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Abstract 

In this paper, we considered solving approaches to flexible job shop problems. Makespan is not a good evaluation criterion with 
overlapping in operations assumption. Accordingly, in addition to makespan, we used total machine work loading time and critical 
machine work loading time as evaluation criteria. As overlapping in operations is a practical assumption in chemical, petrochemical, and 
glass industries, we used simulated annealing algorithm for multi-objective flexible job shop scheduling problem with overlapping in 
operations to find a suitable solution. To evaluate performance of the algorithm, we developed a mixed integer linear programming 
model, and solved it with the classical method (branch and bound). The results showed that in small size problems, the solutions of the 
proposed algorithm and the mathematical model were so close, and in medium size problems, they only had lower and upper bounds of 
solution and our proposed algorithm had a suitable solution. We used an experimental design for improving the proposed algorithm. 
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1. Introduction 

 In the factory environment, time and resource 
management is an important matter. The initial way of 
managing time and resource is to schedule operations in 
manufacturing systems. Due to the competitiveness nature 
of today’s markets, factories must use flexible 
manufacturing equipments, and thus flexible job shop 
scheduling finds a new and important place in factories. 
Through considering flexibility assumption in job shop, we 
can see and describe more diversification and complex 
problems with polynomial algorithms. Many researchers 
are working in job shop environment. Garey et al. [8] are 
first who introduced job shop scheduling problems. Some 
researchers like Brandimart [2] and Paulli [14] use 
dispatching rules for solving flexible job shop scheduling 
problems. Attention to size proved that job shop scheduling 
problems are NP-Hard (Garey et al. [8]) and with added 
flexibility increase complexity more than job shop. 

 

 
 
After Garey et al., Xia and Wu [18] and Fattahi et al. [6] 

proved that flexible job shop scheduling problems are NP-
Hard too. 

Since flexible job shop scheduling problems are NP-
Hard, heuristic and Meta heuristic algorithms are used for 
solving them. Hurink et al. [10], Dauzere-peres and Paulli 
[3], Mastrolill and Gambardella [13], and Rigoa [16] use 
Tabu search algorithm for addressing flexible job shop 
scheduling problems. Besides, Genetic algorithm is one of 
the most frequently used full algorithms that many 
researchers including Kacem et al. a,b [11][12], Zandieh et 
al. [20], Gholami and Zandieh [9], Gao et al. [7], and 
Pezzella et al. [15] use for solving flexible job shop 
scheduling problems.  

Another heuristic and meta heuristic algorithm is PSO 
algorithm which was used by Xia and Wu [18] for 
assigning operations to machines and simulated annealing 
algorithm was used for scheduling those operations.  

To relate flexible job shop scheduling problems to the 
real world, we should add assumptions like sequence 
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dependent setup time (Saidi Mehrabad and Fattahi [17]), 
fuzzy logic (Kacem et al. b [12]) and overlapping in 
operations (Alvarez-Valdes et al. [1] and Fattahi et al. [5]) 
to problems. In this paper, we draw on the approach 
suggested by Alvarez-Valdes et al. [1] and Fattahi et al. [5] 
to solve multi-objective flexible job shop scheduling 
problems with overlapping in operations.  

As in the current market, the demand is in batches, we 
can consider overlapping in operations, for instance, if an 
order of 500 glasses of a given model is placed, the 
production order would consist of decorating and packing 
these 500 glasses, and the previous production order would 
consist of producing 10,000 glasses, 500 of which would 
proceed to the original order and the remaining 9500 would 
be stored. This scheme shows relationships and priorities 
between production orders. 

The operations to be performed on the pieces can, and in 
fact should, overlap. If an order consists of decorating and 
packing 500 glasses, we do not have to wait until all the 
glasses are decorated to start packing them. Sometimes this 
overlapping is automatic, that is, as soon as the first piece is 
processed on one machine, it goes directly to the next 
machine. On other occasions, the overlapping is limited by 
structural constraints such as the size of the box to be 
packed or the capacity of the container used to move the 
pieces from one machine to another. Overlapping can even 
happen between operations of different orders linked by 
precedence constraints.  

