
Multi-objective and Scalable Heuristic Algorithm for Workflow Task
Scheduling in Utility Grids

Vahid Khajehvanda,*, Hossein Pedramb, Mostafa Zandiehc

c Associate Professor, Department of Industrial Management, Shahid Beheshti University, G.C., Tehran, Iran
Received 12 September, 2012; Revised 29 January, 2013; Accepted 20 February, 2013

Abstract

 To use services transparently in a distributed environment, the Utility Grids develop a cyber-infrastructure. The parameters of the Quality
of Service such as the allocation-cost and makespan have to be dealt with in order to schedule workflow application tasks in the Utility
Grids. Optimization of both target parameters above is a challenge in a distributed environment and may conflict one another. We,
therefore, present a novel heuristic algorithm for scheduling a workflow application on Utility Grids. Our proposed algorithm optimizes the
allocation-cost and makespan in a scalable and very low runtime. The results of the wide-spread simulation indicate that the proposed
algorithm is scalable against an increase in the application size and task parallelism of the application. The proposed algorithm effectively
outperforms the current algorithms in terms of the allocation-cost, makespan and runtime scalability.
Keywords: Utility Grids, Resource Provisioning, Workflow Scheduling, Multi-objective Optimization, Scalability.

1. Introduction

Grid computing is capable of controlling a wide variety
of heterogeneous distributed resources to execute
computation and data intensive applications. Grid
computing has recently been oriented towards pay-as-
you-go models. In these models, the resource providers
receive fees from the users for presenting computing and
data services. That is why; the industry pioneers such as
IBM, HP, Intel and SUN with a large share in this
business are more inclined toward the grid computing.
IBM, for instance exploits “e-business on demand”
model, HP exploits “Adaptive enterprise” model and Sun
Microsystems apply to “pay-as-you-go” model Garg et al.
(2010). To conduct large-scale computations, the shared
distributed infrastructures create the grid environment
software and hardware resources. These infrastructures
proved to be efficient for executing applications in
sciences such as astronomy Katz et al. (2005), high
energy physics Deelman et al. (2002) and others.

To describe an application in a high level form
regardless of the distributed computing environment, the
workflow is the most common approach. A workflow is
represented in a “Direct Acyclic Graph” (DAG) with
nodes and edges representing the tasks and data
dependencies between the tasks, respectively. A DAG is
defined as G = (V, E), where V is a set of nodes, each
node representing a task, and E is a set of links, each link

representing the execution precedence order between two
tasks. For example, a link (i, j) ∈ E represents the
precedence constraint that task vi needs to be completed
before task vj starts. As a workflow may consist of sub-
workflows with multiple entries and exits so the first thing
to be done is to add two pseudo-tasks, a top task and a
bottom task, with zero execution time indicated by 0 and
n + 1, respectively. The top task spawns all actual entry
tasks of the workflow to be linked to a single node, while
the bottom task joins all actual exit tasks to a single node.

Once an application is transformed into the workflow
structure, a workflow management system such as
Pegasus Deelman et al. (2005) will be ready to control
and manage the execution of workflow on the distributed
infrastructure. In these environments, indeed, access to
the shared computational resources is carried out through
the queue-based Local Resource Management (LRM)
system.

A competition develops among users caused by the
resources-pricing policies so that users begin being
involved in a competition with one another only to gain a
resource with an affordable cost and an efficient
processing capability. Similarly, resource providers are
driven into a competition with one another to sell their
idle resource slots to the users in order to gain more
profits as well as enhance the resource utilization. The

a Assistant Professor, Department of Computer Engineering and Information Technology, Qazvin Branch, Islamic Azad University, Qazvin, Iran
bAssociate Professor, Department of Computer Engineering and Information Technology, Amirkabir University of Technology (Tehran Polytechnic),

Tehran, Iran

* Corresponding author E-mail: Khajehvand@qiau.ac.ir

Journal of Optimization in Industrial Engineering 14 (2014) 27-36

27

scheduling problem becomes highly complicated and NP-
complete Ullman (1975) in such an environment. It is
worth noting that the resource consumers and providers
are acting independently with conflicting aims. The
resource consumers seek the minimum time (makespan)
and allocation-cost for scheduling application, whereas
the resource providers seek the resource utilization gains.
Thus, the users’ main challenge in this environment, will
be scheduling a workflow application on the
heterogeneous resources. In this environment the users
have no explicit control on resources to minimize time
and allocation-cost.

There is a comprehensive introduction on the job
scheduling strategies (Feitelson et al, 1995; Feitelson et
al, 1997). Moreover, in Xhafa & Abraham (2010), the
computational models are surveyed for Grid scheduling
problems and their resolutions using the heuristic and
meta-heuristic approaches.

In the queue-based systems, the users submit the tasks
to the resource queues, whereas the resource allocation
will subsequently be conducted due to the strategy of
LRM system. In such systems neither has the user explicit
control on the allocating resources to the tasks nor can the
user optimize the performance. This delivered quality of
service to the users is known as the best effort QoS.

