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Abstract 

This paper presents a new mathematical model for the problem of scheduling part families and jobs within each part family in a flow line 
manufacturing cell where the setup times for each family are sequence dependent and it is desired to minimize the maximum completion 
time of the last job on the last machine (makespan) while processing parts (jobs) in each family together. Gaining an optimal solution for 
this type of complex problem in large sizes in reasonable computational time using traditional approaches or optimization tools is 
extremely difficult. A meta-heuristic method based on Simulated Annealing (SA) is proposed to solve the presented model. Based on the 
computational analyses, the proposed algorithm was found efficient and effective at finding good quality solutions.  
Keywords: Scheduling, Simulate annealing, Flow line manufacturing, Setup times, Makespan. 

1. Introduction 

In a flow shop N jobs have to be processed on M 
machines and every job has to be processed at most once 
on a machine and each machine can only process one job 
at a time, flow shop is one of the most commonly used 
arrangements in process and finding an optimal 
scheduling of jobs (Mehravaran and Logendran, 2013). 
The flow line manufacturing cell with sequence 
dependent family setup times is called a pure flow shop. 
In today’s world the wide applications of cellular 
manufacturing make flow line manufacturing cell 
scheduling problems (FMCSPs) with sequence dependent 
family setup times(SDFSTs) is a core topic in the field of 
scheduling. The FMCSPs with SDFSTs has an 
exuberance of implications in many industries, such as 
manufacturing printing circuit boards (PCBs) and TFT-
LCD manufacturing; thus, the FMCSPs with SDFSTs is a 
critical research topic in the field of cellular 
manufacturing (CM). In fact, CM looks for reaching the 
efficiency of mass production by identifying and 
exploiting similarities of different parts (jobs) in their 
production processes (Bouabda et al., 2011; Saidi 
Mehrabad and Mirnezami ziabari, 2011).  In a CM 
environment, a variety of machines and/or jobs (parts) are 
grouped together into part families, each of which is then 
assigned to a manufacturing cell (MC) (Yang and Liao, 
1996). Therefore, MCSPs are especially concerned with  

 
 

 
 

 
 
sequencing part families and parts within families where 
each MC is dedicated to producing a specific number of 
part families (Lin et al., 2009b). When each job is 
processed on each machine in the same technological 
order of an MC, this is called a flow line MC (Schaller et 
al., 2000). Briefly, cellular manufacturing cell is a 
production system in which parts are grouped into 
dedicated manufacturing cell, according to a number of 
similarities in their design and similar characteristics 
(Solimanpur and Elmi, 2013). In this environment, 
machineries are located according to similarity of 
operation and kind of production size in 2 or more groups 
(Kamali Dolat Abadi et al., 2010). Also, Jeon and Leep 
(2006) have presented the design of CM as a tool for 
developing the production environment of machining 
centering by grouping the part families according to a 
number of similarities.  

In cellular manufacturing systems (CMS), switching 
between jobs within a part family requires little or no 
setup time and for this cause it can be included in the 
processing times of each job. Nonetheless, switching from 
a job in one part family to a job in another family requires 
a major setup and, hence, requires an explicit treatment of 
setup times (Bouabda et al., 2011). And when jobs are 
grouped, the number of setups in the schedule is 
minimized; it makes good operational sense, when setups 
are very costly, in terms of money, time or both (Vakharia 
and Chang, 1990). In general, scheduling flow line * Corresponding author Email address: j_rezaeian@ustmb.ac.ir 

 

Journal of Optimization in Industrial Engineering 16 (2014) 21-29

21



 

manufacturing cell problems involving setup times can be 
categorized into two types; the first type is sequence 
independent (Schaller, 2000; Schaller, 2001; Skorin-
Kapov and Vakharia, 1993; Vakharia and Chang, 1990) 
and the second type is sequence dependent setup times 
(Al-Aomar, 2006; Hendizadeh et al., 2008; Lin et al., 
2009a, b; Naderi et al., 2009; Ying et al., 2010). 