For solving more than two flexible job shop scheduling 
problems, we can use two different approaches: integrated 
approach and decomposition approach. In the integrated 
approach, operations are assigned to machine and are 
sequenced in one stage. Hurink et al. [10], Dauzere-Peres 
and Paulli [3], and Mastrololli and Gambardella [13] used 
this approach in their studies. 

The decomposition approach in which operations are 
assigned to machines and are sequenced in two separate 
stages is developed for reducing complexity of problems. 
This approach includes two stages: first, operations are 
assigned to available machines and then the assigned 
operations are scheduled in machines and after solving to 
stage respectively we have the final solutions. The 
decomposition approach in flexible job shop scheduling 
problems was firstly introduced by Brandimart [2]. They 
solved a general problem with dispatching rules and 
improved the solutions with tabu search algorithm. 
Following Brandimarte [2], many researchers used the 
decomposition approach in flexible job shop scheduling 
problems (e.g. Xia and Wu [18], Fattahi et al. [5][6], and 
Fattahi [4]). 

Many objective functions have been considered in 
flexible job shop scheduling programs. The main focus of 
attention has been on minimizing makespan that Fattahi et 
al. [5][6], Saidi Mehrabad and Fattahi [17], and Zandieh et 
al. [20] use as an objective function and if it describes 
dynamic flexible job shop scheduling problems, the 

researchers can determine total tardy, mean tardy and the 
number of tardy jobs (Gholami and Zandieh [9], Fattahi 
[4]). Kacem et al. a,b [11][12], Xia and Wu [18], Zhang et 
al. [21], and Gao et al. [7] describe flexible job shop 
scheduling problems with three objective functions 
including makespan, critical machine work loading time, 
and total work loading time. Then Xing et al. [19] describe 
these three objective functions in a flexible job shop 
environment with simulation method.  

The present paper with the following organization aims 
to present meta heuristic method simulated annealing 
algorithm for solving multi-objective flexible job shop 
scheduling problems with overlapping in operations: 
section 2 presents multi-objective flexible job shop 
scheduling problems with overlapping in operations and a 
mathematical model for solving the problems with usual 
deterministic mathematical approaches. In this paper 
branch and bound method is used. Section 3 introduces 
simulated annealing algorithm briefly and section 4 
explains how this algorithm is used in this paper. In this 
section, both approaches to assignment and scheduling of 
operations are illustrated. Proposed algorithm parameters 
tuned with use experimental design are presented in section 
5. Section 6 presents the numerical results and section 7 
includes the conclusion and suggestions for further 
research.   

2. Problem description and formulation 

We formulate the FJSS problem with overlapping in 
operations as follows. The problem has m machines and n 
jobs. Each job consists of a sequence of operations ,j hO , 

1, .. ., jh h=  , where ,j hO , and jh  denote the hth operation of 
job j and the number of operations required for job j, 
respectively. The machine set is represented as M, 

1 2{ , ,..., }mM M M M= . Unless stated otherwise, index i 
denotes a machine, index j denotes jobs and index h 
denotes operations throughout the paper. The execution of 
each operation h of a job j (denoted as ,j hO ) requires one 
machine out of a set of given machines called ,j hM M⊂ , and 
a process time, , ,i j hP , for each alternative machine. The 
set ,j hM  is defined by , ,i j ha  as described below. Index k 
which is assigned to each machine determines the sequence 
of the assigned operations on it (Fattahi et al. [6]). 

