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Abstract 

 In many practical distribution networks, managers face significant uncertainties in demand, local price of building facilities, transportation 
cost, and macro and microeconomic parameters. This paper addresses design of distribution networks in a supply chain system which 
optimizes the performance of distribution networks subject to required service level. This service level, which is considered for each 
arbitrary request arriving at a distribution center (facility), has a (pre-specified) small probability of being lost. In this mathematical model, 
customer’s demand is stochastic that follows uniform distribution. In this model, inter-depot transportation (transportation between 
distributions centers (DCs)), capacities of facilities, and coverage radius restrictions are considered. For this restriction, each DC cannot 
service all customers. The aim of this model is to select and optimize location of plants and DCs. Also, the best flow of products between 
DCs and from plants to DCs and from DCs to customers will be determined. The paper presents a mixed integer programming model and 
proposed an exact solution procedure in regard to Benders’ decomposition method. 
Keywords: Facility location, Distribution network, Benders’ Decomposition, Coverage Radius, Uncertainty modeling, Inter-depot 
transportation.

1.  Introduction 

It is quite common nowadays to see manufacturers 
and retailers joining efforts to efficiently handle the flow 
of products and to closely coordinate the production and 
supply chain system. An important strategic aspect related 
to the design and operation of a physical distribution 
network in a supply chain system is to determine the best 
sites for intermediate warehouses, or distribution centers. 
The use of DCs provides a company with flexibility to 
respond to demand fluctuation in the marketplace and can 
resultin significant cost savings due to economies of scale 
in transportation or shipping costs.  
Many researchers have extensively studied facility 
location and demand allocation problems. Previous 
research studies are well reviewed by Francis, McGinnis, 
and White (1983), Aikens (1985), Brandeau and Chiu 
(1989), and Avellaet al. (1998). More recently, Jayaraman 
(1998) considered the capacitated warehouse location 
problem that involves locating a given number of 
warehouses to satisfy customer demands for different 
products. Pirkul and Jayaraman (1998) developed the 
previous problem by allowing locating also a given 
number of plants. They formulated the problem as a  
 

 
 
 
 
mixed integer model and developed a Lagrangean-based 
heuristic solution procedure. 
Tragantalerngsak, Holt, and Ronnqvist (2000) considered 
a bi-echelon facility location problem in which the 
facilities in the first echelon are assumed to be 
uncapacitated but the facilities in the second echelon are 
capacitated. The aim of their effort is to determine the 
number and locations of facilities in both echelons in 
order to satisfy customer demand per each product. They 
proposed a Lagrangean relaxation based branch and 
bound algorithm to solve the problem. Gourdin, Labbe, 
and Laporte (2000) studied a different type of the 
uncapacitated facility location problem where two 
customers allocated to the same facility are matched. 
They developed several methods to solve the problem 
after obtaining valid inequalities, and optimality cuts for 
the problem. 
Current, Daskin, and Schilling (2001) and Daskin and 
Owen (1999) overview both deterministic and stochastic 
facility location. For a further detailed study of facility 
location theory, see the contents by Daskin (2013), 
Drezner (1995), or Hurter and Martinich (1989). 
Sheppard (1974) was one of the first authors proposed a 
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scenario approach to facility location. He suggests 
selecting facility locations to minimize expected 
cost;however he does not discuss the subject at length. 
In any stochastic programming problem, one must 
determine which decision variables are first-stage and 
which are second-stage; that is, which variables must be 
set now and which may be set after the uncertainty has 
been resolved. In stochastic location modeling, locations 
are generally first-stage decisions while assignments of 
customers to facilities are second-stage decisions 
(Ghezvati, Jabal-Ameli, &Makui (2008) and Snyder, 
2006). If both decisions occur in the first stage, most 
stochastic location problems can be reduced easily to 
deterministic problems. 
Mirchandani, Oudjit, and Wong (1985) and Weaver and 
Church (1983) presented algorithms for a multi-scenario 
for P-median problem (PMP). Their algorithms 
effectively treat the problem as a deterministic PMP with 
|I|×|S| customers instead of |I|, where I is the set of 
customers and S is the set of scenarios. Louveaux (1986) 
introduced stochastic versions of the capacitated PMP and 
Capacitated facility location problem (CFLP) in which 
demand, production costs, and selling prices are arbitrary. 
Vidal and Goetschalckx (2000) discussed the importance 
of incorporating various types of uncertainty into global 
supply chain design decisions. 
More formal stochastic programming techniques are used 
by Alonso-Ayuso, Escudero, Garı´n, Ortun˜o, and Pe´rez 
(2003), to solve multi-echelon supply chain design 
problems. 
Kang and Kim (2010) considered an integrating inventory 
replenishment model and delivery planning in a two-level 
supply chain consisting of a supplier and a retailer. Shen 
and Qi (2007) proposed a single-product, single-period 
LRI problem with an approximate routing cost and solved 
the LRI model by a Lagrangian relaxation based solution 
algorithm, their model was introduced as a modified 
inventory-location model given in Daskin, Coullard, and 
Shen (2002). Chanchan, Zujun, and Huajun (2008) 
formulated a dynamic LRI problem in a closed loop 
supply chain solved by a two-phase heuristic algorithm. 
Ahmadi-Javid and Azad (2010) developed the model 
presented by Shen and Qi (2007). Their model 
simultaneously optimizes location, inventory and routing 
decisions without approximation, and is solved by a 
heuristic method based on a hybridization of tabu search 
and simulated annealing. 
Moin, Salhi, and Aziz (2011) addressed an inventory 
routing, many-to-many distribution network consisting of 
an assembly plant and many distinct suppliers where each 
supplies a distinct product. Hiassat and Diabat (2011) 
studied the LRI problem with perishable product, through 
a multi-period model. 
In this paper, we define a notation of a supply chain 
system considering stochastic demand and inert-depot 
transportation. Also some restrictions such as coverage 