This paper deals with flow line manufacturing cell 
scheduling problems with sequence dependent family 
setup times. This problem even in the two-machine case 
with only one job for each family is NP-hard in the strong 
sense (Gupta and Darrow, 1986). The problem considered 
in this paper is NP-hard. 

   Several researchers have given recognition to 
FMCSPs with SDFSTs in the manufacturing systems. 
Although the computational expense necessary to achieve 
an optimal solution increases exponentially with the 
problem size (Ying et al., 2012), some studies have 
developed exact solution algorithms for solving different 
FMCSPs (Das and Canel, 2005; Gupta and Schaller, 
2006; Yang and Chern, 2000). Schaller et al. (2000) 
developed a branch and bound algorithm for the flow line 
manufacturing cell with SDFSTs with the objective of 
minimizing the makespan. Since, branch and bound 
algorithm can apply to only small problem sets including 
3 or 4 families and 3 or 4 machines, they resorted to 
approximate methods to solve larger instances of the 
problem. Various heuristic algorithms have been proposed 
for this purpose. They proposed a composite two-stage 
scheduling methods for this problem called CMD and 
showed that it performed best for all problem sets. This 
algorithm is composed of three heuristic algorithms 
named C, M and D. Algorithm C which is based on CDS 
procedure of Campbell et al. (1970); it makes a new 
sequence of parts in each family at the first stage. Then 
algorithm M or Modified NEH procedure (Nawaz et al., 
1983) is performed in the second stage to optimize the 
sequence of part families. Finally, Schaller et al. (2000) 
proposed an algorithm D, or Descent heuristic, and 
employed it for improving the solution obtained so far. 

Recently, studies of FMCSPs have focused on the 
development of metaheuristic-based algorithms to 
minimize makespan. France et al. (2005) considered a 
flow shop manufacturing cell with SDFSTs and used two 
evolutionary algorithms (GA, MA) with local search to 
solve the problem. The performance of the proposed 
metaheuristics was very analogous to a slight advantage 
showed by the MA and both algorithms outperformed the 
CMD algorithm. Hendizadeh et al.(2008) considered the 
problem of finding a permutation schedule for a flow line 
manufacturing cell with SDFSTs to minimize makespan. 
They proposed Tabu Search (TS) based Meta heuristics 
and used the CMD algorithm (Schaller et al., 2000), the 
MA algorithm (France et al., 2005) as a benchmark 
compared with the proposed algorithm. Computational 
results show that the performance of Tabu search based 
metaheuristics is better than CMD algorithm and MA. In 
other research, Lin et al (2009b) dealt with a non-

permutation flow line manufacturing cell with SDFSTs to 
minimize the completion time; three prominent types of 
metaheuristics (SA, GA, TS) were proposed and 
empirically evaluated. The empirical results showed that 
overall the improvement made by non-permutation 
schedules over permutation schedules for the due-date-
based performance criteria were significantly better than 
that for the completion-time-based criteria. On other hand, 
Lin et al. (2011) developed an effective multi start 
simulate annealing (MSA) heuristics for solving the 
FMCSPs with SDFSTs to minimize makespan. Cheng and 
Ying (2011) addressed a FMCSPs with SDFSTs; they 
proposed a two-level iterated greedy (TLIG) heuristics to 
minimize makespan and then the performance of the 
proposed algorithm was compared against the eight 
existing algorithms (France et al., 2005; Hendizadeh et 
al., 2008; Lin et al., 2009b; Schaller et al., 2000). 
Bouabda et al.(2011) dealt with a flow line manufacturing 
cell with sequencing part families and sequence 
dependent family setup times; they developed an efficient 
integrative cooperative approach based on a genetic 
algorithm and a branch and bound procedure to solve the 
problem. The performance of the proposed method was 
tested by numerical experiments on a large number of 
representative problems. 