We consider multi-objective functions. The weighted 
sum of the three objective values taken as objective 
functions is as follows: 

F(c) =0.5* F1(c) +0.3* F2(c) +0.2 * F3(c) 
Where F(c) denotes the objective value of schedule c, 

F1(c), F2(c) and F3(c) denote the makespan, Critical 
machine work loading time and Total machine work 
loading time of schedule c, respectively. We consider 

iW L for Work loading time for machine i and TW L for 
Total work loading time for all machines. The weight of 
different objectives is determined empirically. If the 
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decision maker pays more attention to a certain objective, 
we can define a large weight for it. Otherwise, a small 
weight is defined for it. There are three advantages in using 
weighted sum approach to deal with the multi-objective 
optimization. Firstly, it is easy for decision makers to 
understand the weighted sum method. Second, developers 
can implement it conveniently. Thirdly, the weight of 
different objectives can be modified in order to satisfy the 
requirements of decision makers. In the present study, the 
importance of objectives F1(c), F2(c) and F3(c) are 
considered as ‘the most important’, ‘more important’ and 
‘important’, so the weight of them is defined as 0.5, 0.3 and 
0.2, respectively (Xing et al. [19]). 

We develop the overlapping model suggested by Fattahi 
et al. [5]   to formulate the FJSP with overlapping in 
operations. The operations to be performed on the jobs can, 
and in fact should, overlap. The extent of this overlapping 
is limited by a coefficient, ,j hov , defined as the proportion 
of operation ,j hO  that has to be processed before its 
successor , 1j hO +  can start. This coefficient is 1 if no 
overlapping is allowed, and is very small, near to 0, if there 
is automatic overlapping in which as soon as the first unit 
of operation ,j hO , is processed, it becomes part of the next 
operation and is immediately processed. The 
overlapping, ,j hov , of two operations determines the earliest 
starting time of the second operation, so that it is 
guaranteed that a sufficient proportion of ,j hO , is already 
processed and also that , 1j hO +  does not finish before the last 
units coming from ,j hO , have arrived. 

 
Fig.  1. Types of overlapping in operations 

In the left hand part of Fig. 1, the first condition 
determines the earliest starting time of , 1j hO +  and in the right 
hand part of this Fig., the second condition determines the 
earliest finishing time of , 1j hO + . 

Under these assumptions and notations, the problem is 
to determine both an assignment and a sequence of the 
operations on all machines that minimizes the makespan 
given n, m, ,j hO , , ,i j ha , ,j hov and , ,i j hP . Henceforth, this 

problem is referred to as flexible job shop scheduling 
problems (FJSP) with overlapping operations. The 
following additional notations are used in the mixed integer 
linear program formulation of FJSP with overlapping 
operations (Fattahi et al. [5]). 
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⎨
⎩

 
 

Min: F(c) =0.5* F1(c) +0.3* F2(c) + 0.2* F3(c) 
F1(c) =Makespan time 
F2(c) =critical machine work loading time  
F3(c) =Total work loading time of all machines 

maxC  : Makespan time 
iW L : Work loading time for machine i. 

TWL : Total work loading time for all machines 
,j ht : Starting time of the processing of operation ,j hO . 

,i kTM : Start of working time for machine i in priority k. 
ik : The number of assigned operations to machine i. 

,j hPS : Processing time of operation ,j hO after selecting a 
machine. 

A mixed integer linier program for the FJSP with 
overlapping operations is as follows: 

 
Min: F(c) =0.5* F1(c) +0.3* F2(c) + 0.2* F3(c) 
F1(c) = maxC  
F2(c) = max ( iWL )   i=1,…,m 

     F3(c) =
i

i

TW L W L= ∑  

s.t. 
max , ,j jj k j kC t ps≥ +      for   j=1,...,n (1) 

, , , ,.i i j h k j h
k

WL x ps=∑      for   i=1,...,m (2) 

, , , , ,.i j h i j h j h
i

y p ps=∑      for   j=1,...,n; h=1,..., jh  (3) 

, , , , 1 ,. (1 )j h j h j h j h j ht ps ov t r L++ ≤ −      for  j=1,...,n; h=1,..., 1jh −  (4) 

, , , , 1 , 1 , , ,. . .j h j h j h j h j h j h j h j ht ps ov t ps ps ov r L+ ++ ≤ + − +   for j=1,...,n; h=1,..., 1jh −  (5) 