The alternative approach is one of the planning-based
systems Hovestadt et al. (2003). In these systems,
according to agreements the start time of the task can be
established in advance instead of the task waits in queue
in order to get access to the resource Czajkowski et al.
(2005). The above-mentioned agreements are based on an
abstract description, so-called “slot” so that the slots are
specified by the start time, the number of available
processors, the cost and the duration parameters. In this
paper, the planning-based system is exploited as the
resource management strategy.

Workflow scheduling algorithms are classified into two
main groups: best effort and QoS constraint based
scheduling Yu et al. (2008). The first group are further
classified into four groups: list scheduling heuristics (Yu
et al, 2005; Yu & Buyya, 2006; Falzon & Li 2010),
clustering heuristics Yu et al. (2008), task duplication
heuristics Yu et al. (2008) and guided random search Yu
et al, 2008; Topcuoglu et al, 2002; Falzon & Li 2012).
But in QoS-based, there are few works addressing
workflow scheduling with QoS. They mainly consider the
makespan or execution cost of the workflow as the major
QoS attribute. As a result, they are suitable for community
Grids, moreover, in utility Grids, there is much potential
to study the combinations of QoS attributes. The current
methods mostly are not designed with the aim of
minimizing the cost and time. Also, the scalability relative
to an increase in the workflow size, task parallelism and
heterogeneous resources is scarcely considered.

In Rblitz et al. (2004), a resource model is adopted
similar to the proposed model so that a client may seek
the possible start-times for executing a task on a resource.
This model differs from the proposed model so that in this

model, the resource provisioning takes place just for one
task on a single resource, whereas in the proposed model,
the resources are provisioned for the entire application
tasks. As the available resources are reported due to the
slots in order to find a possible solution, the whole
feasible and unfeasible combinations of the resource-slots
need to be checked.

There are three classes of approaches to the problem of
multi-objective scheduling Abrishami et al. (2012). The
first class of the approaches extends the definition of
optimality to pareto optimality (Singh et al, 2009; Jeannot
et al, 2012). The second one is bi-criteria scheduling
approaches, usually limited to optimizing two specific
objectives (Abrishami et al, 2012; Jeannot et al, 2012;
Dongara et al, 2007). The last one optimizes a linear
combination of multiple scheduling objectives with a
different weight value assigned to each one of them (Garg
et al, 2010; Singh et al, 2009). This last class assumes that
the user is able to specify the requirements in such a
model.

In Garg et al. (2012), a heuristic algorithm is presented
for scheduling many parallel applications on the Utility
Grids so that it can manage and optimize the cost-to-time
trade-off. This approach is close to the studies conducted
for this paper and its main difference from that of the
proposed approach lies scheduling the parallel
applications, whereas the approach adopted by present
paper is based on scheduling the workflow application.
Due to the data dependencies among tasks, scheduling the
workflow application becomes more complex than
scheduling the parallel application.

The main objective of the conventional workflow
scheduling is the minimization of the time. A large
number of the workflow-based scheduling algorithms rest
on the list-scheduling technique (Falzon et al, 2012;
Topcuoglu et al, 2002). According to this technique, a
rank is typically assigned to each application task, the
tasks are, subsequently, sorted and scheduled in a
descending order of the corresponding rank. The
Heterogeneous Earliest Finish Time (HEFT) algorithm
Topcouglu et al, (2002) is one of the most common list-
based workflow scheduling algorithms. To obtain the list-
scheduling, the HEFT takes the task runtime and the data
transfer between the tasks and the heterogeneity of the
resources into account. The HEFT schedules the
workflow application with a high performance in the
heterogeneous environment (Topcouglu et al, 2002;
Wieczorek et al, 2005).

 In Deelman et al. (2008), a study on the use of the
Cloud computing for the scientific workflow explores the
cost performance trade-off of the different execution
modes and resource provisioning plans. This approach
differs from the proposed approach, in that, it examines
cost performance trade-offs disregarding the minimization
of the multi-objective allocation-cost and makespan.

There is a handful of the different studies conducted on
the cost optimization of the workflow scheduling close to
the current paper’s study. In Singh et al. (2006), the

Vahid Khajehvand et al./ Multi-objective and Scalable Heuristic...

28

proposed genetic algorithm finds an optimized mapping
of the tasks to the resources minimizing both financial
cost and makespan. This approach developed in [19, 25]
presents the cost-based model in which the resource
providers advertise the available resource slots to the
users. To minimize the application makespan under the
minimum resource allocation-cost, the presented multi-
objective genetic algorithm is capable of provisioning a
subset of the resource slots. The main difference between
these cost minimization algorithms and our proposed
algorithm is that these minimization algorithms rely on a
cluster with homogeneous processors. Thus, in (Singh et
al, 2009; Singh et al, 2007), the entire resources possess
identical CPU ratings and cost processing whereas in the
proposed model, all resources are constituted of the
heterogeneous clusters with different processing cost and
CPU ratings in the real-world Utility Grids environments.
Hence, removing this resource homogeneity complicates
the identification of an appropriate resource selection.

Since the above-mentioned cost optimization
algorithms (Singh et al, 2009; Singh et al, 2007) are
genetic-based ones, the runtime takes a longer time. In
case, the slots’ characteristics undergo a change during
scheduling, the slots’ characteristics are to be updated and
a rescheduled resulting in a far longer runtime. Hence,
these approaches do not serve the purpose in the dynamic
environments such as the Grids.

