
Journal of Industrial Engineering 5(2010) 17-28

17

 A Simulated Annealing Algorithm for Multi Objective Flexible Job
Shop Scheduling with Overlapping in Operations

Mehrzad Abdi Khalifea, Babak Abbasib, Amir Hossein Kamali Dolat Abadia,∗

a Islamic Azad University, Qazvin Branch, Department of Industrial Engineering, Qazvin, Iran
b Sharif University of Technology, Department of Industrial Engineering, Tehran, Iran

Received 5 Oct., 2009; Revised 23 Oct., 2009; Accepted 2 Nov., 2009

Abstract

In this paper, we considered solving approaches to flexible job shop problems. Makespan is not a good evaluation criterion with
overlapping in operations assumption. Accordingly, in addition to makespan, we used total machine work loading time and critical
machine work loading time as evaluation criteria. As overlapping in operations is a practical assumption in chemical, petrochemical, and
glass industries, we used simulated annealing algorithm for multi-objective flexible job shop scheduling problem with overlapping in
operations to find a suitable solution. To evaluate performance of the algorithm, we developed a mixed integer linear programming
model, and solved it with the classical method (branch and bound). The results showed that in small size problems, the solutions of the
proposed algorithm and the mathematical model were so close, and in medium size problems, they only had lower and upper bounds of
solution and our proposed algorithm had a suitable solution. We used an experimental design for improving the proposed algorithm.

Keywords: Flexible job shop, Scheduling, Overlapping, Multi-objective optimization, Simulated Annealing, Combinatorial optimization.

———
∗ Corresponding author E-mail: amir_kamaly2002@yahoo.com

1. Introduction

 In the factory environment, time and resource
management is an important matter. The initial way of
managing time and resource is to schedule operations in
manufacturing systems. Due to the competitiveness nature
of today’s markets, factories must use flexible
manufacturing equipments, and thus flexible job shop
scheduling finds a new and important place in factories.
Through considering flexibility assumption in job shop, we
can see and describe more diversification and complex
problems with polynomial algorithms. Many researchers
are working in job shop environment. Garey et al. [8] are
first who introduced job shop scheduling problems. Some
researchers like Brandimart [2] and Paulli [14] use
dispatching rules for solving flexible job shop scheduling
problems. Attention to size proved that job shop scheduling
problems are NP-Hard (Garey et al. [8]) and with added
flexibility increase complexity more than job shop.

After Garey et al., Xia and Wu [18] and Fattahi et al. [6]

proved that flexible job shop scheduling problems are NP-
Hard too.

Since flexible job shop scheduling problems are NP-
Hard, heuristic and Meta heuristic algorithms are used for
solving them. Hurink et al. [10], Dauzere-peres and Paulli
[3], Mastrolill and Gambardella [13], and Rigoa [16] use
Tabu search algorithm for addressing flexible job shop
scheduling problems. Besides, Genetic algorithm is one of
the most frequently used full algorithms that many
researchers including Kacem et al. a,b [11][12], Zandieh et
al. [20], Gholami and Zandieh [9], Gao et al. [7], and
Pezzella et al. [15] use for solving flexible job shop
scheduling problems.

Another heuristic and meta heuristic algorithm is PSO
algorithm which was used by Xia and Wu [18] for
assigning operations to machines and simulated annealing
algorithm was used for scheduling those operations.

To relate flexible job shop scheduling problems to the
real world, we should add assumptions like sequence

 Mehrzad Abdi Khalife et al. / A Simulated Annealing Algorithm for Multi Objective Flexible Job Shop…

18

dependent setup time (Saidi Mehrabad and Fattahi [17]),
fuzzy logic (Kacem et al. b [12]) and overlapping in
operations (Alvarez-Valdes et al. [1] and Fattahi et al. [5])
to problems. In this paper, we draw on the approach
suggested by Alvarez-Valdes et al. [1] and Fattahi et al. [5]
to solve multi-objective flexible job shop scheduling
problems with overlapping in operations.

As in the current market, the demand is in batches, we
can consider overlapping in operations, for instance, if an
order of 500 glasses of a given model is placed, the
production order would consist of decorating and packing
these 500 glasses, and the previous production order would
consist of producing 10,000 glasses, 500 of which would
proceed to the original order and the remaining 9500 would
be stored. This scheme shows relationships and priorities
between production orders.

The operations to be performed on the pieces can, and in
fact should, overlap. If an order consists of decorating and
packing 500 glasses, we do not have to wait until all the
glasses are decorated to start packing them. Sometimes this
overlapping is automatic, that is, as soon as the first piece is
processed on one machine, it goes directly to the next
machine. On other occasions, the overlapping is limited by
structural constraints such as the size of the box to be
packed or the capacity of the container used to move the
pieces from one machine to another. Overlapping can even
happen between operations of different orders linked by
precedence constraints.

