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Abstract 

 To use services transparently in a distributed environment, the Utility Grids develop a cyber-infrastructure. The parameters of the Quality 
of Service such as the allocation-cost and makespan have to be dealt with in order to schedule workflow application tasks in the Utility 
Grids. Optimization of both target parameters above is a challenge in a distributed environment and may conflict one another. We, 
therefore, present a novel heuristic algorithm for scheduling a workflow application on Utility Grids. Our proposed algorithm optimizes the 
allocation-cost and makespan in a scalable and very low runtime. The results of the wide-spread simulation indicate that the proposed 
algorithm is scalable against an increase in the application size and task parallelism of the application. The proposed algorithm effectively 
outperforms the current algorithms in terms of the allocation-cost, makespan and runtime scalability. 
Keywords: Utility Grids, Resource Provisioning, Workflow Scheduling, Multi-objective Optimization, Scalability. 

1. Introduction 

Grid computing is capable of controlling a wide variety 
of heterogeneous distributed resources to execute 
computation and data intensive applications. Grid 
computing has recently been oriented towards pay-as-
you-go models. In these models, the resource providers 
receive fees from the users for presenting computing and 
data services. That is why; the industry pioneers such as 
IBM, HP, Intel and SUN with a large share in this 
business are more inclined toward the grid computing. 
IBM, for instance exploits “e-business on demand” 
model, HP exploits “Adaptive enterprise” model and Sun 
Microsystems apply to “pay-as-you-go” model Garg et al. 
(2010). To conduct large-scale computations, the shared 
distributed infrastructures create the grid environment 
software and hardware resources. These infrastructures 
proved to be efficient for executing applications in 
sciences such as astronomy Katz et al. (2005), high 
energy physics Deelman et al. (2002) and others.  

To describe an application in a high level form 
regardless of the distributed computing environment, the 
workflow is the most common approach. A workflow is 
represented in a “Direct Acyclic Graph” (DAG) with 
nodes and edges representing the tasks and data 
dependencies between the tasks, respectively. A DAG is 
defined as G = (V, E), where V is a set of nodes, each 
node representing a task, and E is a set of links, each link  

 
 
 
 

representing the execution precedence order between two 
tasks. For example, a link (i, j) ∈ E represents the 
precedence constraint that task vi needs to be completed 
before task vj starts. As a workflow may consist of sub-
workflows with multiple entries and exits so the first thing 
to be done is to add two pseudo-tasks, a top task and a 
bottom task, with zero execution time indicated by 0 and 
n + 1, respectively. The top task spawns all actual entry 
tasks of the workflow to be linked to a single node, while 
the bottom task joins all actual exit tasks to a single node.  

Once an application is transformed into the workflow 
structure, a workflow management system such as 
Pegasus Deelman et al. (2005) will be ready to control 
and manage the execution of workflow on the distributed 
infrastructure. In these environments, indeed, access to 
the shared computational resources is carried out through 
the queue-based Local Resource Management (LRM) 
system. 

A competition develops among users caused by the 
resources-pricing policies so that users begin being 
involved in a competition with one another only to gain a 
resource with an affordable cost and an efficient 
processing capability. Similarly, resource providers are 
driven into a competition with one another to sell their 
idle resource slots to the users in order to gain more 
profits as well as enhance the resource utilization. The 
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scheduling problem becomes highly complicated and NP-
complete Ullman (1975) in such an environment. It is 
worth noting that the resource consumers and providers 
are acting independently with conflicting aims. The 
resource consumers seek the minimum time (makespan) 
and allocation-cost for scheduling application, whereas 
the resource providers seek the resource utilization gains. 
Thus, the users’ main challenge in this environment, will 
be scheduling a workflow application on the 
heterogeneous resources. In this environment the users 
have no explicit control on resources to minimize time 
and allocation-cost.                       

There is a comprehensive introduction on the job 
scheduling strategies (Feitelson et al, 1995; Feitelson et 
al, 1997). Moreover, in  Xhafa & Abraham (2010), the 
computational models are surveyed for Grid scheduling 
problems and their resolutions using the heuristic and 
meta-heuristic approaches. 