Although in the literature Flow line manufacturing cell 
scheduling problems with sequence dependent family 
setup times have become an active area of research in the 
filed of scheduling, there are few studies about the use of 
non-permutation schedules (NPS). Accordingly, this 
paper considers a special type of FMCSPs with SDFSTs, 
while the defined problem can be a permutation schedule, 
because the sequence of part families is fixed on all 
machines. Also, it can be introduced as a non-permutation 
schedule, because the sequence of parts within each 
family can be changed between different machines. Thus, 
in this paper, we work for finding an optimal (near 
optimal for larger instances) schedule for the part families 
and jobs within each family in a flow line manufacturing 
cell with sequence dependent family setup times to 
minimize makespan. To this end, first, a new 
mathematical model for to solving the problem in small 
sizes is presented and then to solve the problem in larger 
dimensions a metaheuristic algorithm based on Simulated 
Annealing is suggested and evaluated. 
The rest of this paper is organized as follows: In the next 
section, we explain the new mathematical model. In 
section 3, we propose a metaheuristic method based on 
SA to solve the given problem. Section 4 evaluates the 
computational results. Finally, the conclusion and future 
research directions are presented in section 5. 
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2. General Description and Formulation of the 
Problem 

This section first describes the main ideas and 
assumptions made for this problem. Then the 
mathematical model is formulated. 

2.1. General description 

The problem can be classified as		ܨ௠		 ,ݏ݈݂݉	̸ ܵ௜ᇲ௜ , 			௜ݎ  :௠௔௫ܥ	̸
flow shop with m machine; group (family) scheduling 
problem (fmls); sequence dependent family setup times        
(ܵ௜ᇲ௜); Release date (r); and makespan minimization 
 Consider a sequencing problem that has a set .(௠௔௫ܥ)
ܰ = [ ଵ݆, … , ݆௡] of n given parts (jobs) to be processed on 
m machines. All parts to be processed are classified into 
one of F mutually and collectively exhaustive part 
families ݂ = [ ଵ݂ , … , ி݂] with nk parts belonging to part 
family ௞݂(݇ = 1,… ,  in which all jobs in the same  (ܨ
family are processed together.  

2.2. Formulation of the model 

To describe the problem more clearly, a non-linear integer 
programming model is presented. Note that the model is 
modified by adapting the models, proposed by Stafford 
and Tseng (2002) for solving four different  flowshop 
sequencing problems and Ying et al .(2012) for 
scheduling a no-wait flowshop manufacturing cell. The 
major assumptions made in this research are summarized 
as follows: 

2.2.1. Model assumptions 

 Let where nk denotes the number of jobs in each 
family fk and let the jobs be numbered sequentially 
such that the first n1 jobs belong to the first family f1, 
the next n2 jobs belong to f2 , and so on .Therefore, 
݊ = ݊ଵ +⋯+ ݊ி.    

 The individual job setup times are known and included 
in the job processing times. 

 Pre-emption is not allowed, meaning once a job starts 
to be processed on a machine, the process cannot be 
interrupted before completion. 

 The ready time of each job can be not zero; meaning 
that all parts are not available for processing at the 
start time.  

 The number of jobs, their ready times, their processing 
times, the number of families, and the SDFSTs are 
non-negative integers and are known in advance. 

 Each job can be processed by at most one machine at 
any given time. Furthermore, each machine can handle 
only one job at a time and is continuously available to 
process all scheduled jobs when required. 

 The SDFSTs Si'i are incurred when job i belongs to 
part family fy, is processed immediately after job i' that 
belongs to part family fx on machine j . 

 There is not any per specified priority between jobs 
and part families. 

 The jobs’ sequence within each family can to be 
changed between different machines, while the part 
families’ sequence remains unchanged between 
different machines. 