For solving more than two flexible job shop scheduling
problems, we can use two different approaches: integrated
approach and decomposition approach. In the integrated
approach, operations are assigned to machine and are
sequenced in one stage. Hurink et al. [10], Dauzere-Peres
and Paulli [3], and Mastrololli and Gambardella [13] used
this approach in their studies.

The decomposition approach in which operations are
assigned to machines and are sequenced in two separate
stages is developed for reducing complexity of problems.
This approach includes two stages: first, operations are
assigned to available machines and then the assigned
operations are scheduled in machines and after solving to
stage respectively we have the final solutions. The
decomposition approach in flexible job shop scheduling
problems was firstly introduced by Brandimart [2]. They
solved a general problem with dispatching rules and
improved the solutions with tabu search algorithm.
Following Brandimarte [2], many researchers used the
decomposition approach in flexible job shop scheduling
problems (e.g. Xia and Wu [18], Fattahi et al. [5][6], and
Fattahi [4]).

Many objective functions have been considered in
flexible job shop scheduling programs. The main focus of
attention has been on minimizing makespan that Fattahi et
al. [5][6], Saidi Mehrabad and Fattahi [17], and Zandieh et
al. [20] use as an objective function and if it describes
dynamic flexible job shop scheduling problems, the

researchers can determine total tardy, mean tardy and the
number of tardy jobs (Gholami and Zandieh [9], Fattahi
[4]). Kacem et al. a,b [11][12], Xia and Wu [18], Zhang et
al. [21], and Gao et al. [7] describe flexible job shop
scheduling problems with three objective functions
including makespan, critical machine work loading time,
and total work loading time. Then Xing et al. [19] describe
these three objective functions in a flexible job shop
environment with simulation method.

The present paper with the following organization aims
to present meta heuristic method simulated annealing
algorithm for solving multi-objective flexible job shop
scheduling problems with overlapping in operations:
section 2 presents multi-objective flexible job shop
scheduling problems with overlapping in operations and a
mathematical model for solving the problems with usual
deterministic mathematical approaches. In this paper
branch and bound method is used. Section 3 introduces
simulated annealing algorithm briefly and section 4
explains how this algorithm is used in this paper. In this
section, both approaches to assignment and scheduling of
operations are illustrated. Proposed algorithm parameters
tuned with use experimental design are presented in section
5. Section 6 presents the numerical results and section 7
includes the conclusion and suggestions for further
research.

2. Problem description and formulation

We formulate the FJSS problem with overlapping in
operations as follows. The problem has m machines and n
jobs. Each job consists of a sequence of operations ,j hO ,

1, .. ., jh h= , where ,j hO , and jh denote the hth operation of
job j and the number of operations required for job j,
respectively. The machine set is represented as M,

1 2{ , ,..., }mM M M M= . Unless stated otherwise, index i
denotes a machine, index j denotes jobs and index h
denotes operations throughout the paper. The execution of
each operation h of a job j (denoted as ,j hO) requires one
machine out of a set of given machines called ,j hM M⊂ , and
a process time, , ,i j hP , for each alternative machine. The
set ,j hM is defined by , ,i j ha as described below. Index k
which is assigned to each machine determines the sequence
of the assigned operations on it (Fattahi et al. [6]).

We consider multi-objective functions. The weighted
sum of the three objective values taken as objective
functions is as follows:

F(c) =0.5* F1(c) +0.3* F2(c) +0.2 * F3(c)
Where F(c) denotes the objective value of schedule c,

F1(c), F2(c) and F3(c) denote the makespan, Critical
machine work loading time and Total machine work
loading time of schedule c, respectively. We consider

iW L for Work loading time for machine i and TW L for
Total work loading time for all machines. The weight of
different objectives is determined empirically. If the

Journal of Industrial Engineering 5(2010) 17-28

19

decision maker pays more attention to a certain objective,
we can define a large weight for it. Otherwise, a small
weight is defined for it. There are three advantages in using
weighted sum approach to deal with the multi-objective
optimization. Firstly, it is easy for decision makers to
understand the weighted sum method. Second, developers
can implement it conveniently. Thirdly, the weight of
different objectives can be modified in order to satisfy the
requirements of decision makers. In the present study, the
importance of objectives F1(c), F2(c) and F3(c) are
considered as ‘the most important’, ‘more important’ and
‘important’, so the weight of them is defined as 0.5, 0.3 and
0.2, respectively (Xing et al. [19]).