In the queue-based systems, the users submit the tasks 
to the resource queues, whereas the resource allocation 
will subsequently be conducted due to the strategy of 
LRM system. In such systems neither has the user explicit 
control on the allocating resources to the tasks nor can the 
user optimize the performance. This delivered quality of 
service to the users is known as the best effort QoS.  

The alternative approach is one of the planning-based 
systems Hovestadt et al. (2003). In these systems, 
according to agreements the start time of the task can be 
established in advance instead of the task waits in queue 
in order to get access to the resource Czajkowski et al. 
(2005). The above-mentioned agreements are based on an 
abstract description, so-called “slot” so that the slots are 
specified by the start time, the number of available 
processors, the cost and the duration parameters. In this 
paper, the planning-based system is exploited as the 
resource management strategy. 

Workflow scheduling algorithms are classified into two 
main groups: best effort and QoS constraint based 
scheduling Yu et al. (2008). The first group are further 
classified into four groups: list scheduling heuristics (Yu 
et al, 2005; Yu & Buyya, 2006; Falzon & Li 2010), 
clustering heuristics Yu et al. (2008), task duplication 
heuristics Yu et al. (2008) and guided random search Yu 
et al, 2008; Topcuoglu et al, 2002; Falzon & Li 2012). 
But in QoS-based, there are few works addressing 
workflow scheduling with QoS. They mainly consider the 
makespan or execution cost of the workflow as the major 
QoS attribute. As a result, they are suitable for community 
Grids, moreover, in utility Grids, there is much potential 
to study the combinations of QoS attributes. The current 
methods mostly are not designed with the aim of 
minimizing the cost and time. Also, the scalability relative 
to an increase in the workflow size, task parallelism and 
heterogeneous resources is scarcely considered.  

In Rblitz et al. (2004), a resource model is adopted 
similar to the proposed model so that a client may seek 
the possible start-times for executing a task on a resource. 
This model differs from the proposed model so that in this 

model, the resource provisioning takes place just for one 
task on a single resource, whereas in the proposed model, 
the resources are provisioned for the entire application 
tasks. As the available resources are reported due to the 
slots in order to find a possible solution, the whole 
feasible and unfeasible combinations of the resource-slots 
need to be checked.  

There are three classes of approaches to the problem of 
multi-objective scheduling Abrishami et al. (2012). The 
first class of the approaches extends the definition of 
optimality to pareto optimality (Singh et al, 2009; Jeannot 
et al, 2012). The second one is bi-criteria scheduling 
approaches, usually limited to optimizing two specific 
objectives (Abrishami et al, 2012; Jeannot et al, 2012; 
Dongara et al, 2007). The last one optimizes a linear 
combination of multiple scheduling objectives with a 
different weight value assigned to each one of them (Garg 
et al, 2010; Singh et al, 2009). This last class assumes that 
the user is able to specify the requirements in such a 
model. 

In Garg et al. (2012), a heuristic algorithm is presented 
for scheduling many parallel applications on the Utility 
Grids so that it can manage and optimize the cost-to-time 
trade-off. This approach is close to the studies conducted 
for this paper and its main difference from that of the 
proposed approach lies scheduling the parallel 
applications, whereas the approach adopted by present 
paper is based on scheduling the workflow application. 
Due to the data dependencies among tasks, scheduling the 
workflow application becomes more complex than 
scheduling the parallel application. 

The main objective of the conventional workflow 
scheduling is the minimization of the time. A large 
number of the workflow-based scheduling algorithms rest 
on the list-scheduling technique (Falzon et al, 2012; 
Topcuoglu et al, 2002). According to this technique, a 
rank is typically assigned to each application task, the 
tasks are, subsequently, sorted and scheduled in a 
descending order of the corresponding rank. The 
Heterogeneous Earliest Finish Time (HEFT) algorithm 
Topcouglu et al, (2002) is one of the most common list-
based workflow scheduling algorithms. To obtain the list-
scheduling, the HEFT takes the task runtime and the data 
transfer between the tasks and the heterogeneity of the 
resources into account. The HEFT schedules the 
workflow application with a high performance in the 
heterogeneous environment (Topcouglu et al, 2002; 
Wieczorek et al, 2005). 

