

all positive real numbers. 

(2) Place i ;  0 1  , one on top of the other , to 

produce a triangular shaped fuzzy number ˆi  for i=1,2,3; 
where  1ˆ dpo   , 2ˆ yield  , 3ˆ dpmo  . 

 
  Since DPO, yield and DPMO are generally unknown 

and must be estimated from observations, uncertainty due 
to sampling variability is unavoidable. Therefore this paper 
introduces FESSM algorithm to guard against uncertainty 
in order to get close to the real value of the measures. In 
what follows the performance of FESSM algorithm is 
illustrated by two examples. 

 
Example 1. Consider that information of producing 1000 
shafts (in a month) is as follows: 
 
1-oprator: inspects 1 shaft per 10 produced shafts, so in last 
month (or per 1000 shafts), he has inspected 100 shafts. He 
has founded 12 defects in his inspection.  
2-quality control inspector: has taken 100 samples and 
founded 3 defects. Therefore, we have the following 
results: 
 
Lot size: 1000 
Sample size: 100+100=200 
Number of defects: 12+3=15 
 
So in a classical calculation DPO, yield and DPMO are 
computed as follows Eq.8 to Eq.10. 

Number of defects 15
DPO 0.075

Number of opportunities 200
               (8) 

dpo 0.075yield 0.9277e e                                     (9) 
 
DPMO (1 yield)*1000000 (1 .9277)*1000000
72256.51 72257

    


                 (10) 

 
Now, according to what was defined in (5), (6) and (7)  
we can compute cuts of i̂  for i=1,2,3 as follows: 

0.075 0.0751ˆ {0.075 , 0.075 }
200 2002 2

Z Z         

for 0 1  .                                                                  (11) 

},{ˆ
)

200
075.0075.0()

200
075.0075.0(

2 22



ZZ

ee


 for
0 1   .                                                                      (12) 

0.075(0.075 )
2003 2ˆ {(1 ( )) *

0.075(0.075 )
20021000000, (1 ( )) *1000000}

Z

e

Z
e






 

 

 



 

      for 0 1  .                                                            (13) 
In the first step of FESSM algorithm, we can obtain 

0
i and 1

i  for i=1, 2, 3(for each i separately). During the 
second step, by placing 0

i , i
  for (0,1)  , and 1

i  for 
i=1, 2, 3(for each i separately), which are calculated by the 
first step and (5), (6) and (7) respectively, one on top of the 
other, we can obtain fuzzy estimates for DPO, yield and 
DPMO respectively. The graphs of their membership 
functions are shown in Fig. 2, by Minitab software (it 
should be mentioned that first for 0 1  different 
calculations have been done in Excel software, then to 
figure fuzzy numbers more effective data have been 
transferred to Minitab software). Note that in the classical 
method, as it was shown in (8), (9) and (10), one can find 
estimates 0.075dpo  , .9277yield   and 

72256.51dpmo  . We would never expect this precise 
point estimate to be exactly equal to the parameter value, so 
we often compute (1 )100%  confidence intervals for 
our parameters. The fuzzy estimate obtained by the FESSM 
algorithm contains more information than a point or 
interval estimate, in the sense that the fuzzy estimate 
contains point estimates and (1 )100% confidence 
intervals for all at once for [0,1)  , which is very useful 
for a practitioner.  
     From the fuzzy estimate, one can conclude that the 
classical estimate  72256.51 72257dpmo    belongs to 
the fuzzy estimate DPMO with grade of membership equal 
to 1. It is obvious that fuzzy set of DPMO contains more 
elements other than "72256.51" with corresponding grades 
of membership. For example, one can say that 

69996.17dpmo   belongs to the DPMO with grade of 
membership (69996.17) 0.9dpmo  (Fig. 2). Similarly, we 
can see that 0.0701dpo   belongs to the DPO with grades 
of membership (0.0701) 0.8dpo  . 
Example 2. In Example 1, we considered three fuzzy 
estimates of DPMO based on different samples from the 
same process. By the FESSM algorithm, the fuzzy 
estimates of DPMO obtained for the three samples, are 
depicted in Fig. 3. 
Classical answers are: 

For n=100, 0.15, 139292.0dpo dpmo   

For n=200, 0.075, 72256.51 72257dpo dpmo    

 
For n=300, 0.05, 48770.6dpo dpmo   
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Fig. 2. Fuzzy membership function of DPO, yield, DPMO 

 

For n= 100,

0.1500 0.1500(0.1500 ) (0.1500 )100 1002 2( ) [(1 ( )) *1000000, (1 ( )) *1000000]
Z Z

dpmo e e
 



   

    for 
0 1  .                                                                                                                                                                                 (14) 

For n= 200,

0.075 0.075(0.075 ) (0.075 )200 2002 2( ) [(1 ( )) *1000000, (1 ( )) *1000000]
Z Z

dpmo e e
 



   

   for 0 1  .      
(15) 

For n= 300,

0.0500 0.0500(0.0500 ) (0.0500 )300 3002 2( ) [(1 ( )) *1000000, (1 ( )) *1000000]
Z Z

dpmo e e
 



   

   for 
0 1  .                                                                                                                                                                   (16)  
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Fig. 3.The larger sample size (n=100,200,300), the less DPMO and the less fuzziness. 

