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Abstract 

This paper deals with an inventory system with one central warehouse and a number of identical retailers. We consider perishable-on-the-
shelf items; that is, all items have a fixed shelf life and start to age on their arrival at the retailers. Each retailer faces Poisson demand and 
employs (1, T) inventory policy. Although demand not met at a retailer is lost, the unsatisfied demand at the central warehouse is 
backordered. In this study, the long-run system total cost rate is derived. Moreover, a proposition is proved to define a domain for the 
optimal solution. Also, a search algorithm is presented to obtain this solution. Further, we extend the existent paper of the well-known (S-1, 
S) policy to cope with our considered model. Finally, in a numerical study, we compare (1, T) policy with (S-1, S) policy in terms of 
system total cost. The results reveal that when transportation time from the central warehouse to the retailers is long, the (1, T) policy 
outperforms the (S-1, S) policy. 
Keywords: (1, T) policy, (S-1, S) policy, Two-echelon inventory system, Perishable items. 

1.  Introduction 

In this paper, a two-echelon inventory system consisting 
of one central warehouse and a number of identical 
retailers is considered. Each retailer faces Poisson 
demand, and replenishes its stock from the central 
warehouse. The central warehouse, in turn, replenishes its 
stock from an external supplier which has an infinite 
supply. After joining the stock at a retailer, an item has a 
constant shelflife beyond which it is no longer usable. 
Demand that cannot be met immediately at the retailers is 
lost. The fixed ordering cost is negligible from which it is 
justified to employ (1, T) or (S-1, S) policies. 

The (1, T) policy is to order one unit at each fixed 
time period T. This policy was introduced by Haji and 
Haji (2007) for a single installation inventory system with 
nonperishable items. When (1, T) policy is employed in 
the first level of a supply chain, it prevents expanding the 
demand uncertainty for other levels and makes their 
demand deterministic, one unit every T units of time. 
Therefore, this policy enjoys a number of advantages. For 
example, the cost of holding the safety stock in the 
upstream locations is eliminated. Also, this policy is very 
easy to apply and leads to simplify the inventory control 
and production planning. Following Haji and Haji (2007), 
Haji et al. (2009) applied (1, T) policy to a two-echelon  

 
 

 
 

 
 
inventory system with nonperishable items. Mahmoodi et 
al. (2014a) considered (1, T) policy for a single stage 
inventory system with perishable items. All of these 
papers, in their numerical experiments, compare (1, T) 
policy with the well-known (S-1, S) policy. They 
conclude that when the lead time is high, (1, T) policy is 
better than (S-1, S) policy in terms of total cost rate. 

To our limited knowledge, there are very few papers 
concerning perishable items in multi echelon inventory 
systems. Abdel-Malek and Ziegler (1988) analyzed the 
optimal replenishment policies for a single perishable 
item, two-echelon inventory system assuming 
deterministic demand. Under demand uncertainty, 
Fujiwara et al. (1977) considered the problem of periodic 
review ordering and issuing policies in a two-echelon 
inventory system assuming separate lifetime for each 
echelon. Kanchanasuntorn and Techanitisawad (2006) 
investigated the effect of product perishability on system 
total cost in a two-echelon inventory system. They assume 
Normal demand for retailers and develop an approximate 
inventory model under periodic review policies. Olsson 
(2010) developed an approximate technique for 
evaluation of base stock policies in a continuous review, 
two-echelon serial inventory system with perishable 
items. He assumes that the downstream location faces 
Poisson demand, and unsatisfied demand is backordered. * Corresponding author Email address: a_mahmoodi@ie.sharif.edu 
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Mahmoodi et al. (2014b) consider a two-echelon serial 
inventory system with perishable-on-the-shelf items and 
lost sales. They employ (S-1, S) policy to control the 
inventory of both echelons. Using METRIC approach 
(Sherbrooke 1968), they approximate the system total cost 
rate, and present two procedures to obtain the optimal or 
near optimal solutions. 

In this paper, we apply (1, T) inventory policy to a 
two-echelon distribution system with identical retailers. 
All items start to age as they arrive at a retailer. Further, 
we extend the model of Mahmoodi et al. (2014b) to deal 
with a distribution system with identical retailers. Finally, 
we compare (1, T) and (S-1, S) policies in terms of system 
total cost rate in a numerical experiment. The results show 
that when both the shortage unit cost and the 
transportation time from the central warehouse to the 
retailers are high and the perishing unit cost is low, (1,T) 
policy outperforms (S-1, S) policy. 