We develop the overlapping model suggested by Fattahi
et al. [5] to formulate the FJSP with overlapping in
operations. The operations to be performed on the jobs can,
and in fact should, overlap. The extent of this overlapping
is limited by a coefficient, ,j hov , defined as the proportion
of operation ,j hO that has to be processed before its
successor , 1j hO + can start. This coefficient is 1 if no
overlapping is allowed, and is very small, near to 0, if there
is automatic overlapping in which as soon as the first unit
of operation ,j hO , is processed, it becomes part of the next
operation and is immediately processed. The
overlapping, ,j hov , of two operations determines the earliest
starting time of the second operation, so that it is
guaranteed that a sufficient proportion of ,j hO , is already
processed and also that , 1j hO + does not finish before the last
units coming from ,j hO , have arrived.

Fig. 1. Types of overlapping in operations

In the left hand part of Fig. 1, the first condition
determines the earliest starting time of , 1j hO + and in the right
hand part of this Fig., the second condition determines the
earliest finishing time of , 1j hO + .

Under these assumptions and notations, the problem is
to determine both an assignment and a sequence of the
operations on all machines that minimizes the makespan
given n, m, ,j hO , , ,i j ha , ,j hov and , ,i j hP . Henceforth, this

problem is referred to as flexible job shop scheduling
problems (FJSP) with overlapping operations. The
following additional notations are used in the mixed integer
linear program formulation of FJSP with overlapping
operations (Fattahi et al. [5]).

,

, ,

1 if O can be performed on machine i

0 otherwise
j h

i j ha
⎧
⎨
⎩

,
, ,

1 if machine i selected for operationO

0 otherwise
j h

i j hy
⎧
⎨
⎩

, , 1
,

, , 1

1 P P

0 P >P
j h j h

j h
j h j h

if
r

if
+

+

≤⎧⎪
⎨
⎪⎩

 L: A large number (∝).

,

, , ,

1 if O can be performed on machine i in priority k

0 otherwise
j h

i j h kx
⎧
⎨
⎩

Min: F(c) =0.5* F1(c) +0.3* F2(c) + 0.2* F3(c)
F1(c) =Makespan time
F2(c) =critical machine work loading time
F3(c) =Total work loading time of all machines

maxC : Makespan time
iW L : Work loading time for machine i.

TWL : Total work loading time for all machines
,j ht : Starting time of the processing of operation ,j hO .

,i kTM : Start of working time for machine i in priority k.
ik : The number of assigned operations to machine i.

,j hPS : Processing time of operation ,j hO after selecting a
machine.

A mixed integer linier program for the FJSP with
overlapping operations is as follows:

Min: F(c) =0.5* F1(c) +0.3* F2(c) + 0.2* F3(c)
F1(c) = maxC
F2(c) = max (iWL) i=1,…,m

 F3(c) =
i

i

TW L W L= ∑

s.t.
max , ,j jj k j kC t ps≥ + for j=1,...,n (1)

, , , ,.i i j h k j h
k

WL x ps=∑ for i=1,...,m (2)

, , , , ,.i j h i j h j h
i

y p ps=∑ for j=1,...,n; h=1,..., jh (3)

, , , , 1 ,. (1)j h j h j h j h j ht ps ov t r L++ ≤ − for j=1,...,n; h=1,..., 1jh − (4)

, , , , 1 , 1 , , ,. . .j h j h j h j h j h j h j h j ht ps ov t ps ps ov r L+ ++ ≤ + − + for j=1,...,n; h=1,..., 1jh − (5)

, , , , , , 1.i k j h i j h k i kTm ps x Tm ++ ≤ for i=1,...,m; j=1,...,n; h=1,..., jh ; k=1,..., 1ik − (6)

 Mehrzad Abdi Khalife et al. / A Simulated Annealing Algorithm for Multi Objective Flexible Job Shop…

20

, , , , ,(1).i k j h i j h kTm t x L≤ + − for i=1,...,m; j=1,...,n; h=1,..., jh ; k=1,..., ik (7)

, , , , ,(1).i k i j h k j hTm x L t+ − ≥ for i=1,...,m; j=1,...,n; h=1,..., jh ; k=1,..., ik (8)

, , , ,i j h i j hy a≤ for i=1,...,m; j=1,...,n; h=1,..., jh (9)

, , , 1i j h k
j h

x =∑∑ for i=1,...,m; k=1,..., ik (10)

, , 1i j h
i

y =∑ for j=1,...,n; h=1,..., jh (11)

, , , , ,i j h k i j h
k

x y=∑ for i=1,...,m; j=1,...,n; h=1,..., jh (12)

, 0j ht ≥ for j=1,...,n; h=1,..., jh (13)

, , , {0,1}i j h kx ∈ for i=1,...,m; j=1,...,n; h=1,..., jh ; k=1,..., ik (14)

, , {0,1}i j hy ∈ for i=1,...,m; j=1,...,n; h=1,..., jh (15)