 
 
Remark 1. As seen in Example 2, increasing the sample 
size (n) not only decreases the amount of the DPMO but 
also its fuzziness, therefore it leads to sharper and smaller 
triangular shaped fuzzy numbers. 
 
5. New Method for Comparing Fuzzy DPMO with 
Fuzzy Customer Need 
 
Consider our customer gives us a fuzzy number as critical 
value for DPMO or customer need. We now have a fuzzy 
number for DPMO (Fig. 4 and 16) and a fuzzy number for 
customer need (Figs. 6 and 17). Our final decision will 
depend on the relationship between fuzzy DPMO and fuzzy 
customer need. This can be best explained through studying 
Fig. 5. Figure 5 illustrates our final decision rule: reject or 
do not reject. In fact, the fuzzy number for DPMO should 
be triangular shaped fuzzy number, like in Fig. 3, instead of 

triangular fuzzy numbers, but in order to simplify the 
calculating this paper uses estimated fuzzy DPMO like the 
one you see in Fig. 4 and membership function as (17). 
As you can see in Fig. 4 the estimation is pessimistic and 
cause more fuzziness. Therefore the new method which this 
section introduced is strict. The next paragraph explains the 
new strict method to compare fuzzy DPMO with fuzzy 
customer need. 

(x 45439) / (72257 45439) , 45439 x 72257
1                                                , x=72257
(98321 x) / (98321 72257)   , 72257 x 98321

   


    

 

                                    (17) 
 
 

 
              

 
Fig. 4. DPMO and estimated DPMO 

   As you can see in Fig. 5 the vertex of fuzzy DPMO is at 
dx   and the vertex of customer need is at cx  . A.D. 

represents the total area under the graph of fuzzy DPMO. 
A.R. is the area under the graph of fuzzy DPMO, but to the 
right of the vertical line through cx  . We choose a value 

of (0,1)  and our decision rule is: if
. .

. .

A R
A D

 , then 

reject the process, otherwise do not reject that. Notice in 
this method we need two numbers , the significant level 

of the test, and   to judge the relative size of RA . Let’s in 
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this paper choose 0.4  . Surely, 0.5   is not 

acceptable. Notice that in Fig. 5 we get 
. .

0.5
. .

A R
A D

 when 

dx  lies to the right of cx  . 
 

 
Fig. 5. Fuzzy estimated DPMO in comparison with fuzzy customer need in decision making 

Example  3. Let n=1000 and all assumptions be as the 
same as Example 1. Consider customer need is a fuzzy 
number with shape and membership function like (Fig. 6) 
and (Eq.18) respectively. 
 

(x 50000) / (75000 50000) , 50000 x 75000

1                                                , x=75000

(10000 x) / (10000 75000)   , 75000 x 10000

   

   






(18) 

                                                                                     
 

 
Fig. 6. Membership function of the fuzzy customer need 

So Figure 5 in Example 3 is shown as Fig. 7. 

 
Fig.7. Illustrates Fig. 5 in Example 3 

 
Now after doing some simple calculations decision rule 
leads to acceptance of the process as follows: 
  

           
. . 10433.34

0.394589 0.4
. . 26441

A R
A D

    

 
Since the result of the example is not rejected and also 

since the proposed estimation is pessimistic, the crisp 
DPMO must be smaller than crisp customer need. So, in 
exact decision making we should accept the process 
performance. 

6. Conclusion  

Since DPO, yield and DPMO are estimated using 
sample data, it is of interest to obtain confidence intervals 
rather than simple point estimates to calculate them. To 
find fuzzy estimates for DPO, yield and discrete DPMO, a 
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new algorithm based on Buckley's approach named FESSM 
is introduced. The final results of the proposed algorithm 
not only contain point estimates but also interval estimates 
and hence provide us with more information. The 
diminishing impact of a larger sample size on amount and 
fuzziness of DPMO is also figured. A new method to 
compare fuzzy estimated DPMO with fuzzy customer need 
is introduced and numerical examples are given to illustrate 
the performance of the new algorithm and new comparing 
method. Future research may estimate continuous DPMO. 
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