The proceeding parts of this paper are organized as 
follows. In section 2, the considered model is described. 
In section 3, considering (1, T) policy the system total 
cost rate is derived. Also a solution procedure is 
presented. Then in section 4, we extend (S-1, S) policy to 
deal with a distribution system with identical retailers. 
Furthermore, in section 5, a numerical study is carried out 
to compare (1, T) policy with (S-1, S) policy. Finally, the 
conclusion and future research are presented in section 6. 

2. Model Description 

We consider a single item, two-echelon distribution 
system consisting of a central warehouse and a number of 
identical retailers. The items have a constant shelflife and 
start to age on their arrival at a retailer. All retailers face 
Poisson demand. The fixed ordering cost in all locations 
is negligible. Although demand not met at a retailer is 
lost, the unsatisfied demand at the central warehouse is 
backordered. All transportation times are fixed. All 
satisfied demands are met based on FIFO (First in first 
out) policy. A fixed penalty cost per lost sale and a fixed 
penalty cost per perished item are incurred at the retailers. 
Items held in stock both at the central warehouse and at a 
retailer incur holding costs per unit per time unit. Also the 
central warehouse pays a fixed purchase cost per item. 
Therefore, Shortage, perishing and holding costs are 
incurred at the retailers, and purchasing and holding costs 
are incurred at the central warehouse. 

Two scenarios are considered to deal with the 
inventory control of presented model. The first one is to 
apply (1, T) policy at the retailers and (N, T) policy at the 
central warehouse, whereas the second is to employ 

0 0( 1, )S S  policy at the central warehouse and 

1 1( 1, )S S  policy at the retailers, in which 0S  and 1S  
represent inventory position at their corresponding 
location. The (N, T) policy is to order N units at each 
fixed time period T. The objective is to find optimal T in 

the first scenario and optimal inventory positions in the 
second. The following notations are used in subsequent 
parts of the paper. 
N: The number of retailers 
μ1: The customer demand rate at a retailer 
π: Cost of a lost sale 
h0: Holding cost per unit per time unit at the central 
warehouse 
h1: Holding cost per unit per time unit at a retailer 
p: Cost of a perished item 
c: Purchase cost per unit at the central warehouse 
α: The probability of perishing for an item 

1α : The rate of perishing at a retailer 

τ0: Transportation time from the external supplier to the 
central warehouse 
τ1: Transportation time from the central warehouse to a 
retailer 
m: Items’ shelflife at the retailers 
I0: Average on-hand inventory at the central warehouse 
I1: Average on-hand inventory at a retailer 
B0:The average number of backorders at the central 
warehouse 
S0: Inventory position at the central warehouse 
S1: Inventory position at a retailer 
H0: Average total holding cost per time unit at the central 
warehouse 
H1: Average total holding cost per time unit at a retailer 
Π: Average total shortage cost per time unit at a retailer 
OC: Average total perishing cost per time unit at a retailer 
PC: Average total purchasing cost per time unit at the 
central warehouse 
C0: Total cost rate at the central warehouse 
C1: Total cost rate at a retailer 

TTC : System total cost rate for (1,T) inventory system 
STC : System total cost rate for (S-1,S) inventory system 

3. (1, T) Policy 

3.1. Preliminaries – Single installation model 

Mahmoodi et al. (2014a) consider a single perishable 
item, single location inventory system operating under 
(1, T) policy with lost sales, Poisson demand, perishing 
costs, purchase costs, and per unit per period holding 
costs. The results of their model are used to obtain the 
cost function of the retailers in our model. Therefore, 
some key results of their model are presented in follows. 
Let m represent the shelflife, and μ  denote the Poisson 
demand rate. They present the following formula for the 
percent of perished items, α . 
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They also show that the proportion of time that the system 
is out of stock, 0P , could be obtained from 

Tμ
αP 


110        (2) 

Furthermore, they obtain the expected on hand inventory 
as follow. 

1
1 ( )I mα Θ
T

          (3) 

In which 


m

dyyyhΘ
0

)( ,       (4) 

Where ( )h y  is as in Eq. (5). 