This paper deals with developing a Workflow Planning
Cost-based (WPC) model in order to effectively schedule
an application in the Utility Grids so that the application
time and allocation-cost can be minimized. In fact, the
WPC model allows the users to make a trade-off between
an application time and allocation-cost. Next, a First-fit
Cost-Time Trade-off (FCTT) heuristic algorithm is
employed to solve the workflow scheduling problem. The
FCTT is a heuristic algorithm that schedules an
application in a form that both the time and the allocation-
cost can be optimized according to the trade-off factor. A
trade-off factor shows the preference of the allocation-
cost optimization to the turnaround-time. In Khajevand et
al. (2012), we presented a preliminary version of the
proposed algorithm so that it selects a task with a
minimum first fit cost-makespan objective function.
However, this paper was not considered the issue of
scalability with different workflow sizes, task parallelism
and heterogeneous resources. Finally, to study and
evaluate the efficiency of the proposed algorithm on the
proposed model, a handful of experiments have been
conducted and simulated. The main contributions of the
paper are as follows:

1) Developing a WPC model based on provisioning
the resources for scheduling a workflow, so that
the application makespan and allocation-cost can
be minimized.

2) Developing a multi-objective FCTT heuristic
algorithm based on the WPC model with the
following characteristics: (a) the scalability and a
better performance due to an increase in the

workflow size. (b) the scalability and a better
performance according to an increase in the degree
of the task parallelism.

The rest of this paper is organized as follows: Section
2 introduces a workflow planning problem and execution
environment. A proposed detailed model and heuristic
algorithm is described in Section 3. Section 4 involves a
simulation setup and its relevant experiments in order to
evaluate the efficiency of the proposed algorithm. In
Section 5, the results have been analysed statistically.
Finally, section 6 ends with a conclusion.

2. Workflow Planning Problem

To execute large-scale applications by developments in
computer science, the collaborative use of distributed
resources managed by different autonomous domains is
made possible. In this environment, the resources
available to these applications are shared between
multiple users, so the optimization of the throughput or
utilization of the resources is of importance.
Consequently, the user has no explicit control on the
allocation of resources; hence the performance of the
application will be unpredictable in advance. Similarly,
the resources do not take the users’ preferences into
consideration. Thus more advanced methods are needed
that would allow the resources to differentiate between
the users and deliver multiple qualities of service.

Performance optimization for applications in such a
distributed environment is a difficult problem.
Sometimes, offline methods such as manual negotiation
between resources and users are used for allowing users to
achieve the desired performance. However, these offline
methods are not scalable against an increase in the
application size and task parallelism of the application.

The user submits the application characteristics to the
application-level scheduler only to be executed on the
grid environment. The user expects to have his application
executed with the minimal time and allocation-cost.
Certainly, the users exploit trade-off factor in order to
show a preference for cost to time. In cases where this
factor is not specified by the users, the default trade-off
factor is considered as equal.

In fact, the application-level scheduler acts as a
mediator between the resource providers and users. Due
to the reports of the available slots obtained from the
resource providers, the application-level scheduler plans
the application. The entire slots exploited in planning the
application, will be submitted to LRM in order to
provision the resources. Each computational resource is
equipped with a number of the processors, the memory
and the network interfaces showing an independent
processing unit. The entire resources are fully-connected
while being capable of executing all application-tasks. All
of the computational resources can act as a service-
provider (site) for time-slots.

Journal of Optimization in Industrial Engineering 14 (2014) 27-36

29

The application-tasks will be non-preemptively
executed, so that one or a multiple of computational
resources are exclusively applied to in order to be
executed in due time. We suppose that the application-
task performance models are clear on each resource. The
execution time of a certain task, therefore, may be
obtained from a certain resource due to application
performance models. Also, the execution of a single task
consists of three phases: (a) the input data retrieval from
the resource executing the immediate predecessors of the
task (b) the task execution and (c) the output data
communication from the current resources to the
resources presumed to execute successors of the task.

In this paper, the remote I/O (on demand) strategy
Deelman et al. (2008) has been used to transfer the data
between the application tasks. According to this strategy,
the output data of a task from the resource executing the
task is transferred to the resource supposed to execute the
successor task. As the application tasks are assumed to be
rigid, eventually, processors in need are simultaneously
and exclusively handed over to desired task throughout
the execution time.

3. Proposed Model and Heuristic Algorithm

In general, the users are in need of two QoS: the
deadline and budget of their applications on the pay-per-
use services Yu et al. (2005). The users normally tend to
run their applications in as the minimum time and cost as
possible. Thus, a trade-off factor indicating the
significance of the cost to time will be used. In this
section, the issue of application scheduling will be stated
and the WPC model will be presented and then solved in
order to optimize the application cost-time trade-off.
Finally, a heuristic algorithm will be developed to conduct
the scalable application scheduling with the aim of
optimizing the cost and time.

3.1. The Proposed Multi-Objective Cost-Based Model

The execution model consists of a set of heterogeneous
consumers and resource providers where the consumers
seek to schedule their workflow applications with the
minimum cost and time. In this model, R is a set of
available heterogeneous resources and V is a set of the
tasks of the workflow application. Each resource consists
of a set of slots for executing the task vi.