 In Deelman et al. (2008), a study on the use of the 
Cloud computing for the scientific workflow explores the 
cost performance trade-off of the different execution 
modes and resource provisioning plans. This approach 
differs from the proposed approach, in that, it examines 
cost performance trade-offs disregarding the minimization 
of the multi-objective allocation-cost and makespan.  

There is a handful of the different studies conducted on 
the cost optimization of the workflow scheduling close to 
the current paper’s study. In Singh et al. (2006), the 
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proposed genetic algorithm finds an optimized mapping 
of the tasks to the resources minimizing both financial 
cost and makespan. This approach developed in [19, 25] 
presents the cost-based model in which the resource 
providers advertise the available resource slots to the 
users. To minimize the application makespan under the 
minimum resource allocation-cost, the presented multi-
objective genetic algorithm is capable of provisioning a 
subset of the resource slots. The main difference between 
these cost minimization algorithms and our proposed 
algorithm is that these minimization algorithms rely on a 
cluster with homogeneous processors. Thus, in (Singh et 
al, 2009; Singh et al, 2007), the entire resources possess 
identical CPU ratings and cost processing whereas in the 
proposed model, all resources are constituted of the 
heterogeneous clusters with different processing cost and 
CPU ratings in the real-world Utility Grids environments. 
Hence, removing this resource homogeneity complicates 
the identification of an appropriate resource selection.  

Since the above-mentioned cost optimization 
algorithms (Singh et al, 2009; Singh et al, 2007) are 
genetic-based ones, the runtime takes a longer time. In 
case, the slots’ characteristics undergo a change during 
scheduling, the slots’ characteristics are to be updated and 
a rescheduled resulting in a far longer runtime. Hence, 
these approaches do not serve the purpose in the dynamic 
environments such as the Grids. 

This paper deals with developing a Workflow Planning 
Cost-based (WPC) model in order to effectively schedule 
an application in the Utility Grids so that the application 
time and allocation-cost can be minimized. In fact, the 
WPC model allows the users to make a trade-off between 
an application time and allocation-cost. Next, a First-fit 
Cost-Time Trade-off (FCTT) heuristic algorithm is 
employed to solve the workflow scheduling problem. The 
FCTT is a heuristic algorithm that schedules an 
application in a form that both the time and the allocation-
cost can be optimized according to the trade-off factor. A 
trade-off factor shows the preference of the allocation-
cost optimization to the turnaround-time. In Khajevand et 
al. (2012), we  presented a preliminary version of the 
proposed algorithm so that it selects a task with a 
minimum first fit cost-makespan objective function. 
However, this paper was not considered the issue of 
scalability with different workflow sizes, task parallelism 
and heterogeneous resources. Finally, to study and 
evaluate the efficiency of the proposed algorithm on the 
proposed model, a handful of experiments have been 
conducted and simulated. The main contributions of the 
paper are as follows: 

1) Developing a WPC model based on provisioning 
the resources for scheduling a workflow, so that 
the application makespan and allocation-cost can 
be minimized. 

2) Developing a multi-objective FCTT heuristic 
algorithm based on the WPC model with the 
following characteristics: (a) the scalability and a 
better performance due to an increase in the 

workflow size. (b) the scalability and a better 
performance according to an increase in the degree 
of the task parallelism.   

The rest of this paper is organized as follows:  Section 
2 introduces a workflow planning problem and execution 
environment. A proposed detailed model and heuristic 
algorithm is described in Section 3. Section 4 involves a 
simulation setup and its relevant experiments in order to 
evaluate the efficiency of the proposed algorithm. In 
Section 5, the results have been analysed statistically. 
Finally, section 6 ends with a conclusion. 