3.2. Central Warehouse cost 

Let T* represent the optimal T. Since the retailers are 
identical, T* for all of them is the same. Thus the central 

warehouse faces a deterministic demand of N units per T* 
time units. The ordering cost is negligible, and all 
transportation times are fixed. Therefore, the optimal 
policy for the central warehouse is to order N units at each 
fixed time period T*. Since the transportation times are 
fixed, the central warehouse can place an order for N units 
to the external supplier in such a way that these items 
arrive at the time of which the retailers’ orders are placed. 
Consequently, the central warehouse receives its orders 
from the external supplier and sends them to the retailers 
at the same time. Accordingly, the holding cost at the 
central warehouse is zero. Also the purchase cost rate is 

NcPC
T

 . Hence, the central warehouse total cost rate 

is:  

0
NcC
T

        (6) 

3.3. Retailers’ cost 

Since the central warehouse policy is to dispatch an item 
at the same time as a retailer places its order, the leadtime 
at the retailer is deterministic and equals to the fixed 
transportation time from the central warehouse to the 
retailer. 
Thus the retailers’ model is quite similar to the single 
installation model of Mahmoodi et al. (2014a). Therefore, 
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since the proportion of items that is perished is α T , 
from (1) the perished cost rate at a retailer is obtained as: 
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Furthermore, since 0P  is the proportion of time that the 
system is out of stock, the proportion of demand lost at a 
retailer is 01Pμ . Therefore, from (2) the shortage cost rate 
at a retailer is: 

T
αππμPπμΠ )1(

101
      (8) 

In addition, the holding cost rate at a retailer could be 
obtained from (3) as follow. 

1
1 1 1 ( )hH h I mα Θ

T
        (9) 

Finally, one can obtain the total cost rate at a retailer from 
(7), (8) and (9) as in Eq (10).. 
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Consequently, from (6) and (10) the system total cost rate 
for (1, T) policy is 
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From (11), one can conclude that the system total cost rate 
is independent of lead time which is an interesting 
characteristic of (1, T) Policy. 

3.4. Solution procedure 

Due to the complex form of (11), we cannot prove the 
convexity of system total cost rate. However, we can 
prove that if the optimal T is not infinitive, it always 

would be in the interval of (0, m]. This is proved in the 
following proposition. 
Proposition 1: If the establishment of the inventory 
system is affordable, say *T , then T* would be in 
the interval of (0, m]. 
Proof: see Appendix A. 
Since proposition 1 defines a domain for the optimal 
solution when the establishment of the inventory system 
is affordable ( *T   ), one can use a simple search 
algorithm to obtain the optimal solution. If *T , then 
total lost sales is the optimal solution and the system total 
cost rate is 1Nπμ . Therefore, by using a search algorithm 
to find the best amount of T in (0, m] and compare its total 
cost rate with 1Nπμ , the optimal solution of (1, T) 
inventory system could be obtained. Let ε be a small 
value, the optimal solution of (1, T) could be found with 
the accuracy of ε using the following procedure. 
Procedure 1  

Step 1: Set εT  . Calculate TTC  using (11). Set 
*T T  and * TC TC . 

Step 2: If mεT  , set εTT  , calculate TTC  
using (11), and go to step 3.  Otherwise, go to 
step 4. 

Step 3: If *TTC C , set *T T  and * TC TC . 
Go to step 2. 

Step 4: If *
1Nπμ C , set *T  and *

1C Nπμ . 
Go to step 5. 

Step 5: The algorithm is finished and ),( ** CT  is the 
best solution of (1, T) inventory system. 

4.  (S-1, S) Policy 

In this scenario the central warehouse operates under 

0 0( 1, )S S  policy, and the retailers operate under 

1 1( 1, )S S  policy. The objective is to obtain 0S  and 

1S  in such a way that the total cost rate is minimized. 
Mahmoodi et al. (2014b) consider a two-echelon serial 
inventory system with similar assumptions. They 
approximate the central warehouse demand with a 
Poisson process, and approximate the retailer leadtime 
using the well-known METRIC approach of Sherbrook 
(1968). Their model could easily be extended to a 
distribution system with identical retailers. Thus in this 
paper, we modify their approach to cope with our 
considered inventory system. The only required 
modification is that the demand of the central warehouse 
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is the summation of N identical retailers’ demand. 
Therefore, the demand of the central warehouse, 0μ , is 

0 1 0 1(1 )μ Nμ P Nα      (12) 

Furthermore, adapting Equation (4) and (7) of Mahmoodi 
et al. (2014b), 1α  and 0P  at a retailer is obtained as 
follows. 