2.2.2. Model inputs (Parameters) 

n :  Number of jobs 
m: Number of machines 
F:  Number of families 
Pij: processing time of job i on machine j 
ri: Release date of job i 
Si'i: set up times for job i processed immediately after job 
i' on all machines 

2.2.3. Model outputs (Decision variables) 

fkp       Binary variable taking value 1 if family k is         
assigned to sequence p and 0 otherwise. 

fikqj      Binary variable taking value 1 if job i belongs  
to qth position of family k on machine j and 0 
otherwise. 
 gitj=  If job i is assigned to sequence position t on  
Machine j. (as following): Binary variable taking 
value 1 if JP (i, j) is equal to  t and 0 otherwise. 
Wi'itj   Binary variable taking value if job i be in 
position t and processed immediately after job i' on 
the machine j and 0 otherwise. 
Vt1:  starting time of the tth job in the sequence on 
machine 1 
Ctj: the completion time of the tth job in the 
sequence on machine j 
Cmax: the completion time of the nth job in the 
sequence on machine m 
Equation (1) denotes minimizing the makespan. Equations 
(2) and (3) defined that every position of the family 
sequence is established by exactly one family and every 
family is assigned to exactly one position of the family 
sequence. Equation (4) determines the position of each 
family. Equations (5) and (6) ensure that every job is 
assigned to exactly one position in the sequence of its 
associated family and every position within the sequence 
of each family is established by exactly one job. Equation 
(7) determines the position of each job i on machine j. 
Equation (8) determines the ready time of jobs on first 
machine. Equations (9) to (11) compute the completion 
time for the jobs on the first machine. The job completion 
time in each position at each machine in the 
manufacturing cell is represented by Equations (12) to 
(14), and Equation (15) defines the completion time of the 
last job on the last machine (makespan). Equation (16) 
shows the binary variables and other variables. 

3. The Proposed SA Based Meta-Heuristics 

Simulated annealing (SA) based meta heuristics 
algorithms is one of the most popular efficient procedures 
for addressing combinatorial optimization problems. SA  
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3.1.1. Objective function and the constraints 

 (1)  ࢞ࢇ࢓࡯࢔࢏࢓
Subject to:  

෍ ௞݂௣ = 1																																												݇ = 1,… , 	ܨ
ி

௣ୀଵ

	

            

(2) 

෍ ௞݂௣ = 1																																										
ி

௞ୀଵ

݌	 = 1,… , 	ܨ

               

(3) 

(݇)ܲܨ =෍ ௞݂௣ × 		݌
ி

௣ୀଵ

																							݇ = 1,… ,  ܨ
(4) 

෍ ௜݂௞௤௝ = 1																																				݇ = 1, … , 		;ܨ
௕(௞)

௜ୀ௔(௞)

ݍ	 = 1, … , ݊௞	; 	݆ = 1, … ,݉	

 

(5) 

෍ ௜݂௞௤௝ = 1																																									݇ = 1,… , ;		ܨ 		ܽ(݇) ≤ ݅ ≤ ܾ(݇); 	݆ = 1, … ,݉	
௡ೖ

௤ୀଵ

 
(6) 

,݅)ܲܬ ݆) =෍ ෍ ݂௞௣ᇲ×௡೛ᇲ	ା

ி௉(௞)ିଵ

௣ᇲୀ଴

ி

௞ୀଵ

෍ ௜݂௞௤௝ × ݇						ݍ = 1,… , ;		ܨ 		ܽ(݇) ≤ ݅ ≤ ܾ(݇); 	݆ = 1, … ,݉		
௡ೖ

௤ୀଵ

 
(7) 

௧ܸଵ ≥෍ܴ௜ × ݃௜௧ଵ			
௡

௜ୀଵ

ݐ																																																																					 = 1,… , ݊ 
(8) 

ଵଵܥ = ଵܸଵ +෍ ௜ܲଵ × ݃௜ଵଵ			
௡

௜ୀଵ

 
(9) 

௧ଵܥ ≥ ௧ିଵ,ଵܥ +෍෍ܵ௜ᇲ௜ ×ܹ௜ᇲ௜௧ଵ +
௡

௜ୀଵ

௡

௜ᇲୀଵ

෍ ௜ܲଵ × ݃௜௧ଵ												ݐ = 2,… , ݊			
௡

௜ୀଵ

 
(10) 