Constraint (1) determines the makespan, that is, the first
objective. Constraint (2) determines work loading times of
all machines, so we can search for a critical machine with
maximum work loading time to determine second and third
objectives. Constraint (3) determines the processing time
of operation ,j hO in the selected machine. Constraints (4)
and (5) enforce each job to follow a specified operation
sequence and consider the overlapping constraints.
Constraint (6) makes it compulsory for each machine to
process one operation at a time. Constraints (7) and (8)
guarantee that each operation ,j hO can start when its
assigned machine is idle and the previous operation , 1j hO − is
completed. Constraint (9) determines the alternative
machines for each operation. Constraint (10) assigns the
operations to a machine and sequences assigned operations
on all machines. Constraints (11) and (12) assure that each
operation can be performed only on one machine and at one
priority. Results of , , ,i j h kx yield the assignment of each
operation on a machine and sequence assigned operations
on all machines.

3. Simulated annealing algorithm

We want to use simulated annealing algorithm (SA
algorithm) for solving problems. SA algorithm is inspired
metal cooling process. In this process, with reducing
temperature gradually, we aim to get closer to optimal
solution. SA algorithm searches current solution
neighborhoods for a better solution and uses it for many
complementary problems. Some researchers like Fattahi et
al. [5][6] and Zandieh et al. [20] use SA algorithm in
flexible job shop environment. SA algorithm generates an
initial solution randomly and then neighborhood of this
solution and afterward compares objective functions of
them with each other: if new solution is better than current
solution, it substitutes current solution with new solution
and then generates another neighborhood. To guarantee
algorithm diversification, SA algorithm accepts worse

Fig. 2. Solution approach flowchart
solution with probability p=

(/)exp iT−Δ
 where Δ is different

and then generates another neighborhood. To guarantee
algorithm diversification, SA algorithm accepts worse
solution with probability p=

(/)exp iT−Δ
 where Δ is different

between current solution and new solution objective
functions; iT is iTh algorithm stage temperature that is
obtained from cooling schema presented in equation 16.
That denotes T as initial temperature and 0T as frozen
temperature as SA algorithm moves from T to 0T in
passing time. Finally, stop condition is met when the
algorithm temperature becomes 0T .

0.i
T TT T i

N
−

= −
 (16)

In equation 16, N denotes the maximum number of
iterations of SA algorithm. The initial temperature of SA
algorithm is high enough that the first answer acceptance
probability is larger than 80 percent.

Journal of Industrial Engineering 5(2010) 17-28

21

4. The Proposed algorithm

In this paper, we use the decomposition approach that
yields two algorithms, namely, assignment and scheduling
algorithms in separate stages. Fig. 2 depicts the flowchart of
the solving approach, and both algorithms are described in
the next section.

4.1. assignment algorithm

As mentioned earlier, we use the decomposition
approach for objective function optimization. At its first
stage which includes assigning operations to machines,
assignment algorithm is used. Using scheduling algorithm,
we want to establish an appropriate assignment algorithm
solution and after scheduling algorithm process, we select
the best solution.

We develop Fattahi et al. [5] solution seed and
neighborhood generator structure, and in neighborhood
structure, we select one operation randomly and change the
assignment SA algorithm pseudo-code which is illustrated
in Fig. 3 where AssignN denotes number of iterations in each
SA algorithm temperature, S is current solution that is
generated randomly for initial solutions; Sc is S
neighborhood and S* is the best solution obtained.

Parameters setting
input temperature T, final temperature T0 , number of iteration

AssignN , and L

generate initial solution randomly = S
evaluate S = F
n=1, n1=1
while Ti < T
 while n <

AssignN

 while n1<L
 select a neighborhood Sc of S
 evaluate Sc with scheduling algorithm = Fc
 compute Δ = Fc – F
 if Δ <= 0
 then S = Sc ; F = Fc
 else
 generate a random variable ~ (0,1)P
 if (/)e iT P−Δ >
 then S = Sc ; F = Fc
 end if
 end if
 n1=n1+1
 end while
 n = n + 1
 end while
 update Ti
end while
if F < F*
 F* = F ; S* = S
end if

4.2. scheduling algorithm

As mentioned earlier, after assignment algorithm, we use
the scheduling algorithm to schedule operations on
machines. The generated Sc is the input to the scheduling
algorithm, algorithm solutions evaluated by total objective
function that provide three different objectives:

Min: F(c) =0.5* F1(c) +0.3* F2(c) + 0.2* F3(c)
Scheduling algorithm initial solution is output of the

assignment algorithm. In this stage, we use the solution
seed by Fattahi et al. [5] again. For neighborhood generator,
select one machine randomly and change priority between
operations and then evaluate objective function. The
scheduling algorithm pseudo-code is presented in Fig. 4
where SchedulN denotes number of iterations in each SA
algorithm, temperature for algorithm better performance, its
parameters had to set hence in the next section, we treat
algorithm. Overlappings in operations could be classified in
three different classes: first class, second class, and third
class. In the first class, all operations in one job have the
same overlapping coefficient that is represented by ,j hov .