1 1 1( ) 1
1

1
1

( )
( 1)!

μ τ m SK e τ mα
S

    



   (13) 

!1

1
0

111

S
τeKP

Sτμ 




    (14) 

In which 

1

1

1

1

1
1

1

11111

)!1(!























 

mτ

τ

xμSSτμ

dx
S

ex
S

τeK , and  

0

0
11 μ

Bττ       (15) 

Where
 







1

00
00

0

00

!
)()(

Sj

τμ
j

e
j
τμSjB  (16) 

Consequently, adapting Equation (11) of Mahmoodi et al. 
(2014b), the total cost rate of a retailer is approximated as  
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Also, by substitution of 0μ  in Equation (16) of 
Mahmoodi et al. (2014b), the approximated total cost rate 
of the central warehouse is 
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Therefore, from (17) and (18) the system total cost rate is  
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Mahmoodi et al. (2014b) present two procedures to obtain 
the optimal solution of the system. In their first procedure, 
they present a heuristic to find the optimal solution using 
the approximated total cost rate. However, the optimal 
solution of the approximated model is not necessarily the 
optimal solution of the considered system. Therefore, they 
present the second procedure which is a simulation-based 
neighborhood search heuristic. The obtained solution of 
the first procedure is used as the starting point of the 
second procedure. In second procedure, for a given point 

),( 10 SSS  , eight neighborhoods including 

),1( 10 SSS  , ),1( 10 SSS  , )1,( 10  SSS , 

)1,( 10  SSS , )1,1( 10  SSS , 

)1,1( 10  SSS , )1,1( 10  SSS  and 

)1,1( 10  SSS  are considered. Then for each of 
them 3 simulations with 10000 time units is executed. The 
average cost rate obtained from these 3 simulations is 
assigned to the corresponding neighborhood. If at least 
one improving solution has been determined, the 
neighborhood search is restarted with respect to the best 
of them. If no superior solution was found, the procedure 
stops and returns the best found solution. Mahmoodi et al 
(2014b), in a numerical experiment show that their second 
procedure obtains the optimal solution of the system 
almost in all considered problems. We adapt their 
procedures for our considered model as follows. 

Procedure 2. (Adapted from Procedure 1 of Mahmoodi et 
al. (2014b)) 

STEP 0: Set 0:0 S , 1
min : πμNTC  , 0:0 optS  and 

0:1 optS . 

STEP 1: Set 0:s , 1:1 S , 11 : ττ  ,                    

                1
min :0 πμNTCS   and 1

min :1 πμTCS  . 
Calculate 1α  from (13), and 0P  from (14). 

STEP 2: While min
1( 1 )TCS pα , do { 

Calculate 0 1 0 1(1 )μ Nμ P Nα   , 1τ  from 

(15), and ),( 111 τSC   from (17). 
Calculate ),( 000 μSC  from (18) and set 
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),(),(:)( 1110000 τSNCμSCSTC  . 

If min
0 0)( TCSSTC  , then set 

)(:0 0
min STCTCS  , 0: μμ   and 1: Ss  . 

If min
11 1)( TCSSC  , then set 

)(:1 11
min SCTCS  . 

Set 1: 11  SS . 
Calculate 1α  from (13), and 0P  from (14). 
} 

STEP 3: Calculate ),( 00 μSC  from (18),  

 If minmin0 TCTCS   then minmin 0: TCSTC   

and let 00 : SSopt   and sS opt :1 . 

 If ),( 00
min μSCTC   then set 

),(: 10
* optopt SSS  , return *S  and minTC , and 

stop the procedure. Otherwise, set 1: 00  SS  
and go to STEP 1. 

Procedure 3. (Adapted from Procedure 2 of Mahmoodi et 
al. (2014b)) 

Step 0: Set : 1j  and max : 50J  . Execute Procedure 2. 

Let 1S  be the best policy found by Procedure 2.  
Step 1: Execute 3 simulations with 10000 time units for 

jS  and set jTC  to the average total cost rate 
obtained by these simulations. 

Step 2: Execute 3 simulations with 10000 time units for 
all neighborhoods of jS  which are not 
simulated before. Set 1jS   to the policy with the 
minimum average total cost rate among all 
neighborhoods. Also set 1jTC   to this total cost 
rate. 