௧ଵܥ ≥ ௧ܸଵ +෍ ௜ܲଵ × ݃௜௧ଵ			
௡

௜ୀଵ

ݐ																																																									 = 2,… , ݊ 
(11) 

ଵ௝ܥ ≥෍݃௜ଵ௝ × ෍ ௧ᇲ,௝ିଵܥ × ݃௜,௧ᇲ,௝ିଵ +
௡

௧ᇲୀଵ

௡

௜ୀଵ

෍ ௜ܲଵ × ݃௜ଵ௝ 				
௡

௜ୀଵ

	݆ = 2,… ,݉ 
(12) 

௧௝ܥ ≥෍݃௜௧௝ × ෍ ௧ᇲ,௝ିଵܥ × ݃௜,௧ᇲ,௝ିଵ +
௡

௧ᇲୀଵ

௡

௜ୀଵ

෍ ௜ܲ௝ × ݃௜௧௝ 			
௡

௜ୀଵ

ݐ			 = 2, … , ݊	; 	݆ = 2,… ,݉ 
(13) 

௧௝ܥ ≥ ௧ିଵ,௝ܥ +෍෍ܵ௜ᇲ௜ ×ܹ௜ᇲ௜௧௝ +
௡

௜ୀଵ

௡

௜ᇲୀଵ

෍ ௜ܲ௝ × ݃௜௧௝												
௡

௜ୀଵ

ݐ = 2,… , ݊	; 	݆ = 2, … ,݉ 
(14) 

௠௔௫ܥ =  ௡௠  (15)ܥ
fkp, fikqj ,gitj , wi'itj ={0,1}    ; ܹ௜ᇲ௜௧௝ = ݃௜ᇲ,௧ିଵ,௝ × ݃௜௧௝  ; ∀݅ᇱ , ݅, ,ݐ ݆ ; ܽ(݇) = 1 +෌ ݊௞ᇲ	

௞ିଵ
௞ᇲୀ଴ ; 	ܾ(݇) =

෌ ݊௞" 		
௞
௞"ୀଵ  

(16) 

 
is based on the simulation of the energy changes in a 
physical annealing process where solids is heated and 
cooled to gain a crystalline structure, in which slow 
cooling of metal produces a good, low energy state 
crystallization, whereas fast cooling produces poor 
crystallization. This algorithm was introduced by 
metropolis et al. (1953), and applied to optimization  

 
problems by Krikpatrick et al. (1983). The solution 
representation, the initial solution and neighborhood and 
the SA procedure and parameters are discussed in the 
following part: 
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3.1. Solution representation 

Since the operation sequence of part families and the 
sequence of parts within each family on each machine can 
be different, F part families to be processed on m 
machines, the solution representation consists of m+mf 
(or m(1+F)) section. The first m section indicates the 
operation sequence of part families on each machine, and 
the mf section corresponds to the operation sequence of 
part within each part family on each machine. For 
example, there are three machines, three families and a 
total of 11 parts to be scheduled; a solution representation 
as shown in Table 1 can be decoded as below. The 
operation sequence of part families for machines 1, 2, and 
3 are 2-3-1, 3-1-2, and 2-1-3, respectively. Meanwhile, 
the operation sequence for parts in part families 1,2, and 3  
are on machine 1: 1-2-3-4,4-2-3-1,1-2-3-4; on machine 2: 
5-6-7,6-7-5,6-7-5; on machine 3: 9-8-10-11,8-9-10-11,11-
10-9-8, respectively 

3.2. Initial solution & neighborhood 

The initial solution is generated by randomly ordering 
the sequence of part families on each machine and the 
sequence of the parts within each family on each machine. 
Let X be as current solution, where the set N(X) is the set 
of solutions neighboring X. N(X) is obtained by a swap 
operation on the sequence of families and the sequence of 
the parts within each family. However, in the same 
family, two jobs are randomly selected and swapped with 
each other. Similarly, for the sequence of families, two 
families are randomly selected and swapped directly. 