2. Workflow Planning Problem 

To execute large-scale applications by developments in 
computer science, the collaborative use of distributed 
resources managed by different autonomous domains is 
made possible. In this environment, the resources 
available to these applications are shared between 
multiple users, so the optimization of the throughput or 
utilization of the resources is of importance. 
Consequently, the user has no explicit control on the 
allocation of resources; hence the performance of the 
application will be unpredictable in advance. Similarly, 
the resources do not take the users’ preferences into 
consideration. Thus more advanced methods are needed 
that would allow the resources to differentiate between 
the users and deliver multiple qualities of service.   

Performance optimization for applications in such a 
distributed environment is a difficult problem. 
Sometimes, offline methods such as manual negotiation 
between resources and users are used for allowing users to 
achieve the desired performance. However, these offline 
methods are not scalable against an increase in the 
application size and task parallelism of the application. 

The user submits the application characteristics to the 
application-level scheduler only to be executed on the 
grid environment. The user expects to have his application 
executed with the minimal time and allocation-cost. 
Certainly, the users exploit trade-off factor in order to 
show a preference for cost to time. In cases where this 
factor is not specified by the users, the default trade-off 
factor is considered as equal. 

In fact, the application-level scheduler acts as a 
mediator between the resource providers and users. Due 
to the reports of the available slots obtained from the 
resource providers, the application-level scheduler plans 
the application. The entire slots exploited in planning the 
application, will be submitted to LRM in order to 
provision the resources. Each computational resource is 
equipped with a number of the processors, the memory 
and the network interfaces showing an independent 
processing unit. The entire resources are fully-connected 
while being capable of executing all application-tasks. All 
of the computational resources can act as a service-
provider (site) for time-slots. 
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The application-tasks will be non-preemptively 
executed, so that one or a multiple of computational 
resources are exclusively applied to in order to be 
executed in due time. We suppose that the application-
task performance models are clear on each resource. The 
execution time of a certain task, therefore, may be 
obtained from a certain resource due to application 
performance models. Also, the execution of a single task 
consists of three phases: (a) the input data retrieval from 
the resource executing the immediate predecessors of the 
task (b) the task execution and (c) the output data 
communication from the current resources to the 
resources presumed to execute successors of the task.       

In this paper, the remote I/O (on demand) strategy 
Deelman et al. (2008) has been used to transfer the data 
between the application tasks. According to this strategy, 
the output data of a task from the resource executing the 
task is transferred to the resource supposed to execute the 
successor task. As the application tasks are assumed to be 
rigid, eventually, processors in need are simultaneously 
and exclusively handed over to desired task throughout 
the execution time. 

3. Proposed Model and Heuristic Algorithm 

In general, the users are in need of two QoS: the 
deadline and  budget of their applications on the pay-per-
use services Yu et al. (2005). The users normally tend to 
run their applications in as the minimum time and cost as 
possible. Thus, a trade-off factor indicating the 
significance of the cost to time will be used. In this 
section, the issue of application scheduling will be stated 
and the WPC model will be presented and then solved in 
order to optimize the application cost-time trade-off. 
Finally, a heuristic algorithm will be developed to conduct 
the scalable application scheduling with the aim of 
optimizing the cost and time.  

3.1. The Proposed Multi-Objective Cost-Based Model 

The execution model consists of a set of heterogeneous 
consumers and resource providers where the consumers 
seek to schedule their workflow applications with the 
minimum cost and time. In this model, R is a set of 
available heterogeneous resources and V is a set of the 
tasks of the workflow application. Each resource consists 
of a set of slots for executing the task vi. 

Services have different processing capabilities which 
are delivered with different prices. The time(vij) is the 
normalized completion time of vi on the resource rj and 
the cost(vij) is the normalized allocation-cost of vi on the 
resource rj. The normalization matters since it is not clear 
what value ranges the allocation-cost and finish time will 
take in a given solution. The value of alpha (α) is a 
number between 0 and 1 considered as a constant trade-
off factor. This trade-off factor shows the degree of the 
significance of allocation cost to execution finish time. 