Step 3: If 1j jTC TC   and maxj J , set : 1j j  , 
and go to step 2. 
Otherwise, return jS  as the best policy and 

jTC  as its total cost rate. Stop the Procedure. 

The interested reader is referred to Mahmoodi et al. 
(2014b) for more details about convergence, effectiveness 
and accuracy of these procedures. 

5. Numerical Study 

This section is devoted to compare the performance of 
(1, T) policy (Scenario 1) with (S-1, S) policy (Scenario 2) 
in terms of system total cost rate. To do this, for 

considered problems, %
S T

S
TC TCΔC

TC


  is 

calculated. Where %ΔC shows how much in percent 
(1, T) policy performs better than (S-1, S) policy. 

Apart from comparison between two considered policies, 
the effect of varying the values of π, p, m and 1τ  on the 
optimal solution for both policies is studied. In all 
considered test problems, we have 5N  , 5c  , 

1 1μ  , 0 2h  , 1 1h  , 0 0.5τ  , 

1 {0.1, 0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}τ  and 

0.01ε  . 

To obtain the best solution of Scenario 1 and Scenario 2, 
we utilize Procedure 1 and Procedure 3, respectively. 
Matlab software is used to coding these procedures. In 
table 1, the effect of varying items’ shelflife and 
transportation time from the central warehouse to the 
retailers on both policies is studied. In this table, the 
results for 10p  , 40π   and {0.5,1,2}m  are 

presented. As it could be seen, *T  increases as m 
increases. This observation is intuitively expected, since 
increasing of m leads to decreasing of perishing rate. 
Total cost rate of (1, T) policy is independent of 
transportation times, but total cost rate of (S-1, S) policy 
increases as 1τ  increases. Therefore, for small values of 

1τ , %ΔC  is negative, and by increasing 1τ , %ΔC  

becomes positive. The positive amount of %ΔC  means 
that the (1, T) policy outperforms the (S-1, S) policy. This 
behavior is illustrated in Figure 1 for 1m  . According 
to Table 1, the optimal inventory positions are not a 
monotonic function of m, as one might expect. However, 
as expected, increasing in m leads to decreasing in total 
cost rate of both policies. Although *

1S  is an increasing 

function of 1τ , *
0S decreases as 1τ  increases. This 

appears due to that we consider a fixed transportation time 
from the external supplier to the central warehouse, then 
with increasing of 1τ  the delay in the central warehouse 
due to stockouts would be a smaller percent of retailers’ 
leadtime. 
Table 2 presents the results for 1m  , 1 40π  , 

{5,10,20}p . As can be seen, when 1τ  increases, 

%ΔC  increases which means that for high values of 1τ  
the (1, T) policy outperforms the (S-1, S) policy. This 
result is similar to that obtained from Table 1. Moreover, 
as p increases the threshold value of 1τ , for which (1, T) 
is better than (S-1, S), increases. Most of results are what 
one intuitively expects. For example, as p increases the 
total cost rate of both policies increases. Furthermore, 
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increasing in p leads to decreasing of *T  and increasing 
of *

1S , in order to decrease the total number of perished 
items. 
The results for 1m  , 10p   and {20,40,60}π   
are presented in Table 3. For the comparison of two 
policies, similar results can be seen. That is, for enough 

long 1τ , (1, T) policy is better than (S-1, S) policy. 

Moreover, as π  increases the threshold value of 1τ , for 
which (1, T) outperforms (S-1, S), decreases. Other results 
of this table are the same as what expected. For example, 
as π  increases, the total cost rate of both policies does 
increase, *T increases, and *

1S  decreases.  

 