radius and inventory capacity are assumed in the thinking 
process. 
The structure of this paper is as follows. In Section 2, we 
present the formulation of the problem. Section 3 
proposes solution procedure regarded to Benders' 
decomposition method. We present computational results 
and sensitivity analysis in Section 4. In Section 5, we 
summarize our conclusions and discuss avenues for future 
research. 

2.   Model Formulation 

Let N be the set of customers, which face uniform 
distributed demands that are independent among 
customers. Let M be the set of potential sites for 
distribution centers. The firm pays a fixed location cost 
for opening a DC, as well as a holding cost for inventory.  
In this model since customers’ demand is stochastic, 
service level constraint is considered for that an arbitrary 
request arriving at a DC, should only have a (pre-
specified) small probability of being lost. 
The notice is that all distribution centers cannot service all 
of the customers due to considering special coverage 
restriction for each DC.Thus,if a customer cannot fall in 
the coverage radius,so the DC cannot service that 
customer. In this model,this point is considered which 
makes the model to be more realistic. 
The other assumption applied in this study is inter-depot 
transportation. This point can enable DCs to have 
transportation products among each other. Due to 
stochastic demand which leads to inventory fluctuation in 
facilities, inter –depot transportation has risk-pooling 
effect on the supply chain network. Thus, holding 
inventory and shortage in the whole chain will be 
reduced. The sample of representation of a distribution 
network considering inter – depot transportation is 
illustrated in Figure 1. 
In the previous location - inventory models the required 
order, for each DC’s, is the sum of two parts. First part is 
the sum of mean demand, assigned to the DC and the 
second part is the safety stock. A new approach for this 
model in this article can be proposed without dividing the 
order to two parts. By combining the two parts, let MIj be 
the amount of the order DC j. In this section, we aim to 
develop a chance constraint programming in order to 
prevent demand shortage for each customer that is 
assigned to a DC. As it was defined earlier, the demand 
for each customer follows uniform distribution within the 
interval (ai, bi). For this purpose, anamount of product that 
a DC orders to cover each customer's demand (Qij) must 
satisfy the following constraint. By this way, the 
probability that each customer faces to demand shortage 
is at most a%.  
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Fig. 1. Sample of distribution network considering inter-depot transportation 

 
A new constraint must be added for this purpose and thus, 
we don’t need to compute the safety stock.  

ij

an arbitrary request arrivng

by cumstomer i at DC j with inventory 1

level is not lost
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By computing above constraint, the following constraint 
will be considered in the mathematical model. 
According to this, order quantity is greater than 
customers’ mean demand and model determines optimum 
quantity so that customers’ demand satisfies at least (1-α) 
%, so there is no necessity to hold safety stock. The 
constraint considered for this is 
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Amount of product that is found by above chance 
constraint is valid, once customer i is assigned to DC j. so, 
this constraint is modified as follows: 

 
(2)
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demand distribution function for customer .
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Also, let ij be the probability that customer i which is 
assigned to DC j faces to product shortage. So, amount of 

ij  can be computed as follows: 
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Once above decision variable (Qij) is determined, each 
DC can compute total amount of products that must be 
ordered to satisfy all assigned customers by the following 
equation: 

: D e c e s io n v a r ia b le d e n o tin g to ta l

 a m o u n t  o f p ro d u c t w h ic h D C a s a n d

c a n s a t is f ie s c u s to m e r s ' d e m a n d .

j
M I

j h  

.
i

ijj QMI      (4) 

Note: Above equation leads to risk pooling of the system 
since the demand of customers follows probabilistic 
structure and some customers request demand less than 
decision maker's estimation and some of them request 
demand more than decision maker's estimation. 
 