Services have different processing capabilities which
are delivered with different prices. The time(vij) is the
normalized completion time of vi on the resource rj and
the cost(vij) is the normalized allocation-cost of vi on the
resource rj. The normalization matters since it is not clear
what value ranges the allocation-cost and finish time will
take in a given solution. The value of alpha (α) is a
number between 0 and 1 considered as a constant trade-
off factor. This trade-off factor shows the degree of the
significance of allocation cost to execution finish time.

The scheduling optimization problem seeks to generate
solution S, mapping every task vi to a suitable resource rj
to achieve the multi-objective cost-based metric defined
by

() (1) cos (), ,ij ij ij i jS time v t v v V r R          (1)

where normalized execution time (time) and
normalized allocation-cost (cost) are the normalized
versions of Execution Time (ET) and Allocation Cost
(AC), so that they are computed by

() min{ ()}
() ,

max{ ()} min{ ()}
j R

j Rj R

ij ijr
ij

ij ijrr

ET v ET v
time v

ET v ET v












 (2)

() min{ ()}
cos () .

max{ ()} min{ ()}
j R

j Rj R

ij ijr
ij

ij ijrr

AC v AC v
t v

AC v AC v












 (3)

Thus, the objective function of the application

scheduling problem is obtained through minimizing the
multi-objective cost-based metrics for the whole
application-tasks reached by

(1) 1min (), , .n j n jS v V r R     (4)

where vn+1 is an exit pseudo-task with zero execution
time and allocation cost. The application scheduling
problem involves mapping each task vi to the suitable slot
of the resource rj, so that the application makespan and
allocation-cost can be minimized. Upon the completion of
the whole application tasks, makespan and allocation-cost
will be computed. In the following section, a WPC-based
heuristic algorithm is presented to solve the workflow
scheduling problem as a whole.

3.2. The Proposed Heuristic Algorithm

The FCTT is an algorithm selecting the most
appropriate slots for each task according to the list-
scheduling ready to be executed. According to the HEFT
algorithm topcouglu et al. (2002), firstly, the list-
scheduling is obtained by the act of assigning a rank to
each task in the workflow using a bottom-up traversal, so
that, the child tasks are the first ones to be assigned a rank
prior to the parent tasks assignment Yu et al. (2005). The
rank of each task vi is defined by

  
()

()
() ,max

k i

i i

i
i ik kv succ v

w if succ v
Rank v w t Rank v otherwise



   
 (5)

where wi is the average runtime of the task vi on all the
resources in the system and tik is the average data-transfer
time between tasks vi and vk using the average bandwidth
and latency time between the resources in the system.
This task ranking system is derived from the HEFT
algorithm Yu et al. (2005). Then, the tasks are sorted by
ranking in a non-increasing manner that also ensures a

Vahid Khajehvand et al./ Multi-objective and Scalable Heuristic...

30

topological sort. Eventually, the FCTT algorithm selects a
task whose execution of all parents’ tasks is completed
from the obtained list scheduling in order to schedule the
task.

There are many choices for each task, only the choice
capable of minimizing the multi-objective cost metric of
Eq. (1) will be selected as the best solution. According to
the best solution, the Earliest Start Time (EST) needs to
be computed to execute immediate successor tasks and
this procedure will be carried on so long as the execution
of the whole application tasks will be finished.

The FCTT pseudo-code is presented in algorithm 1
operating according to the WPC model. The FCTT
algorithm obtains the list-scheduling, application
characteristic and the available list of the slots of all
resources as an input parameter (lines 1, 2). Moreover, the
EST is initialized with simulation current time (line 3).
The application-level scheduler carries out the planning of
each application task due to available slots list
characteristics with an eye on the multi-objective cost
metric presented in Eq. (1), (lines 4 to 14). Initially, a list
of unplanned tasks eligible to be executed is selected (line
5). Next, the eligible tasks are defined as the ones whose
parents’ tasks execution is completed. These very same
tasks have not been executed yet. The available slots list
of each resource is obtained by line 7. In line 8, the EST
of the task T on all the resources is computed. Eventually,
the Earliest Finish Time (EFT) of the task T is computed,
(line 9).

The EST is computed on the basis of the completion-
time of the latest parents tasks T. Next, the best slot
capable of executing the task is selected for each task T
on each resource. In cases, the selected resource does not
match with the resource executing the parents’ tasks, the
data-transfer time needs to be added to the EST.

 Once the best slot to execute task T is obtained on
each resource, the resource minimizing the multi-
objective cost metric in Eq. (1) will be selected as the best
resource (line 10). Now, it comes to allocating the task T
to a selected resource (line 11) as well as updating the
slots list of the selected resource (line 12). This procedure
needs to be continued as long as there still exists an
eligible task (lines 4 to 14). At the end of the completion
of the whole application tasks, the slots assigned to the
application tasks will be released.