,j hov is between zero and one. Thus, if overlapping
coefficient for a job is

parameters setting
input temperature T, final temperature T0 , number of iteration

SchedulN , and L
input solution from assignment algorithm = S
evaluate S = F
n=1, n1=1
while Tf < T
 while n <

SchedulN
 while n1<L
 select a neighborhood Sc of S

evaluate Sc with function
(0.5* F1(c) +0.3* F2(c) + 0.2* F3(c)) = Fc

 compute Δ = Fc – F
 if Δ <= 0
 then S = Sc ; F = Fc
 else
 generate a random variable ~ (0,1)P

 if (/)e iT P−Δ >
 then S = Sc ; F = Fc
 end if
 end if
 n1=n1+1
 end while
 n = n + 1
 end while
 update T
end while
if F < F*
 F* = F ; S* = S
end if

Fig. 3. Assignment algorithm pseudo-code Fig. 4. Scheduling algorithm pseudo-code

 Mehrzad Abdi Khalife et al. / A Simulated Annealing Algorithm for Multi Objective Flexible Job Shop…

22

0.1 and the operation process time is 20 units after passing
(20*0.1=2) unit could start next operation of that job on an
idle machine. If overlapping in operations is to be
overlooked, overlapping coefficient must be set equal to
one for all jobs. The second class of overlapping considers
different overlapping coefficients for different jobs, thus
each job consists of one overlapping coefficient and 1*N
matrix is made. The third class of overlapping considers
different overlapping coefficients for each operation so it
made a matrix. In Fig. 10, we can see an example of this
matrix.

5. Tuned proposed algorithm

To improve performance of the proposed algorithm, we
needed to set algorithm parameters. Efficient algorithm
parameters can be classified into two major classes:
assignment algorithm parameters and scheduling algorithm
parameters. In addition, they can be presented as follows: 1-
maximum iteration defined by N 2- initial temperature of
SA algorithm defined by T 3- frozen temperature defined
by 0T 4- number of iterations in each algorithm temperature
defined by L .

Parameters tuned with the use experimental design for
maximum neighborhood in both algorithms assignment and
scheduling. Experiments result in changes affiliated to
consideration problem size. To examine the proposed
algorithm, 24 problems are defined and then solved by the
mathematical model presented in section 2 and branch and
bound approach. One-hour CPU time restriction is set for
solving problems. If problems are solved in this time
restriction, they are classified as small size; if this time
restriction is just lower or upper bound distinguish,
problems are classified as medium size and if in the
identified time, the branch and bound approach cannot enter
a feasible space, problems are classified as large size. For
this classification, 9, 9, and 6 random problems were
generated, respectively. For parameter setting, a problem
from each class was selected randomly: number 6 for small
size class, problem number 14 for medium size and
problem number 19 for large size class.

If objective function does not reduce more than
0.01ε = in 100 algorithm iterations, algorithm will stop to

decrease running time risk.
To apply experiments and algorithm running, other

parameters are set empirically and the experiment level is
indicated in Table 1. Table 2 shows a designed ANOVA
test for three pattern problems.

Table 1

DOE, assignment and scheduling algorithms parameter

Table 2
Experimental design ANOVA with two factors

 ss df ms f P-Value

Sm
al

l s
iz

e
pr

ob
le

m
 A 174.845 3 58.28167 0.666667 0.5847

B 524.535 3 174.845 2 0.1546

interaction 524.535 9 58.28167 0.666667 0.7271

Error 1398.76 16 87.4225

Total 2622.675 31

M
ed

iu
m

 si
ze

pr

ob
le

m

A 6772.44 3 2257.48 1.134648 0.3649

B 10694.3 3 3564.766 1.791711 0.1893

interaction 20816.85 9 2312.984 1.162545 0.3792

Error 31833.39 16 1989.587

Total 70116.99 31

La
rg

e
si

ze
 p

ro
bl

em
 A 11021.38 3 3673.793 4.988057 0.0125

B 28686.85 3 9562.282 12.9831 0.0001

interaction 2037.473 9 226.3859 0.307373 0.9612

Error 11784.28 16 736.5178

Total 53529.98 31

Problem size Problem
number 0T fT L

Level of assignment algorithm
neighborhood

Level of scheduling algorithm
neighborhood

Small 6 100 0.1 10 40 , 50 , 60 , 70 20 , 30 , 40 , 50
Medium 14 150 0.1 15 60 , 75 , 90 , 105 30 , 45, 60 , 75
Large 19 200 0.1 20 80 , 100 , 120 , 140 40 , 60 , 80 , 100

Journal of Industrial Engineering 5(2010) 17-28

23

Table 3
Proposed algorithm parameters setting

Considering the first ANOVA experiment, there is no

significant difference between small size problems with the
defined level in Table 1, therefore reducing problems
running time uses a lower level of neighborhoods that is 40
neighborhoods for assignment algorithm and 20
neighborhoods for scheduling algorithm. For medium size
problems, its ANOVA indicates that there is no significant
difference between neighborhoods levels of assignment and
scheduling algorithms, and both algorithms use lower level
of neighborhood. The numbers of neighborhoods in
medium size problems for assignment and scheduling
algorithms are 60 and 30 respectively. Finally, the ANOVA
experiment for large size problems shows that numbers of
neighborhoods in assignment and scheduling algorithms
have significant differences.