Fig. 1. System total cost of the policies with respect to τ1 

Table 1 
 Numerical results for 10p   and 40π   

m 0.5 1 2 
T* 0.50 0.68 0.81 
TCT(T*) 157.2 109.4 78.3 
  

1τ  *
0S  *

1S  TCS(S*) %ΔC  *
0S  *

1S  TCS(S*) %ΔC  *
0S  *

1S  TCS(S*) %ΔC  

0.1 6 1 121.7 -29.2% 5 1 85.0 -28.8% 4 1 62.3 -25.7% 

0.2 5 1 139.1 -13.0% 4 1 100.7 -8.6% 3 2 70.0 -11.9% 

0.3 4 1 151.0 -4.1% 4 1 113.2 3.4% 4 2 72.2 -8.4% 

0.4 4 1 158.7 0.9% 4 2 121.5 10.0% 4 2 75.0 -4.4% 

0.5 3 1 164.8 4.6% 4 2 123.7 11.5% 4 2 78.8 0.6% 

0.6 3 1 169.7 7.4% 4 2 126.8 13.7% 4 2 82.6 5.2% 

0.7 3 1 173.6 9.5% 4 2 128.9 15.1% 4 2 86.4 9.3% 

0.8 4 1 177.5 11.4% 3 2 132.8 17.6% 4 2 90.9 13.8% 

0.9 3 1 178.3 11.9% 3 2 135.5 19.2% 4 2 95.3 17.8% 

1 2 1 181.7 13.5% 3 2 138.2 20.8% 4 2 99.4 21.2% 
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Table 2 
 Numerical results for 1m   and 40π   

P 5 10 20 
T* 0.60 0.68 0.85 
TCT(T*) 91.4 109.4 136.8 
 

1τ  *
0S  *

1S  TCS(S*) %ΔC  *
0S  *

1S  TCS(S*) %ΔC  *
0S  *

1S  TCS(S*) %ΔC  

0.1 5 1 76.9 -19.0% 5 1 85.0 -28.8% 5 1 100.6 -36.0% 

0.2 4 1 93.6 2.3% 4 1 100.7 -8.6% 4 1 114.8 -19.1% 

0.3 5 2 98.8 7.5% 4 1 113.2 3.4% 4 1 125.5 -9.0% 

0.4 5 2 102.1 10.4% 4 2 121.5 10.0% 4 1 134.4 -1.8% 

0.5 5 2 105.2 13.1% 4 2 123.7 11.5% 4 1 140.5 2.7% 

0.6 5 2 110.5 17.3% 4 2 126.8 13.7% 3 1 146.7 6.8% 

0.7 4 2 114.4 20.1% 4 2 128.9 15.1% 3 1 150.9 9.3% 

0.8 4 2 117.4 22.1% 3 2 132.8 17.6% 2 1 155.2 11.8% 

0.9 4 2 122.5 25.4% 3 2 135.5 19.2% 2 1 158.3 13.6% 

1 3 2 126.0 27.4% 3 2 138.2 20.8% 2 1 162.1 15.6% 
 
Table 3 
 Numerical results for 1m   and 10p   

π 20 40 60 
T* 1.00 0.68 0.58 
TCT(T*) 83.3 109.4 122.8 
 

1τ  *
0S  *

1S  TCS(S*) %ΔC  *
0S  *

1S  TCS(S*) %ΔC  *
0S  *

1S  TCS(S*) %ΔC  

0.1 4 1 68.4 -21.9% 5 1 85.0 -28.8% 7 1 101.6 -20.8% 

0.2 4 1 73.1 -14.1% 4 1 100.7 -8.6% 5 2 128.3 4.3% 

0.3 3 1 76.6 -8.8% 4 1 113.2 3.4% 5 2 132.5 7.3% 

0.4 3 1 79.5 -4.8% 4 2 121.5 10.0% 5 2 137.8 10.9% 

0.5 2 1 82.2 -1.4% 4 2 123.7 11.5% 4 2 145.0 15.3% 

0.6 2 1 84.0 0.8% 4 2 126.8 13.7% 5 2 151.6 19.0% 

0.7 2 1 85.3 2.3% 4 2 128.9 15.1% 4 2 158.9 22.7% 

0.8 2 1 86.8 4.0% 3 2 132.8 17.6% 4 2 165.3 25.8% 

0.9 2 1 87.7 5.0% 3 2 135.5 19.2% 4 2 172.3 28.8% 

1 1 1 88.6 5.9% 3 2 138.2 20.8% 4 2 178.5 31.2% 

 

Finally, based on the observed results, when both shortage 
unit cost and transportation time from the central 
warehouse to the retailers are high and the perishing unit 
cost is low, the (1,T) policy is preferred. Moreover, for 
fixed values of system parameters, there is a fixed value 
of transportation time from the central warehouse to the 
retailers for which the (1,T) policy outperforms the (S–1, 
S) policy. Further, as the lead time increases, this 
superiority is more pronounced. 