 

 

 

 

 

  ijiiiij XaabQ  )()1( 
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2.1 Parameters and Decision Variables 

Parameters 

 
jb  Capacity for the potential DC at site j.  

ke  Capacity for the potential plant at site k. 

),(~ iii baU  Uniform distribution function for demand of customer i. 

i  Mean of demand per unit time for customer i. (
2

ii
i

ba  ) 

ih  Holding cost per unit in DC at site j. 
 

 
Decision variables: 

 
.-1least at y probabilit  with theicustomer  of demandsatisfy   toorders j DCat product th ofAmount : iiQ  

jkY
Amount of product that is transported from plant k to DC j.

 

 

 

 
jjIDT ,      Total product shipped from DC j to DC j’. 

2.2   Proposed Model 
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.siteatplantopeningforcostFixed

.siteatDCopeningforcostFixed
.plantfromsiteatDCtodemandofunitonesupplyingofCost

.siteatDCfromzonecustomertodemandofunitonesupplyingofCost
site.plantpotentialofsetindex

.sitesondistributipotentialofsetindex
zones.customerofsetindex

kG

jF
kjC

jiC
L
M
N

k

j

jk

ij

.siteatlocatedisplantaif1 k
kV

Otherwise0

jU
Otherwise0

.siteatlocatedisDCaif1 j

ijX
.siteatDCbysatisfiedcustomeofdemandif1 jir

Otherwise0

.sitecustomerthecoverssiteatDCtheif1 ij

Otherwise0
ijZ
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This model minimizes total expected cost made of: the 
costs to serve the demand of customers from the DCs, the 
costs of shipments from the plants to the DCs, the costs 
associated with opening and operating the DCs and 
plants, the expected costs of inventory which is lost in any 
opened DC (the expected cost = probability of being lost 
for demand × total expected demand), andtotal costs of 
ordering and holding inventory. Constraint set (6) ensures 
that all customers must be allocated to DCs. Constraint set 
(7) says that a customer can be allocated to a DC once the 
customer is in the coverage radius of DC and also, DC is 
opened. Constraint set (8) guarantees that the total 
product shipped from plants to DCs should be less than 
DC’s capacity. Set constraint (9) ensures that service level 
for DCs would be at least (1-α) %. Set constraints (10) 
computes total products that each DC must order to cover 
all assigned customers subject to service level limitation. 
Constraint set (11) present total net inventory that DC has 
and can satisfies customers’ demand and ships to the 
other DCs by that. Set constraint (12) computes the 
probability that each customer faces to product shortage. 
Constraint set (13) says that total product shipped from a 
DC to the customers should be less than total product 
received from plants and others depots. Constraint set 
(14) specifies that total averagedemand that a DC satisfies 
should beless than capacity of the DC. Constraint set (15) 
shows capacity constraint for plants. Constraints set (16), 
(17) determine type of the variables.  

2.3 Linearization of the proposed model 

The last term in the objective function is appeared non-
linear because a binary variable (Xij) is multiplied to a 
continuous variable ( ij ). This term can be converted to a 
linear one by the algorithm that is introduced by 
Ghezavati and Saidi-Mehrabad (2011). To apply this 
method the following auxiliary constraints are added to 
the model. 