By using multi comparative experiments, it is concluded
that the best number of neighborhoods in assignment
algorithm is 100 and in scheduling algorithm is 60. The
proposed algorithm parameters for solving problems are
presented in Table 3.

6. Experimental results

As maintained in section 4, we randomly generated three
classified problems with the mathematical model solving by
branch and bound method solving and time observation.
Using lingo software, we solved all problems by the
mathematical model and branch and bound method. The
result of solving the small size problems with the branch

and bound method is convergent to optimal solution less
than one hour, and for medium size problems, just lower
and upper bounds are obtained by the branch and bound
method and they cannot be convergent to optimal solution.
The results of solving the third class of problems with the
branch and bound method is not convergent to feasible
solution space, therefore the third class of problems are
solved with the mathematical model and B & B method and
the results are shown in Table 4 (see Appendix).

We programmed our proposed algorithm with Matlab
software and solved it with 2.4 GHz, Pentium 4, 512MB
Ram PC. The results of the proposed algorithm presented in
Table 4 can be compared with the results of branch and
bound method.

Flexibility coleus denotes the mean number of assigned
machines to each operation. We use ()2cv index for the rate
of diffusion to determine algorithm convergence
represented in equation 17. ()2cv index results are also
shown in Table 4. If ()2cv index is in low level, the
algorithm has a good convergence.

2()
1

2 1
2()

()

n
f fi

i
n
f

cv

−∑
=

−= (17)

In the above formula, f is the mean of objective function
in algorithm repetition, N denotes number of algorithm
repetition which is considered 10 in this paper, and if is
objective function in i th algorithm run time.

Number of scheduling
algorithm neighborhood

Number of assignment
algorithm neighborhood L fT 0T

Problem
number Problem size

20 40 10 0.1 100 6 Small
30 60 15 0.1 150 14 Medium
60 100 20 0.1 200 19 Large

 Mehrzad Abdi Khalife et al. / A Simulated Annealing Algorithm for Multi Objective Flexible Job Shop…

24

Table 4

 Proposed algorithm and the results of the mathematical model solved with Branch and Bound method

Journal of Industrial Engineering 5(2010) 17-28

25

For considering overlapping assumption in the three
defined classes, we use problem 16 here. As described in
section 4-2, in the first class of overlapping, all overlapping
coefficients are the same, that is, in this paper we use 0.1
for all numerical examples. Problem 16 is defined in Table
5, and the effect of 0.1 overlapping coefficient is depicted

in Fig. 5. The second class of overlapping is defined using
[0.2 0.1 0.3 0.2 0.5 0.2] matrix that from left to right
represents overlapping coefficients of job number 1 to job
number 6. In Fig. 6, you can see the effect of this matrix of
overlapping coefficients on operations in optimal solution.

 Table 5
 Problem 16 operations process time

Job No. operation
Machine

1 2 3 4 5 6 7

1

1,1O
147 123 145

1,2O
123 130 140

1,3O
 140 160 200

2

2,1O
214 150

2,2O
 66 87 99

2,3O
 178 95 150

3

3,1O
87 62

3,2O
 180 105 145

3,3O
 190 100 153

4

4,1O
87 65

4,2O
 250 173

4,3O
 145 136

5

5,1O
128 123 145

5,2O
 86 65 47

5,3O
 110 85

6

6,1O
 145 320 154

6,2O
 123 150 192

6,3O
 120 240 180

The third kind of overlapping considered here is the

overlapping coefficient for each operation. Its matrix is
shown in Fig. 7, and the overlapping coefficient matrix
solution of problem 16 is illustrated in Fig. 8.

 Fig. 5. Problem 16 with overlapping coefficient 0.1 Gantt chart

In order to show the effect of overlapping assumption,
we solve the problem with two approaches: firstly, with
overlapping in operations (with 0.1 overlapping coefficient)
and then without overlapping in operations.