3.3. SA procedure and parameters 

The proposed SA approach is briefly described as 
such: first, SA starts from an initial solution X as  

Incumbent solution. After setting parameters, a series of 
moves are made until the final temperature (stopping 
criterion) is met. At each iteration, the next solution S is 
generated from the neighborhood of the current solution 
X. the new solution is accepted or rejected by another 
random rule. A parameter t, called the temperature that 
controls the acceptance rule. Let Cmax(x) denote the 
calculation of the objective function value of X, and C
the variation between Cmax(x) and Cmax(s); that is 
computed ΔC= Cmax(s)- Cmax(x).if ΔC≤0 , solution S is 
accepted, otherwise, solution S is accepted with some 
probability depending on the current temperature (ti) and 
the amount of degradation of the objective function 

i

C
te



 . The algorithm proceeds by attempting a 
determined number of neighborhood moves at each 
temperature ti, while temperature is gradually decreased 
under an especial mechanism called the cooling schedule. 
The cooling schedule used in this paper is as follows 
(Lundy and Mees, 1986):                         

௜ݐ =
଴ݐ) − (௙ݐ
ܰ(݅ + 1) + ଴ݐ −

଴ݐ) − ௙)(Nݐ + 1)
ܰ 			݅ = 1,… ,ܰ 

 Where, 0t  , ft and N are initial temperature, final 
temperature and the number of temperature levels 
between 0t  and ft . According to the fact that the 
performance of simulated annealing forcefully depends on 
the proper selection of its parameter values, we applied 
the Taguchi method for algorithm calibration. 
The general scheme (pseudo code) for our proposed SA is 
presented in Figure.1. 
 
 

Table 1 
An illustration of the solution representation 

 
 
 
 
 

 
Fig. 1. pseudo code of the proposed SA 

 Machine1 Machine2 Machine3 
Sequence of the part families in 2-3-1 3-1-2 2-1-3 

Sequence of the Parts in part familiy1 in  1-2-3-4 4-2-3-1 1-2-3-4 
Sequence of the Parts in part familiy2 in 5-6-7 6-7-5 6-7-5 
Sequence of the Parts in part familiy3 in 9-8-10-11 8-9-10-11 11-10-9-8 
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3.4. Algorithm’s calibration 

In this section, we investigate the impact of different 
parameters on the performance of our SA by means of the 
Taguchi method. Taguchi method was introduced by 
Taguchi (1986). Taguchi method is more effective; in 
fact, it is an optimization technique which can study a 
large number of decision variables with a minimal 
number of experiments. In Taguchi method, the factors 
are categorized into two main groups: controllable and 
noise factors. Controllable factors are set and controlled 
by designers, whereas noise factors are varied by the 
environment and usage, while we have no direct control 
(Naderi et al., 2011). Due to the fact that elimination of 
the noise factors is impractical and often impossible, 
Taguchi method pursues to minimize the effect of noise 
and to determine the optimal level of the important 
controllable factors base on the concept of robustness (Al-
Aomar, 2006; Tsai et al., 2007). In addition to 
determining the optimal levels, Taguchi establishes the 
relative importance of each factor in terms of their main 
effect on the performance of the algorithm (Naderi et al., 
2009). In this method, there is a transformation of the 
values of response variable into a ratio which is the 
measure of variation called the signal-to-noise(S/N). 
Here, the term '' signal'' denotes the desirable value (mean 
response variable) and ''noise" denotes the desirable value 
(standard division) as the S/N ratio indicates the amount 
of variation existing in the response variable. The 
objective is to maximize the signal- to- noise ratio. 
Taguchi classifies all objective functions into three 
groups: the smaller-the-better type, the larger-the-better 
type, and nominal. Each group has its own appropriate 
formulas for calculating the S/N ratio. Since, the objective 
function in this research is minimizing the makespan and 
it is categorized in the smaller-the-better type, its 
corresponding S/N ratio is (Roy, 1990): 
ܵൗܰ = −10 logଵ଴[݁ݒ݅ݐ݆ܾܿ݁݋	݊݋݅ݐܿ݊ݑ݂]ଶ  
For the parameter design procedure using Taguchi 
method, we refer the readers to the textbooks of Roy 
(1990) and the paper of Cheng and Chang (2007). 
In this study, the SA factors that need to be tuned are as 
follows: number of iteration (N), cooling schedule 
(annealing) and initial temperature (T0). These parameters 
and their levels are shown in table2. We run the SA for 
each trial of Taguchi experiment. The results are 
transformed into S/N ratio. Figure 2 shows the mean S/N 
ratio obtained for each level of the factors. Finally, the 
optimal levels of factors are shown in Table 3. 