4. Simulation Setup

To conduct an experimental evaluation of the
efficiency of algorithm 1, the GridSim [28, 29] is used to
simulate the application-level scheduler in the Utility
Grids environment. The Grids environment modelled in
this simulation consists of ten sites. These sites belong to
a subset of the European Data Grid (EDG) spread across
five interconnected countries via a high-speed network [1,
30]. The characteristics of the resources are shown in

table 1. The mean bandwidth value of the resources is 10
Gb/s with a mean latency time of 150 s.

The workload simulated on these sites follows the
workload model generated by Lublin Lublin et al. (2003).
The main purpose of the use of this model is to create a
realistic simulation environment where the tasks compete
with one another. Table 2 shows the workload parameters
values applied to in the Lublin model.

To conduct experiments, a parameterized graph
generator is used to create a synthetic workflow
application Topcouglu et al. (2002). Table 3 shows the
workflow application characteristics as in Singh et al.
(2009).

At this stage, the scheduling algorithm using the best-
effort QoS for scheduling, is simulated and tagged as the
BE. As the number of the resources is m and the resources
are heterogeneous in terms of CPU rating and allocating-
cost, a heuristic algorithm needs to be taken into account
to select a suitable resource in the best-effort QoS. In BE,
the exploited heuristic method selects a resource with the
minimum number of tasks in the waiting and running
queues. The majority of the resource management
systems make it possible for users to obtain the number of
the tasks in the waiting and running queues Singh et al.
(2009).

For our experiments, we use the GridSim to simulate
benchmark algorithms, testbed platform environment and
workload on an Intel Core 2 Duo CPU T9600, 2.80 GHz
computer.

Algorithm 1: The pseudo-code for the FCTT algorithm

Input:

A list-scheduling obtained from the HEFT algorithm
An application characteristics
The resource characteristics and the available slots to each
resource

Output: The workflow scheduling
1 Get the list of the available time slots for all resources
2 UnScheduledTask = get the list of the tasks which is sorted

by the rank obtained from the HEFT algorithm due to Eq.
(5).

3 Assign the simulation current time to the EST.
4 While UnScheduledTask is not empty do
5

EligibleTasks = select all tasks which executions of their
parents have been completed.

6 for each T in the EligibleTasks do
7 Acquire the available slots of each resource.
8 Compute the EST of the task T on each resource.
9 Compute the Earliest Finish Time (EFT) of the task

T according to best EST.
10

Find a Time Slot (TS) which is feasible for the task T
while minimizing the multi-objective cost-based
metrics defined by Eq. (1).

11 Allocate the task T to the TS on the resource r.
12 Update the list of available slots to the resource r.
13 end for
14 end while
15 Compute the makespan and allocation-cost of the

application.

Journal of Optimization in Industrial Engineering 14 (2014) 27-36

31

Table 1
Simulated EDG testbed resources

Site name (Location) Number
of CPUs Single CPU

rating(MIPS) Processing
cost(G$)

RAL(UK) 20 1140 0.0061
Imperial College(UK) 26 1330 0.1799
NorduGrid(Norway) 265 1176 0.0627

NIKHEF(Netherlands) 54 1166 0.0353
Lyon(France) 60 1320 0.1424
Milano(Italy) 135 1000 0.0024
Torina(Italy) 200 1330 1.856
Catania(Italy) 252 1200 0.1267
Padova(Italy) 65 1000 0.0032
Bologna(Italy) 100 1140 0.0069

Table 2
 Lublin workload model parameter values

Workload parameter Value
JobType Batch Jobs
Maximum number of CPUs
required by a job(p)

1000

uHi Log2(p)
uMed uHi-1.5
Other parameters As created by Lublin model

Table 3
Workflow application characteristics

Workflow characteristics Value
The number of tasks in the workflow application (n) 100

The average runtime of each task 1000 sec

The average number of processors per task 25

The average depth of the workflow graph n

The average number of tasks per level n

The mean value of data transfer among the tasks 1000 Gb

Table 4
The pattern of the test problems

Test problems I J K

p1 1 100 10
p2 25 25 10
p3 25 50 10
p4 25 100 10
p5 50 100 10
p6 75 100 10
p7 100 100 10
p8 25 200 10
p9 25 300 10

p10 25 500 10

An application scheduling algorithm using cost model

is presented by Singh (Singh et al, 2009; Singh et al,
2007). Their algorithm has provisioned a set of the slots to
optimize performance under the minimum allocation-cost
in order to execute application on the provisioned slots.
This cost-modelled algorithm makes a trade-off between
scheduling and allocation-cost based on trade-off factor.

After that, the scheduling takes place using a multi-
objective genetic algorithm Fonseca et al. (1993), as well
as simulating the algorithm. It is tagged as the MOGA for
brevity Singh (Singh et al, 2009; Singh et al, 2007).

The FCTT, the MOGA and the BE algorithms are
simulated and their performance is evaluated through
conducting a number of experiments. Finally, the results
from the algorithms are compared with one another. In the
next section, simulation the compared results will be
thoroughly analysed.

5. Analysis of Results

In this subsection, first test problems are generated in
Table 4. In this table, 10 test problems are generated
randomly. These problems are categorized based on the
number of required processors (I), the number of tasks (J)
and the number of available resources (K). Each test
problem is employed ten times and the average solution
values are obtained and used for performance evaluations.
In fact, Table 4 contains different values of these
parameters. In this table, according to the presented
characteristics in the section 3, a synthetic workflow
application is generated considering trade-off factor equal
to 0.5.