Fig. 6. Problem 16 with overlapping coefficient matrix [0.2 0.1 0.3 0.2 0.5

0.2

 Mehrzad Abdi Khalife et al. / A Simulated Annealing Algorithm for Multi Objective Flexible Job Shop…

26

0.3 0.2
0.2 0.2
0.1 0.3
0.2 0.5
0.4 0.3
0.2 0.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Fig. 7. Overlapping coefficient for each operation in jobs

Fig. 8. Problem 16 with overlapping coefficient matrix in Fig 7 Gantt
chart

In the first approach, with considering overlapping in
operations, a better objective function is observed. The
results of overlapping in problem 16 are shown in Fig. 5
and the results of problem 16 without overlapping are
shown in Fig. 9. The results indicate that overlapping in
operation reduces makespan and consequently reduces total
function.

Fig. 9. Problem 16 without overlapping coefficient Gantt chart

When solving a scheduling problem with an overlapping
one, a fundamental mistake may take place if one operation
time is shorter than previous operation time. In this
situation, maybe an operation ends before the previous
operation. If in scheduling, we can use overlapping
assumption (i.e. when one operation processes, there is an
idle machine for next operation), to Fig. out the mistake just
mentioned, we consider second operation process time
equal to previous operation process time. The solution of
problem 16 is in Fig. 5. In this Fig., the second operation of
job number 6 after passing 14.5 time unit from first
operation process is prepared to process on machine 3 (with
0.1 overlapping coefficient) but because second operation

process time is shorter than first operation time, we
consider the first operation process time for the second
operation. This is also the same with the third operation and
we consider the first operation process time for the third
operation too. In this case, the initial operation process time

Fig. 10. Modified operation process time with overlapping in operation
assumption

is considered for determining objective function. In Fig. 10,
these mistake solving approaches are shown. As the
manufacturing cost does not depend on the time of job
completion but on machine working time, the Makespan is
not an appropriate criterion, so we consider two other
criteria: critical machine work loading time and all machine
work loading time which are defined as objective functions.
We thought that if Makespan is minimum, the two other
objectives are minimized too, but it is not true. We solved
problem 16 two times, first with one objective function (i.e.
Makespan), and then with three objectives. As the results
presented in Table 6 indicate when the Makespan is the
objective function, total function increases, and if the cost
depends on machine working time, the shop cost will
increase too. Regarding the three objectives, the total
function is lower than the first case and if the cost depends
on machine working time, the shop cost will decrease. Fig.
11 shows the Gant chart of the Makespan objective function
resulted from solving problem 16, and Fig. 5 shows the
Gant chart of the three objective functions.

Fig. 11. Gant chart of problem 16 solution with Makespan objective
function

Journal of Industrial Engineering 5(2010) 17-28

27

Table 6

Multi-objective function in flexible job shop scheduling problems

Makespan Critical machine
work loading time

Total work
loading time

Total
function

Fig
No.

426.3 395 2268 785.25 11

445.8 395 2208 783 5

Overlapping in operations assumption reduces makespan

and in turn increases machines utilization. Problems due to
both overlapping in operations assumption and lack of
overlapping are compared in Fig. 12. Furthermore, best
makespans for both of these approaches are shown. The
Fig. indicates that adding overlapping to operations
assumption results in improvement in both objective
function and Makespan.

Fig. 11. Gant chart of problem 16 solution with Makespan objective
function

7. Conclusion and Future Research

In this paper, multi-objective flexible job shop
scheduling with overlapping in operations is described.
Overlapping in operations assumption is commonplace in
many industries like chemical, petrochemical and glass
factories. Here, multi-objective flexible job shop scheduling
is formulated with an introduced mixed integer linear
programming (MILP), and using lingo software, the
mathematical model is solved with the branch and bound
method. As flexible job shop problem scheduling is NP-
Hard and overlapping in operations increases its
complexity, multi-objective flexible job shop problem
scheduling with overlapping in operations is strongly NP-
Hard. While these problems are NP-Hard, we can use
heuristic and Meta heuristic algorithms for solving them.
Thus, we introduced simulated annealing Meta heuristic
algorithm. Besides, we introduced decomposition approach
in order to reduce the complexity of solving problem in
flexible job shop scheduling. In the first stage, we identified
the assignment algorithm using SA algorithm. Assignment
algorithm output was the initial solution of the scheduling

algorithm. The scheduling algorithm was based on SA
algorithm too. The proposed algorithm was programmed by
Matlab software. To evaluate performance of the proposed
algorithm, we used its comprehensive results and the
mathematical model. The numerical results showed pattern
problems were solved in a short time. Further, comparing
performance of the proposed algorithm with the MILP
model indicated that its result is very good. If the job shop
cost relates to machine working time, just Makespan as the
objective function cannot be a good evaluation criterion.
Therefore, we defined a multi- objective function consisting
of Makespan, critical machine work loading time, and total
machine work loading time. To improve performance of the
proposed algorithm, we used an experimental design with
two factors. Finally, we introduced different overlappings
in operations.