4. Computational Results and Discussion 

4.1. Test problems 

To put it briefly, in this study, the processing times for 
each machine and release dates for jobs were randomly 
generated using a uniform distribution as follows: 

 Processing times~[1,10]  
 Release dates~[1,10]  

 
Table 2 
Factors and their levels 

factor level candidate Values 
N 1 2000 

2 5000 
3 10000 

Annealing 
)cooling 

schedule(  

1 Linear 
2 Exponential  
3 Hyperbolic  

Initial F 1 30 
2 50 

3 100 

 
Fig. 2. The mean S/N ratio plot for each level of the factors 

 
Table 3 
Optimal level of factors 

factor Optimal level Best value 
N 1 2000 

Annealing 
)cooling schedule(  

  

2 Exponential 

Initial F  
  

2 50 

Since problem difficulty is presumably to depend on 
whether there is a balance between average processing 
times and average family setup times, hence, three 
different classes of family setup times were randomly 
generated from the following uniform distributions:   

 Small setup (SSU)~[1,20] implies that the ratio of 
average family setup time to average job 
processing time is almost 2:1. 

  Medium setup (MSU)~[1,50] implies that the 
ratio of average family setup time to average job 
processing time is almost 5:1. 

 Large setup (LSU)~[1,100] implies that the ratio 
of average family setup time to average job 
processing time is almost 10:1. 

Respectively, the number of families varies between 
[3 10], the number of jobs varies between [1 10] and the 
number of machines varies between [3 10]. With respect 
to the existing data, ten instances were generated for each 
class. As an example, FMCMSU56 denotes an instance of 
a flow line manufacturing cell problem with medium 
family setup times and five families that is processed on 
six machines.  
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4.2. Computational results 

The problem considered in this paper can be solved in 
small sizes with mathematical model by lingo9. We solve 
six small instances of this problem and the same solution 
is gained (mathematical model and proposed SA). But, 
since gaining an optimal solution for this type of complex 
problem in large sizes in reasonable computational time 
using traditional approaches or optimization tools is 
extremely difficult. A prominent type of metaheuristics - a 
simulated annealing-  is proposed and empirically 
evaluated. The obtained computational results of lingo9 
and SA in small sizes are shown in Table 4. This table 
shows that mathematical model can solve small instances 
exactly, but when the size of instances increased, the 
mathematical model is unable to obtain the optimal or 
near optimal solution in a reasonable time. Thus, the 
proposed metaheuristic algorithm was implemented using 
Matlab 7.12 and run on a laptop with an Intel core (i7)-
2630QM (2 GHz) CPU and 8 gig memories. The 
minimum value of each instance obtained by the proposed 
algorithm was compared with its average value that is 
computed as follows: 