Then, the performance of the algorithms is studied on
numerous test problems through different metrics,
including makespan, allocation-cost, and runtime. The
proposed algorithm is called FCTT algorithm and is
compared with the MOGA and the BE algorithms Singh
(Singh et al, 2009; Singh et al, 2007).. To do so, Table 5
presents the outputs of the algorithms on different
considered metrics. In this table, for each test problem,
the first column show name of the test problems and the
rest columns present the outputs of the algorithms on the
metrics.

As the data are not of homogeneity of variance and
there is a small number of instances, so the parametric test
is not suitable. To compare the performance of
algorithms, therefore, we used a nonparametric test
known as Kruskal-Wallis. Table 6 statistically
investigates obtained information of Tables 5 (Hedges et
al, 1985; Wolfe et al, 1973). Obviously, in all of the
statistical tests the significant level is set as 0.05.

Besides, some figures are illustrated to show the
performance of the algorithms more explicitly. The first
group of these figures, from Fig.1 to Fig. 3, summarized
the manner outputs of the algorithms on the test problems
for all metrics graphically. In this figures, the Y-axis is
drawn in logarithmic scale to make the experiments
results discernible. Another group of the figures, from
Fig.4 to Fig.6, is dedicated to the visualization of the
statistical tests via boxplots of the outputs of the
algorithms on the metrics.

Now, according to these test problems and the three
considered metrics the proposed algorithm is compared
with the two other considered algorithms.

Vahid Khajehvand et al./ Multi-objective and Scalable Heuristic...

32

In last row of Table 5, the outputs of the algorithms on
the test problems are summarized via an average metric.
According to this average values, it is clear that for all
metrics, the proposed algorithms is superior. Moreover,
to have a better sense of performance of the algorithms,
Fig. 1 to Fig.3 are plotted for makespan, allocation-cost
and runtime, respectively. According to these figures, on
the makespan and allocation-cost FCTT and MOGA have
close manners and outperforms BE. However, in runtime
the proposed algorithm dominates the two other
algorithms considerably.

Besides non-statistical test, we need to have a
statistical test for comparing the algorithms. Table 6
shows a statistical comparison of the algorithms. This
table presents the P-values of the tests. In the statistical

hypothesis tests of this table, like any other hypothesis
tests, P-values are compared with the level of 0.05
significance. In case the null hypothesis is rejected (P-
value of the test becomes less than our considered
significant level), the boxplot will be assessed and the
superior algorithm will be determined. The MOGA
algorithm is proved to be better than BE algorithm [19,
25]. In order to prove that the proposed approach is more
effective than the MOGA and BE algorithms, we
performed a Kruskal-Wallis test between metrics of the
MOGA and proposed algorithms. Table 7 shows the
results of this test. Due to the table, the proposed
algorithm operates in two metrics- makespan and cost- the
same as the MOGA does. However, in terms of runtime,
the proposed algorithm shows a significant

difference to the MOGA algorithm
Table 5
The outputs of the algorithms on the metrics

Test
problems

BE

MOGA

Proposed Approach (FCTT)

Makespan Cost Runtime Makespan Cost runtime Makespan Cost Runtime
p1 38 185488 67033

16 8273 182380

16 5266 70
p2 199 890175 72421 50 51552 125317 47 29959 43
p3 455 1817690 207761 67 111106 179351 56 87689 71
p4 967 3116929 507615 83 243622 188335 72 170474 83
p5 2573 5944557 3222543 136 324209 169125 135 340184 86
p6 3889 7186587 7245006 352 1250115 178488 319 533121 55
p7 3944 9014009 5834740 352 4163217 163963 406 1188330 72
p8 2081 5200360 2423552 99 457395 266074 85 422030 202
p9 2092 7746812 2460495 108 632793 384885 98 474088 315
p10 4027 10100000 9851479 122 1246753 4233005 98 857269 735
Average 2026.5 5120261 3189265 138.5 848904 607092 133.2 410841 173.2

Fig. 1. comparision of the three algorithms on the makespan through test problems

Fig. 2. comparision of the three algorithms on the allocation-cost through test problems

1
10

100
1000

10000

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

M
ak

es
pa

n

Test problems

BE MOGA FCTT

1

100

10000

1000000

100000000

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Al
lo

ca
tio

n-
co

st

Test problems

BE MOGA FCTT

Journal of Optimization in Industrial Engineering 14 (2014) 27-36

33

Fig. 3. comparision of the three algorithms on the runtime through test problems

Table 6
Summary of Kruskal-Wallis test for different metrics of three algorithm according to Table 5

 Metrics Kruskal-Wallis
 P-value Result

Makespan 0.003 H0 is rejected
Cost 0.002 H0 is rejected

Runtime 0.000 H0 is rejected

Table7
Summary of Kruskal-Wallis test for different metrics of the MOGA and FCTT algorithms according to Table 5

 Metrics Kruskal-Wallis
 P-value Result

Makespan 0.0623 H١ is rejected
Cost 0.545 H١ is rejected

Runtime 0.000 H0 is rejected

FCCTMOGABE

4000

3000

2000

1000

0

M
ak

es
pa

n

Fig. 4. Makespan boxplot of the three algorithms on the test problems

1

100

10000

1000000

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10Ru
nt

im
e

of
 e

xe
cu

tio
n

Test problems

BE MOGA FCTT

Vahid Khajehvand et al./ Multi-objective and Scalable Heuristic...