To improve the results further, this study could use
another heuristic and Meta heuristic algorithm for solving
the problem. To be more like the real world events,
dynamic scheduling with minimized total tardy objective or
previous maintenance or random breakdown in machines
could be considered in the study.

References

[1] R. Alvarez-Valdes, A. Fuertes, J.M. Tamarit, G. Gimenez, and R.S.
Ramos, A heuristic to schedule flexible job shop in a glass factory.
European Journal of Operational Research, 165, 525-534, 2005.

[2] P. Brandimarte, Routing and scheduling in a flexible job shop by
taboo search. Annals of Operations Research, 41, 157-183, 1993.

[3] S. Dauzere-Peres, J. Paulli, An integrated approach for modeling
and solving the general multiprocessor job shop scheduling problem
using tabu search. Annals Operations Research, 70, 281-306, 1997.

[4] P. Fattahi, A hybrid Multi objective algorithm for flexible job shop
scheduling. Proceedings of World Academy of Science Engineering
and Technology val. 38 issn, 2070-3740, 2009.

[5] P. Fattahi, F. Jolai, and J. Arkat, Flexible job shop scheduling with
overlapping in operations. Appl. Math. Modelling, doi:
10.1016/j.apm.2008.10.029, 2008.

[6] P. Fattahi, M. Saidi, and F. Jolai, Mathematical modeling and
heuristic approaches to flexible job shop scheduling problems.
Intelligent Manufacturing, 18, 331–342, 2007.

[7] J. Gao, L. Sun, and M. Gen, A hybrid genetic and variable
neighborhood descent algorithm for flexible job shop scheduling
problems. Computers & Operations Research, 35(9), 2892-2907,
DOI: 10.1016/j.cor.2007.01.001, 2008.

[8] M. R. Garey, D. S. Johnson, and R. Sethi, The complexity of
flowshop and jobshop scheduling. Mathematics of Operations
Research, 1, 117-129, 1976.

[9] M. Gholami, M. Zandieh, Integrating simulation and genetic
algorithm to schedule a dynamic flexible job shop. Journal Intell
Manuf, DOI 10.1007/s 10845-008-0150-0, 2008.

[10] E. Hurink, B. Jurisch, and M. Thole, Tabu search for the job shop
scheduling problem with multi-purpose machines. Operations
Research Spektrum, 15, 205-215, 1994.

[11] I. Kacem, S. Hammadi, and P. Borne, a. Approach by localization
and multiobjective evolutionary for flexible job shop scheduling

 Mehrzad Abdi Khalife et al. / A Simulated Annealing Algorithm for Multi Objective Flexible Job Shop…

28

problems. IEEE transactions on systems, man and cybernetic part C,
32(1), 1-13, 2002.

[12] I. Kacem, S. Hammadi, and P. Borne, b. Pareto-optimality approach
for flexible job-shop scheduling problems: hybridization of
evolutionary algorithms and fuzzy logic. Mathematics and
Computers in Simulation, 60, 245–276, 2002.

[13] M. Mastrololli, L. M. Gambardella, Effective neighborhood
functions for the flexible job shop problem. Journal of Scheduling,
3(1), 3-20, 2002.

[14] J. Paulli, A hierarchical approach for the FMS scheduling problem.
Eur. J. Operatres, 89, 32-42, 1995.

[15] F. Pezzella, G. Morganti, and G.Ciaschetti, A genetic algorithm for
the flexible job shop scheduling problem. Computers & Operations
Research, 35(10), 3202-3212, DOI: 10.1016/ j.cor.2007.02.014,
2008.

[16] C. Riago, Tardiness minimization in a flexible job shop: A tabu
search approach. Journal of Intelligent Manufacturing, 15(1), 103-
115, 2004.

[17] M. Saidi Mehrabad, P. Fattahi, Flexible job shop scheduling with
tabu search algorithm. International Journal of Advanced
Manufacturing Technology, 32, 563-570, 2007.

[18] W. Xia, Z. Wu, An effective hybrid optimization approach for
multi-objective flexible jobshop scheduling problems. Computers &
Industrial Engineering, 48, 409–425, 2005.

[19] L. Xing, Y. Chen, and K. Yang, Multi-objective flexible job shop
schedule: Design and evaluation by simulation modeling. Applied
Soft Computing, 9, 362–376, 2009.

[20] M. Zandieh, I. Mahdavi, and A. Bagheri, Solving flexible job shop
scheduling problems by a genetic algorithm. Journal of Applied
Sciences, 8(24), 4650-4655, 2008.

[21] G. Zhang, X. Shao, P. Li, and L. Gao, An effective hybrid particle
swarm optimization algorithm for multi-objective flexible job-shop
scheduling problem. Computers & Industrial Engineering,
DOI:10.1016/j.cie.2008.07.021, 2008.