The scheduling optimization problem seeks to generate 
solution S, mapping every task vi to a suitable resource rj 
to achieve the multi-objective cost-based metric defined 
by 

( ) (1 ) cos ( ), ,ij ij ij i jS time v t v v V r R                   (1) 

where normalized execution time (time) and 
normalized allocation-cost (cost) are the normalized 
versions of Execution Time (ET) and Allocation Cost 
(AC), so that they are computed by 
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Thus, the objective function of the application 

scheduling problem is obtained through minimizing the 
multi-objective cost-based metrics for the whole 
application-tasks reached by 

 

( 1) 1min ( ), , .n j n jS v V r R                                           (4) 

where vn+1 is an exit pseudo-task with zero execution 
time and allocation cost. The application scheduling 
problem involves mapping each task vi to the suitable slot 
of the resource rj, so that the application makespan and 
allocation-cost can be minimized. Upon the completion of 
the whole application tasks, makespan and allocation-cost 
will be computed. In the following section, a WPC-based 
heuristic algorithm is presented to solve the workflow 
scheduling problem as a whole. 

3.2. The Proposed Heuristic Algorithm 

The FCTT is an algorithm selecting the most 
appropriate slots for each task according to the list-
scheduling ready to be executed. According to the HEFT 
algorithm topcouglu et al. (2002), firstly, the list-
scheduling is obtained by the act of assigning a rank to 
each task in the workflow using a bottom-up traversal, so 
that, the child tasks are the first ones to be assigned a rank 
prior to the parent tasks assignment Yu et al. (2005). The 
rank of each task vi is defined by 

  

  
( )

( )
( ) ,max

k i

i i

i
i ik kv succ v

w if succ v
Rank v w t Rank v otherwise



   
 (5) 

where wi is the average runtime of the task vi on all the 
resources in the system and tik is the average data-transfer 
time between tasks vi and vk using the average bandwidth 
and latency time between the resources in the system. 
This task ranking system is derived from the HEFT 
algorithm Yu et al. (2005). Then, the tasks are sorted by 
ranking in a non-increasing manner that also ensures a 
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topological sort. Eventually, the FCTT algorithm selects a 
task whose execution of all parents’ tasks is completed 
from the obtained list scheduling in order to schedule the 
task. 

There are many choices for each task, only the choice 
capable of minimizing the multi-objective cost metric of 
Eq. (1) will be selected as the best solution. According to 
the best solution, the Earliest Start Time (EST) needs to 
be computed to execute immediate successor tasks and 
this procedure will be carried on so long as the execution 
of the whole application tasks will be finished. 

The FCTT pseudo-code is presented in algorithm 1 
operating according to the WPC model. The FCTT 
algorithm obtains the list-scheduling, application 
characteristic and the available list of the slots of all 
resources as an input parameter (lines 1, 2). Moreover, the 
EST is initialized with simulation current time (line 3). 
The application-level scheduler carries out the planning of 
each application task due to available slots list 
characteristics with an eye on the multi-objective cost 
metric presented in Eq. (1), (lines 4 to 14).  Initially, a list 
of unplanned tasks eligible to be executed is selected (line 
5). Next, the eligible tasks are defined as the ones whose 
parents’ tasks execution is completed. These very same 
tasks have not been executed yet. The available slots list 
of each resource is obtained by line 7. In line 8, the EST 
of the task T on all the resources is computed. Eventually, 
the Earliest Finish Time (EFT) of the task T is computed, 
(line 9). 

The EST is computed on the basis of the completion-
time of the latest parents tasks T. Next, the best slot 
capable of executing the task is selected for each task T 
on each resource. In cases, the selected resource does not 
match with the resource executing the parents’ tasks, the 
data-transfer time needs to be added to the EST. 

 Once the best slot to execute task T is obtained on 
each resource, the resource minimizing the multi-
objective cost metric in Eq. (1) will be selected as the best 
resource (line 10). Now, it comes to allocating the task T 
to a selected resource (line 11) as well as updating the 
slots list of the selected resource (line 12). This procedure 
needs to be continued as long as there still exists an 
eligible task (lines 4 to 14). At the end of the completion 
of the whole application tasks, the slots assigned to the 
application tasks will be released. 