34

FCTTMOGABE

10000000

8000000

6000000

4000000

2000000

0

A
llo

ca
tio

n-
co

st

Fig. 5. Allocation-cost boxplot of the three algorithms on the test problems

6. Conclusion

The present paper involves designing, implementing and
evaluating the FCTT heuristic algorithm for scheduling a
workflow application. The paper seeks to optimize the
multi-objective cost-time based on the proposed WPC
model. To develop a real distributed environment, the
resources workload is simulated based on the Lublin model.
Due to many experiments conducted on a generated
syntactic workflow, it was shown that the FCTT heuristic
algorithm is far more effective than the

FCTTMOGABE

10000000

8000000

6000000

4000000

2000000

0

R
un

tim
e

of
 A

lg
or

ith
m

s

Fig. 6. Runtime boxplot of the three algorithms on the test problems

existing algorithms in terms of the cost-time optimization

and scalability for scheduling the workflow application.
To determine the impact of the workflow size and task

size on the allocation-cost, makespan and runtime in terms
of the number of the application tasks, in this paper, a few
experiments were conducted. Next, it is followed by an
analysis of a comparison between the FCTT, MOGA and
BE algorithms. This comparison includes both
environments, the statistical and the non-statistical test.
Moreover, in the statistical part, a non-parametric test is
conducted.

As a result, it is shown the FCTT algorithm is scalable
due to an increase in the workflow tasks as well as capable

of scheduling huge workflow applications with the lowest
runtime in the heterogeneous environment. However, in
terms of runtime, the proposed algorithm shows a
significant difference to the existing algorithms.

References

[1] Abrishami, S. Naghibzadeh, M. and Epema, D. H. (2012),

"Cost-driven scheduling of grid workflows using partial
critical paths," Parallel and Distributed Systems, IEEE
Transactions on, vol. 23, pp. 1400-1414.

[2] Buyya R. and Murshed, M. (2002), "Gridsim: A toolkit for
the modeling and simulation of distributed resource
management and scheduling for grid computing,"
Concurrency and Computation: Practice and Experience, vol.
14, pp. 1175-1220.

[3] Czajkowski, K. Foster, I. and Kesselman, C. (2005),
"Agreement-based resource management," Proceedings of
the IEEE, vol. 93, pp. 631-643.

[4] Deelman, E. Kesselman, C. Mehta, G. Meshkat, L. Pearlman,
L. Blackburn, K. et al., (2002), "GriPhyN and LIGO,
building a virtual data grid for gravitational wave scientists,"
in 11th IEEE International Symposium on High Performance
Distributed Computing (HPDC-11), Edinburgh, Scotland,
UK.

[5] Deelman, E. Singh, G. Su, M. H. Blythe, J. Gil, Y.
Kesselman, C., et al., (2005), "Pegasus: A framework for
mapping complex scientific workflows onto distributed
systems," Scientific Programming, vol. 13, pp. 219-237.

[6] Deelman, E., Singh, G., Livny, M., Berriman, B. and Good,
J. (2008), "The cost of doing science on the cloud: the
montage example," in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, NJ, USA , pp. 1-12.

[7] Dongarra, J. J. Jeannot, E. Saule, E. and Shi, Z. (2007), "Bi-
objective scheduling algorithms for optimizing makespan
and reliability on heterogeneous systems," in Proceedings of

Journal of Optimization in Industrial Engineering 14 (2014) 27-36

35

the nineteenth annual ACM symposium on Parallel
algorithms and architectures, pp. 280-288.

[8] Falzon, G. and Li, M. (2012), "Enhancing genetic algorithms
for dependent job scheduling in grid computing
environments," The Journal of Supercomputing, vol. 62, pp.
290-314.

[9] Falzon, G. and Li, M., (2012), "Enhancing list scheduling
heuristics for dependent job scheduling in grid computing
environments," The Journal of Supercomputing, vol. 59, pp.
104-130.

[10] Feitelson, D. and Rudolph, L. (1995), "Parallel job
scheduling: Issues and approaches," in 1st Workshop on Job
Scheduling Strategies for Parallel Processing, Santa Barbara,
CA, pp. 1-18.

[11] Feitelson, D. Rudolph, L. Schwiegelshohn, U. Sevcik, K.
andWong, P. (1997), "Theory and practice in parallel job
scheduling," in 3rd Workshop on Job Scheduling Strategies
for Parallel Processing, Geneva, Switzerland, pp. 1-34.

[12] Fonseca, C. M. and Fleming, P. J. (2005), "Genetic
algorithms for multiobjective optimization: Formulation,
discussion and generalization," in Proceedings of the 5th
International Conference on Genetic Algorithms, Urbana-
Champaign, IL, USA, 1993, pp. 416–423.