ijijij XLP   

ijij XMLP    ijijLP   
 )1( ijijij XMLP   

3. Solution Procedure 

All the decision variables except location variables are 
continuous for proposed model. The model without binary 
variables (Wj) is a linear programming solved easily. 
Experimental studies of our model, obtained by LINGO 
and CPLEX solver, demonstrate the running times to very 
long (more than 3 hours) for the instances that have large 
number (more than 30) of the binary variables. Also, 
Geoffrion and Powers (1995) show distribution systems 
design become extremely difficult for the associated 
large-scale models to solve optimality without the 
implementation of Benders’ decomposition or 
factorization methods. For this characteristic, Benders 
(1962) presents a solution procedure called Benders’ 
Decomposition algorithm. In this way, the problem 
decomposes into two distinct problems called as sub-
problem and master problem. The master problem is 
established by part of original objective function that 
contains complicated variables as its objective function, 
and constraints of original problem includes only the 
complicated variables. The reminder of original problem 
makes sub-problem which its complicated variables are 
fixed by solution of master problem. Objective functions 
of the master problem and the sub-problem obtain 
respectively upper bound and lower bound of the original 
objective functions to maximize problem. The algorithm 
tries to close the gap between these bounds through using 
optimality cuts in the master problem. The optimality cuts 
are formulated by dual values of complicated constraints 
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in sub-problem. If sub-problem becomes infeasible, 
feasibility cut will be produced in the master problem. 
We adopt a solution procedure as Benders’ 
Decomposition algorithm. In the proposed algorithm, 
master problem and sub-problem are formulated in regard 
to following indices and parameters. 
Indices of algorithm: 
iter I                   Iterations of the algorithm 
p I                       Set of iterations that sub-problem is 

feasible   
f I                     Set of iterations that sub-problem is 
infeasible 
Parameters of algorithm: 

jW                        Set of binary variables 

j(iter)fix_W                  Fixed value for Wj at iteration iter 

j(iter)u                           Dual value in relation to 
constraints (8) and (9) at iteration iter 

iterobjsub                    Value of objective function for 
sub-problem at iteration iter 
LB                          Lower bound of problem 
UB                                Upper bound of problem        
Sub-problem: 
Max 

 

1

2

( _ )

( (1 ) ( ) _ )

jk j j
k L

i i i ij ij

u Y fix U b

u b a a fix X Q


   

      


 

Subject to all constraints expect those ones contain binary 
variables. 

MjbUfixY jj
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 Master problem: 
Min
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where bibary variables are fixed
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j j
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In the objective function of master problem, α is a free 
variable that exists in optimality cuts. At first, master 
problem without α and cuts solves then optimal values are 
fixed in sub-problem. In turn, if the sub-problem is 
feasible, optimality cut will be placed in master problem 
or if it is infeasible, feasibility cut will be located in 
master problem. Consequently, master problem obtained 
by optimality cuts or feasibility cuts solves then optimal 
binary values are fixed again. This procedure continues 
until upper bound is equal to lower bound. Final solution 

is a global solution for original problem. For very big 
dimensions, stopping criteria may be used to avoid 
extreme run time, such as maximum iteration and 
minimum thegap between lower and upper bounds. We 
present a pseudo-code for the proposed procedure as 
follows: 
1.   0   ,  ,  ,  iter and p f LB UB        
2.     solve master problem  
3.   1iter iter   

 

*4.    
j iter j

fixW W  

5.    solve subproblem  

 6.       if infeasible then f f iter 
 

( )7. { }

int (18) (19)
j iterelse if p p iter u

dual constra s and

  
 

  max8 , obj cos ..
iter j j

j

LB LB Lo t fixW   

9.     solve master problem  
10. UB objmaster  

* *11.       if UB LB then obj objmaster   
12.       3else if go to step  

4.  Computational Results 

4.1 Benders' validation 

We formulate the problem, and implement the proposed 
algorithm in GAMS 23.5 in relation with CPLEX® 
Solver version 12.2. In the first section, validity of GAMS 
codes are controlled via some test problems. All examples 
are generated randomly and they are solved by both 
regular GAMS and also Benders' decomposition method. 
From Table 1,we can see that there is no difference 
between all the objective functions. Therefore, it is 
obvious that there is no gap when different problems are 
solved. This implies that the proposed Benders' 
decomposition method as well as the regular GAMS 
solver is effective in solving the presented model. 

 
Table 1 
Validation of the proposed Benders' decomposition 

|M| |N| |L| No. of 
open DCs 

No. of open 
plants 

Total cost by 
Benders' 

Total cost 
by GAMS 

8 5 3 2 1 15221 15221 
9 5 3 2 1 16044 16044 
10 6 3 2 1 16215 16215 
11 6 3 3 1 16899 16899 
12 6 3 3 1 17451 17451 

4.2 Sensitivity analysis 

In this section, problems sets were generated randomly 
but systematically to capture a wide range of problems 
structures. The numbers of customer zones, potential DC 
and potential plants vary from 40 to 70, 6 to 12 and from 
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3 to 7. The demand mean requirements of customers were 
drawn from a uniform distribution between 10 and 100 
which the demand has Poisson distribution function. If we 
let SUM represents total demand mean requirements, then 
the capacity of DCs were drawn from uniform distribution 
between 100 and SUM/2. And also the capacities of 
plants were drawn between SUM/2 and SUM+100       .  