4. Simulation Setup 

To conduct an experimental evaluation of the 
efficiency of algorithm 1, the GridSim [28, 29] is used to 
simulate the application-level scheduler in the Utility 
Grids environment. The Grids environment modelled in 
this simulation consists of ten sites.  These sites belong to 
a subset of the European Data Grid (EDG) spread across 
five interconnected countries via a high-speed network [1, 
30]. The characteristics of the resources are shown in 

table 1. The mean bandwidth value of the resources is 10 
Gb/s with a mean latency time of 150 s.  

The workload simulated on these sites follows the 
workload model generated by Lublin Lublin et al. (2003). 
The main purpose of the use of this model is to create a 
realistic simulation environment where the tasks compete 
with one another. Table 2 shows the workload parameters 
values applied to in the Lublin model.  

To conduct experiments, a parameterized graph 
generator is used to create a synthetic workflow 
application Topcouglu et al. (2002). Table 3 shows the 
workflow application characteristics as in Singh et al. 
(2009).  

At this stage, the scheduling algorithm using the best-
effort QoS for scheduling, is simulated and tagged as the 
BE. As the number of the resources is m and the resources 
are heterogeneous in terms of CPU rating and allocating-
cost, a heuristic algorithm needs to be taken into account 
to select a suitable resource in the best-effort QoS. In BE, 
the exploited heuristic method selects a resource with the 
minimum number of tasks in the waiting and running 
queues. The majority of the resource management 
systems make it possible for users to obtain the number of 
the tasks in the waiting and running queues Singh et al. 
(2009).  

For our experiments, we use the GridSim to simulate 
benchmark algorithms, testbed platform environment and 
workload on an Intel Core 2 Duo CPU T9600, 2.80 GHz 
computer. 

 
 

Algorithm 1: The pseudo-code for the FCTT algorithm 

Input: 
 

A list-scheduling obtained from the HEFT algorithm 
An application characteristics  
The resource characteristics and the available slots to each 
resource 

Output: The workflow scheduling 
1 Get the list of the available time slots for all resources 
2 UnScheduledTask = get the list of the tasks which is sorted 

by the rank obtained from the HEFT algorithm due to Eq. 
(5). 

3 Assign the simulation current time to the EST.   
4 While UnScheduledTask  is not empty do 
5 
 

 
 

EligibleTasks = select all tasks which executions of their 
parents have been completed. 

6  for each T in the EligibleTasks do 
7   Acquire the available slots of each resource.  
8   Compute the EST of the task T on each resource. 
9   Compute the Earliest Finish Time (EFT) of the task 

T according to best EST.  
10 
 

 
 

 
 

Find a Time Slot (TS) which is feasible for the task T 
while minimizing the multi-objective cost-based 
metrics defined by Eq. (1). 

11   Allocate the task T to the TS on the resource r.   
12   Update the list of available slots to the resource r. 
13  end for 
14 end while 
15 Compute the makespan and allocation-cost of the 

application. 
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Table 1 
Simulated EDG testbed resources 

Site name (Location) Number 
of CPUs  Single CPU 

rating(MIPS)  Processing 
cost(G$) 

RAL(UK) 20  1140  0.0061 
Imperial College(UK) 26  1330  0.1799 
NorduGrid(Norway) 265  1176  0.0627 

NIKHEF(Netherlands) 54  1166  0.0353 
Lyon(France) 60  1320  0.1424 
Milano(Italy) 135  1000  0.0024 
Torina(Italy) 200  1330  1.856 
Catania(Italy) 252  1200  0.1267 
Padova(Italy) 65  1000  0.0032 
Bologna(Italy) 100  1140  0.0069 

 
Table 2 
 Lublin workload model parameter values 

Workload parameter Value 
JobType Batch Jobs 
Maximum number of CPUs 
required by a job(p) 

1000 

uHi Log2(p) 
uMed uHi-1.5 
Other parameters As created by Lublin model 

 
Table 3 
Workflow application characteristics 

Workflow characteristics Value 
The number of tasks in the workflow application (n) 100 