[13] Garg, S. K. Buyya, R. andSiegel, H. J., (2010), "Time and
cost trade-off management for scheduling parallel
applications on Utility Grids," Future Generation Computer
Systems, vol. 26, pp. 1344-1355.

[14] Hedges, L. V. Olkin, I. and Statistiker, M. (1985), "Statistical
methods for meta-analysis," ed: Academic Press New York.

[15] Hoschek, W. Jaen-Martinez, J., Samar, A., Stockinger, H.
and Stockinger, K. (2000), "Data management in an
international data grid project," in Grid Computing - GRID
2000: First IEEE/ACM International Workshop, Bangalore,
India, , pp. 333-361.

[16] Hovestadt, M. Kao, O. Keller, A. and Streit, A. (2003),
"Scheduling in HPC resource management systems: Queuing
vs. planning," in 9th Workshop on Job Scheduling Strategies
for Parallel Processing, Seattle, WA, pp. 1-20.

[17] Jeannot, E. Saule, E. and Trystram, D. (2012), "Optimizing
performance and reliability on heterogeneous parallel
systems: Approximation algorithms and heuristics," Journal
of Parallel and Distributed computing, vol. 72, pp. 268-280.

[18] Katz, D. S. acob, J. C. J., Berriman, G. B. Good, J. Laity, A.
C., Deelman, E. et al., (2005), "A comparison of two
methods for building astronomical image mosaics on a grid,"
in proceedings of the 34th International Conference on
Parallel Processing Workshops (ICPP 2005 Workshops),
Oslo, Norway.

[19] Khajevand, V. Pedram, H. and Zandieh, M. (2012),
"Provisioning-Based Resource Management for Effective
Workflow Scheduling on Utility Grids," in Cluster, Cloud
and Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, Ottawa, Canada, pp. 719-720.

[20] Lublin, U. and Feitelson, D. G. (2003), "The workload on
parallel supercomputers: modeling the characteristics of rigid

jobs," Journal of Parallel and Distributed Computing, vol. 63,
pp. 1105-1122.

[21] Rbِlitz, T. Schintke, F. and Wendler, J. (2004), "Elastic Grid
reservations with user-defined optimization policies," in
Proceedings of the Workshop on Adaptive Grid Middleware,
Antibes Juan-les-Pins, France.

[22] Singh, G., Kesselman, C. and Deelman, E. (2006),
"Application-level resource provisioning on the grid," in E-
SCIENCE '06 Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing Amsterdam,
The Netherlands, pp. 83-83.

[23] Singh, G. Kesselman, C. and Deelman, E. (2007), "A
provisioning model and its comparison with best-effort for
performance-cost optimization in grids," in Proceedings of
the 16th international symposium on High performance
distributed computing, Monterey, CA, USA, pp. 117-126.

[24] Singh, G. Kesselman, C. and Deelman, E. (2009), "An end-
to-end framework for provisioning-based resource and
application management," Systems Journal, IEEE, vol. 3, pp.
25-48.

[25] Sulistio, A. Cibej, U. Venugopal, S. Robic, B. and Buyya, R.
(2008), "A toolkit for modelling and simulating data Grids:
an extension to GridSim," Concurrency and Computation:
Practice and Experience, vol. 20, pp. 1591-1609.

[26] Topcuoglu, H., Hariri, S., and Wu, M., (2002),
"Performance-effective and low-complexity task scheduling
for heterogeneous computing," IEEE Transactions on
Parallel and Distributed Systems, vol. 13, pp. 260-274.

[27] Ullman, J. D. (1975), "NP-complete scheduling problems,
"Journal of Computer and System Sciences, vol. 10, pp. 384-
393.

[28] Wieczorek, M. Prodan, R. andFahringer, T. (2005),
"Scheduling of scientific workflows in the ASKALON grid
environment," ACM SIGMOD Record, vol. 34, pp. 56-62.

[29] Wolfe, D. A., Hollander, M., (1973), "Nonparametric
statistical methods," Nonparametric statistical methods.

[30] Xhafa, F. and Abraham, A. (2010), "Computational models
and heuristic methods for Grid scheduling problems," Future
Generation Computer Systems, vol. 26, pp. 608-621.

[31] Yu, J. and Buyya, R., (2005), "A taxonomy of workflow
management systems for grid computing," Journal of Grid
Computing, vol. 3, pp. 171-200.

[32] Yu, J. and Buyya, R. (2006), "Scheduling scientific
workflow applications with deadline and budget constraints
using genetic algorithms," Scientific Programming, vol. 14,
pp. 217-230.

[33] Yu, J., Buyya, R. and Ramamohanarao, K. (2008),
"Workflow scheduling algorithms for grid computing,"
Technical Report, Grids-TR-2007-10, Grid Computing and
Distributed Systems Laboratory, The University of
Melbourne, Australia.

[34] Yu, J. Buyya, R. and Tham, C. K. (2005), "Cost-based
scheduling of scientific workflow application on utility
grids," in First International Conference on e-Science and
Grid Technologies (e-Science'05), Melbourne, Australia, pp.
140-147..

Vahid Khajehvand et al./ Multi-objective and Scalable Heuristic...

36