The parameters , , ,jkij j k jC C F G and h  follow 
uniform distributions which are in the below: 

~ (2, 10 ) ~ (2 , 8 ) ~ (1500, 2500)

~ ( 5000, 7000 ) ~ (1 , 8 )

jkij j

k j

C U C U F U

G U h U
Ordering cost was fixed to either 200 or 500. Any number 
in ijZ  matrix can be 1 with probability 0.2 and can be 0 
with probability 0.8. 
The results per first set of experiments testing problems 
are reported in Table 1. The results are described by 
providing the number of user nodes  N , the number of 

potential DC sites  M , the number of potential plants

 L , the number of opened DCs and plants, total cost, 
andtotal loss of inventory cost. Finally, we reported the 
CPU times in seconds. 
As we see in the Table 1 CPU times is sensitive tothe 
number of customers and DCs. So, the more thenumber of 
customers and DCs, the more CPU time is needed to 
solve the problem. 
 
Table 2 
 Experiments results for test problems 

|M| |N| |L| 
No. of 
open 
DCs 

No. of 
open 
plants 

Total Cost Inventory 
lost cost 1-a CPU 

time 

40 6 3 4 1 75000.22 792.96 0.84 207 
40 6 3 4 1 75104.06 789.12 0.86 215 
40 6 3 4 1 75109.33 785.28 0.88 202 
40 6 3 3 1 73283.48 779.01 0.91 217 
40 6 3 4 1 75128.54 775.67 0.93 225 
40 6 3 4 1 75209.07 769.40 0.97 238 
40 6 3 4 1 75698.11 275.52 0.99 235 
50 8 3 4 1 110168.80 745.47 0.95 241 
50 8 3 4 1 109999.60 1025.44 0.95 314 
50 10 5 4 2 120958.60 984.29 0.90 465 
50 10 5 4 1 119436.20 950.76 0.95 421 
50 10 5 5 1 120335.54 343.80 0.97 463 
50 10 5 4 1 119437.30 952.67 0.99 472 
50 10 5 7 1 119739.50 343.80 0.99 512 
60 10 5 6 1 133802.60 428.28 0.99 551 
70 12 5 6 2 131962.70 2389.01 0.95 622 
70 12 7 6 3 128432.10 789.96 0.99 642 

 
Inventory theory confirms that once value of service level 
(1-α) increases, the costs related to inventory 
lostdecrease,thisway customers’ demand will be more 
satisfied and thus, the expected cost for inventory which 
is lost, decreases. As it can be found in Table 2, this 
concept will be verified clearly by local optimum 
solution. But the important notice is that by increasing (1- 
α), the transportation costs and holding costs will increase 

(because to have more service level, we must order more 
products and this leads to increased transportation and 
holding costs). So a trade of between them is necessary to 
findoptimum value of (1- α).  With comprehension above 
costs we can find best (1- α) with the minimum cost. 
 

 
Fig. 2. Sensitivity analysis for filling rate of the network 

 

 
Fig. 3. Sensitivity analysis for filling rate of the network 

 
Figure 2 and Figure 3illustrate the trend of total cost and 
loss of inventory cost for 2 problems with specific 
number of customers, DCs and plants regarding to the 
increasing (1-α). As it can be seen, loss of inventory cost 
decreases by increasing (1-α) but due to increasing 
transportation and holding cost with having a trade of 
between them, total cost may be increased or decreased.   
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5.  Conclusion and Future Directions 

In this paper, we introduced notation of distribution 
network in a supply chain system while we have service 
level constraint and customer’s demand is stochastic with 
Poisson distribution function. In the proposed model, we 
assumed that DCs have coverage radius restriction and 
also, inert-depot transportation. We formulated the 
problem as a nonlinear integer program. The advantages 
of the proposed model are as follows: considering 
coverage radius which yields more flexibility for the 
model, considering service level constraint that byusing it 
the required inventory can be computed automatically, it 
prevents inventory lost and finally all types of cost for 
inventory are consider in the model. Also, we presented a 
mixed integer programming model and proposed an exact 
solution procedure in regard to Benders’ decomposition 
method. 
For future research we suggest three directions:  
(a) We can study this model while Zij is probability and 
this parameter does not have deterministic value. For 
example, it has a distribution probability function and 
based on it, Zijgets value 0 or 1.  
(b) Setting inventory capacity constraint is another 
development for this model. 
(c) Applying the other ordering methods to calculate 
inventory costs in designing distribution networks. 
(d) Aggregating this model with other assumption such as 
routing and considering time window can be an 
interesting development of the proposed model. 
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