The average runtime of each task 1000 sec 

The average number of processors per task 25 

The average depth of the workflow graph n  

The average number of tasks per level n  

The mean value of data transfer among the tasks 1000 Gb 
 

Table 4 
The pattern of the test problems 

Test problems I J K 

p1 1 100 10 
p2 25 25 10 
p3 25 50 10 
p4 25 100 10 
p5 50 100 10 
p6 75 100 10 
p7 100 100 10 
p8 25 200 10 
p9 25 300 10 

p10 25 500 10 
 
An application scheduling algorithm using cost model 

is presented by Singh (Singh et al, 2009; Singh et al, 
2007). Their algorithm has provisioned a set of the slots to 
optimize performance under the minimum allocation-cost 
in order to execute application on the provisioned slots. 
This cost-modelled algorithm makes a trade-off between 
scheduling and allocation-cost based on trade-off factor. 

After that, the scheduling takes place using a multi-
objective genetic algorithm Fonseca et al. (1993), as well 
as simulating the algorithm. It is tagged as the MOGA for 
brevity Singh (Singh et al, 2009; Singh et al, 2007). 

The FCTT, the MOGA and the BE algorithms are 
simulated and their performance is evaluated through 
conducting a number of experiments. Finally, the results 
from the algorithms are compared with one another. In the 
next section, simulation the compared results will be 
thoroughly analysed. 

5. Analysis of Results 

In this subsection, first test problems are generated in 
Table 4. In this table, 10 test problems are generated 
randomly. These problems are categorized based on the 
number of required processors (I), the number of tasks (J) 
and the number of available resources (K). Each test 
problem is employed ten times and the average solution 
values are obtained and used for performance evaluations. 
In fact, Table 4 contains different values of these 
parameters. In this table, according to the presented 
characteristics in the section 3, a synthetic workflow 
application is generated considering trade-off factor equal 
to 0.5. 

Then, the performance of the algorithms is studied on 
numerous test problems through different metrics, 
including makespan, allocation-cost, and runtime. The 
proposed algorithm is called FCTT algorithm and is 
compared with the MOGA and the BE algorithms Singh 
(Singh et al, 2009; Singh et al, 2007).. To do so, Table 5 
presents the outputs of the algorithms on different 
considered metrics. In this table, for each test problem, 
the first column show name of the test problems and the 
rest columns present the outputs of the algorithms on the 
metrics.  

As the data are not of homogeneity of variance and 
there is a small number of instances, so the parametric test 
is not suitable. To compare the performance of 
algorithms, therefore, we used a nonparametric test 
known as Kruskal-Wallis. Table 6 statistically 
investigates obtained information of Tables 5 (Hedges et 
al, 1985; Wolfe et al, 1973). Obviously, in all of the 
statistical tests the significant level is set as 0.05. 

Besides, some figures are illustrated to show the 
performance of the algorithms more explicitly. The first 
group of these figures, from Fig.1 to Fig. 3, summarized 
the manner outputs of the algorithms on the test problems 
for all metrics graphically. In this figures, the Y-axis is 
drawn in logarithmic scale to make the experiments 
results discernible. Another group of the figures, from 
Fig.4 to Fig.6, is dedicated to the visualization of the 
statistical tests via boxplots of the outputs of the 
algorithms on the metrics.  

Now, according to these test problems and the three 
considered metrics the proposed algorithm is compared 
with the two other considered algorithms.  
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In last row of Table 5, the outputs of the algorithms on 
the test problems are summarized via an average metric. 
According to this average values, it is clear that for all 
metrics, the proposed algorithms is superior.  Moreover, 
to have a better sense of performance of the algorithms, 
Fig. 1 to Fig.3 are plotted for makespan, allocation-cost 
and runtime, respectively. According to these figures, on 
the makespan and allocation-cost FCTT and MOGA have 
close manners and outperforms BE. However, in runtime 
the proposed algorithm dominates the two other 
algorithms considerably. 