6.  Conclusions and Future Research 

In this paper, a two-echelon inventory system with a 
single perishable-on-the-shelf item was considered. The 
considered system consists of a central warehouse and a 
number of identical retailers. Two scenarios were 
investigated to deal with the inventory control of the 

system. In the first one (1, T) policy was employed, 
whereas in the second (S-1, S) policy was applied. When 
(1, T) policy is used for retailers, the central warehouse 
faces a deterministic demand. Therefore, the central 
warehouse can place its orders to the external supplier in 
such a way that these orders arrive at the central 
warehouse and are dispatched to the retailers at the same 
time. Consequently, the holding cost at the central 
warehouse is zero. This is an interesting advantage of 
employing (1, T) policy for multi-echelon inventory 
systems. Moreover, the system total cost rate of (1, T) 
policy is independent of the transportation time from the 
central warehouse to the retailers.  
Furthermore, a numerical study was carried out to 
compare two considered scenarios. Accordingly, for fixed 
values of system parameters, there is a fixed value of 
transportation time from the central warehouse to the 
retailers for which (1, T) policy is better than (S–1, S) 
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policy. Further, as the lead time increases this superiority 
is more pronounced. 
An attractive direction for future research is to develop 
(1, T) policy to deal with a two-echelon inventory system 
with non-identical retailers. Furthermore, considering a 
model from which the items start to age at the central 
warehouse would be another challenging direction. Such a 
model is more complex than ours, since the retailers 
concern the items with stochastic shelflife. Considering 
the ordering cost is also important and would be a 
challenge for future research. 

Appendix A. Proof of Proposition 1 

We should obtain the total cost rate for Tm  . To do 
this, we can interpret the inventory problem at the 
retailers as a D/M/1 queue with impatient customers, a 
single channel queueing system in which the inter-arrival 
times are constant, equal to ܶ, the service times have 
exponential distribution with mean 1/μ1, and a customer 
(items in inventory system) leaves the queue system 
whenever his sojourn time is larger than m. It is clear that 
the number of customers (units) in this queueing system is 
equal to the inventory on hand in our inventory system. 
Let qW  denote the queue waiting time of an arriving 
customer (item) in the queueing system in steady state, 

sW  denote a customer (item) average waiting time in the 

queueing system in steady state, S denote the random 
variable of the required service time of a customer (item) 
in steady state, and S  represent the random variable of 
the occurred service time of a customer (item) in steady 
state. Consequently, using this queueing system, the total 
cost rate of the considered inventory system is obtained as 
follows. 

It is clear that 0qW  for Tm  . Thus we have 









mSifm
mSifS

S ,                (A.1) 

From (A.1), it is clear that 

)(SEWs                   (A.2) 

Using Little’s formula and (A.2), the long-run average 
number of units at a retailer is obtained as 

1
( )E SI
T

  

Hence, 

1 1 1 1
( )E SH h I h
T

                  (A.3) 

Since 0qW , the probability that an item is perished at 
the retailers is obtained as follows. 

1Pr( ) mS m e      

Therefore, the proportion of products that is perished in a 

retailer is 
T
α

. Thus  

1mp peOC
T T

 

                  (A.4) 

Furthermore, the proportion of time that the inventory 
system is out of stock, 0P , could be interpreted as the 
proportion of time for which the server in queueing 
system is idle. Hence, 0 1 effectiveP    . Where in our 

case 1 T   and 1 ( )effective E S  . Therefore, 

T
SEP )(10                   (A.5) 

Since 0P  is the proportion of time that the system is out 

of stock, the proportion of demand that is lost is 0Pμ . 
Hence, 

1 0 1
( )(1 )E SP
T

                    (A.6) 

In addition, the amount of items purchased per time unit 
at the central warehouse is N T , Thus 

NcPC
T

                  (A.7) 

Form (A.3), (A.4), (A.6), and (A.7), the total cost rate of 
the system for Tm  can be written as: 

 
1

1

1 1

( ) ( )
(1 )

T

μ m

TC PC N OC Π H

c E S pe E S
N h πμ

T T T T



    

    
 
 
 

 
1

1 1 1

( )
( )

μ m
T c E S pe

TC N h πμ πμ
T T T



    
 
 
 

(A.8) 
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From (A.8), if 
1

1 1
( )( ) 0

mc E S peh
T T T






    , It 

is clear that *T . Moreover, if 
1

1 1
( )( ) 0

mc E S peh
T T T






    , evidently TTC  

is increasing with respect to T, also it is assumed that 
Tm  , thus mT * . Therefore, if *T , T* will be 

in the interval of (0,m]. 
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