ௌ஺݌ܽܩ	% =
ௌ஺݁ݒܣ ௌ஺݊݅ܯ−

ௌ஺݊݅ܯ
× 100 

Table 5 lists the minimum value (as best solution), 
maximum value, average value, average computational 
time (CPU time in seconds), and the gap percentage (a 
measure for the variation in a set of data that looks at the 
variation as a proportion of the average or target value) of 
each instance with three classes of family setup times 
(small, medium, and large). These results demonstrate 
that when the dimensions of problems are increased, the 
gap percentage is decreasing. Also, this table indicates 
that SA has reasonable time to gain the optimal or near 
optimal solution. Finally, Figure 3 shows the gap 
percentage of each instance of each class. 
A review of the results illustrated in Table 5 and Figure 3 
also show that the majority of GapSA levels of the 
problems are less than 5%, that expresses convergence of 
SA. Therefore, the obtained results show that the 
proposed algorithm is efficient, effective and reliable for 
the operation managers in minimizing makespan for the 
flow line manufacturing cell problem with sequence 
dependent family setup times. 
 
 
 

 

Table 4 
The Computational results of lingo9 and SA for small sizes problems 

%gap Solution by SA Solution by lingo Number of machines Number of family Number of jobs instance  
0  12 12 2 2 3 1 
0 14 14 2  2 4 2 
0  15  15  3  2  3  3 
0 17 17 3  3  4  4 
0  22  22  3  3  5 5 
0 27 27 3 3 6 6 

 

Table 5 
 The computational results of proposed SA for different classes of family setup times  

gap SA(%) Ave CPU time(s) 
Proposed SA 

Setup times class* F m N instances 
Ave Max Min (best) 

0.00 0.348 67 67 67 S 
3 3 5 FMCSSU33 0.00 0.334 67 67 67 M 

0.00 0.338 100 100 100 L 
6.51 0.441 88.4 94 83 S 

3 4 7 FMCSSU34 7.35 0.443 89.1 96 83 M 
4.49 0.444 93 107 89 L 
5.35 0.568 90.6 98 86 S 

4 4 9 FMCSSU44 4.81 0.560 135.2 143 129 M 
5.77 0.559 150.2 163 142 L 
4.09 0.817 137.4 146 132 S 

5 5 12 FMCSSU55 12.18 0.819 185.1 193 165 M 
3.42 0.822 232.7 240 225 L 
3.57 0.981 148.1 157 143 S 

5 6 13 FMCSSU56 6.70 0.975 219.8 232 206 M 
6.15 0.982 303.6 315 286 L 
6.26 1.01 181.7 192 171 S 

6 5 16 FMCSSU65 4.68 1.02 241.8 255 231 M 
8.20 1.02 343 356 317 L 
4.97 1.25 194.2 201 185 S 

6 6 18 FMCSSU66 4.36 1.26 275.5 282 264 M 
12.07 1.26 411.3 432 367 L 
3.63 2.06 305.7 315 295 S 

8 8 24 FMCSSU88 9.26 2.05 427.2 443 391 M 
8.70 2.07 559.8 577 515 L 
2.22 2.51 363.9 373 356 S 

10 8 29 FMCSSU108 3.44 2.49 454.1 477 439 M 
3.50 2.51 735.9 763 711 L 
2.63 3.48 469 483 457 S 

10 10 35 FMCSSU1010 2.43 3.47 603.3 620 589 M 
2.79 3.45 821.3 848 799 L 

*S= small setup times; M= medium setup times; L= large setup times. 
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.  
Fig. 3.The gab percentage for all instances 

5. Conclusions 

In this paper, the flow line manufacturing cell 
scheduling problems was investigated with sequence 
dependent family setup times. Minimizing the maximum 
completion time of the last job on the last machine 
(makespan) was considered as objective function. At first, 
the problem under consideration and assumptions were 
formulated as a non-linear integer programming model. 
This model is capable of solving small instances. Then, an 
effective simulated annealing algorithm was applied to 
tackle the problem. Computational experiments were 
performed to probe whether the proposed SA is efficient, 
effective and flexible. Many topics in the area of FMCSPs 
with SDFSTs remain for future research.  
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