Besides non-statistical test, we need to have a 
statistical test for comparing the algorithms. Table 6 
shows a statistical comparison of the algorithms. This 
table presents the P-values of the tests. In the statistical 

hypothesis tests of this table, like any other hypothesis 
tests, P-values are compared with the level of 0.05 
significance. In case the null hypothesis is rejected (P-
value of the test becomes less than our considered 
significant level), the boxplot will be assessed and the 
superior algorithm will be determined. The MOGA 
algorithm is proved to be better than BE algorithm [19, 
25]. In order to prove that the proposed approach is more 
effective than the MOGA and BE algorithms, we 
performed a Kruskal-Wallis test between metrics of the 
MOGA and proposed algorithms. Table 7 shows the 
results of this test. Due to the table, the proposed 
algorithm operates in two metrics- makespan and cost- the 
same as the MOGA does. However, in terms of runtime, 
the proposed algorithm shows a significant

difference to the MOGA algorithm 
Table 5 
The outputs of the algorithms on the metrics 

Test 
problems 

  

BE 

  

MOGA 

  

Proposed Approach (FCTT) 

Makespan Cost Runtime Makespan Cost runtime Makespan Cost Runtime 
p1 38 185488 67033 

 

16 8273 182380 

 

16 5266 70 
p2 199 890175 72421 50 51552 125317 47 29959 43 
p3 455 1817690 207761 67 111106 179351 56 87689 71 
p4 967 3116929 507615 83 243622 188335 72 170474 83 
p5 2573 5944557 3222543 136 324209 169125 135 340184 86 
p6 3889 7186587 7245006 352 1250115 178488 319 533121 55 
p7 3944 9014009 5834740 352 4163217 163963 406 1188330 72 
p8 2081 5200360 2423552 99 457395 266074 85 422030 202 
p9 2092 7746812 2460495 108 632793 384885 98 474088 315 
p10 4027 10100000 9851479 122 1246753 4233005 98 857269 735 
Average  2026.5 5120261 3189265  138.5 848904 607092  133.2 410841 173.2 

 
Fig. 1. comparision of the three algorithms on the makespan through test problems 

 
Fig. 2. comparision of the three algorithms on the allocation-cost through test problems 
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Fig. 3. comparision of the three algorithms on the runtime through test problems 

 
Table 6 
Summary of Kruskal-Wallis test for different metrics of three algorithm according to Table 5 

 Metrics  Kruskal-Wallis 
  P-value Result 

Makespan  0.003 H0 is rejected 
Cost  0.002 H0 is rejected 

Runtime  0.000 H0 is rejected 

 
Table7 
Summary of Kruskal-Wallis test for different metrics of the MOGA and FCTT algorithms according to Table 5 

 Metrics  Kruskal-Wallis 
  P-value Result 

Makespan  0.0623 H١ is rejected 
Cost  0.545 H١ is rejected 

Runtime  0.000 H0 is rejected 
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Fig. 4. Makespan boxplot of the three algorithms on the test problems 
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Fig. 5. Allocation-cost boxplot of the three algorithms on the test problems 

6. Conclusion 

The present paper involves designing, implementing and 
evaluating the FCTT heuristic algorithm for scheduling a 
workflow application. The paper seeks to optimize the 
multi-objective cost-time based on the proposed WPC 
model. To develop a real distributed environment, the 
resources workload is simulated based on the Lublin model. 
Due to many experiments conducted on a generated 
syntactic workflow, it was shown that the FCTT heuristic 
algorithm is far more effective than the  
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Fig. 6. Runtime boxplot of the three algorithms on the test problems 

  
existing algorithms in terms of the cost-time optimization 

and scalability for scheduling the workflow application. 
To determine the impact of the workflow size and task 

size on the allocation-cost, makespan and runtime in terms 
of the number of the application tasks, in this paper, a few 
experiments were conducted. Next, it is followed by an 
analysis of a comparison between the FCTT, MOGA and 
BE algorithms. This comparison includes both 
environments, the statistical and the non-statistical test. 
Moreover, in the statistical part, a non-parametric test is 
conducted.  

As a result, it is shown the FCTT algorithm is scalable 
due to an increase in the workflow tasks as well as capable  

 
 
 

 
of scheduling huge workflow applications with the lowest 
runtime in the heterogeneous environment. However, in 
terms of runtime, the proposed algorithm shows a 
significant difference to the existing algorithms.  
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