, , , , , , 1.i k j h i j h k i kTm ps x Tm ++ ≤   for i=1,...,m;  j=1,...,n; h=1,..., jh ; k=1,..., 1ik −  (6) 
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, , , , ,(1 ).i k j h i j h kTm t x L≤ + −      for i=1,...,m;  j=1,...,n; h=1,..., jh ; k=1,..., ik  (7) 

, , , , ,(1 ).i k i j h k j hTm x L t+ − ≥       for i=1,...,m;  j=1,...,n; h=1,..., jh ; k=1,..., ik  (8) 

, , , ,i j h i j hy a≤      for i=1,...,m;  j=1,...,n; h=1,..., jh  (9) 

, , , 1i j h k
j h

x =∑∑      for i=1,...,m; k=1,..., ik  (10) 

, , 1i j h
i

y =∑      for j=1,...,n; h=1,..., jh  (11) 

, , , , ,i j h k i j h
k

x y=∑      for i=1,...,m;  j=1,...,n; h=1,..., jh  (12) 

, 0j ht ≥      for  j=1,...,n; h=1,..., jh  (13) 

, , , {0,1}i j h kx ∈     for i=1,...,m;  j=1,...,n; h=1,..., jh ; k=1,..., ik  (14) 

, , {0,1}i j hy ∈     for i=1,...,m;  j=1,...,n; h=1,..., jh  (15) 

Constraint (1) determines the makespan, that is, the first 
objective. Constraint (2) determines work loading times of 
all machines, so we can search for a critical machine with 
maximum work loading time to determine second and third 
objectives.  Constraint (3) determines the processing time 
of operation ,j hO in the selected machine. Constraints (4) 
and (5) enforce each job to follow a specified operation 
sequence and consider the overlapping constraints. 
Constraint (6) makes it compulsory for each machine to 
process one operation at a time. Constraints (7) and (8) 
guarantee that each operation ,j hO  can start when its 
assigned machine is idle and the previous operation , 1j hO − is 
completed. Constraint (9) determines the alternative 
machines for each operation. Constraint (10) assigns the 
operations to a machine and sequences assigned operations 
on all machines. Constraints (11) and (12) assure that each 
operation can be performed only on one machine and at one 
priority. Results of , , ,i j h kx yield the assignment of each 
operation on a machine and sequence assigned operations 
on all machines.  

3. Simulated annealing algorithm 

We want to use simulated annealing algorithm (SA 
algorithm) for solving problems. SA algorithm is inspired 
metal cooling process. In this process, with reducing 
temperature gradually, we aim to get closer to optimal 
solution. SA algorithm searches current solution 
neighborhoods for a better solution and uses it for many 
complementary problems. Some researchers like Fattahi et 
al. [5][6]  and Zandieh et al. [20]  use SA algorithm in 
flexible job shop environment. SA algorithm generates an 
initial solution randomly and then neighborhood of this 
solution and afterward compares objective functions of 
them with each other: if new solution is better than current 
solution, it substitutes current solution with new solution 
and then generates another neighborhood. To guarantee 
algorithm diversification, SA algorithm accepts worse  

Fig. 2. Solution approach flowchart 
solution with probability p=

( / )exp iT−Δ
 where Δ  is different 

and then generates another neighborhood. To guarantee 
algorithm diversification, SA algorithm accepts worse 
solution with probability p=

( / )exp iT−Δ
 where Δ  is different 

between current solution and new solution objective 
functions; iT is iTh algorithm stage temperature that is 
obtained from cooling schema presented in equation 16. 
That denotes T as initial temperature and 0T as frozen 
temperature as SA algorithm moves from T  to 0T  in 
passing time. Finally, stop condition is met when the 
algorithm temperature becomes 0T . 

 

0.i
T TT T i

N
−

= −
 (16) 

In equation 16, N denotes the maximum number of 
iterations of SA algorithm. The initial temperature of SA 
algorithm is high enough that the first answer acceptance 
probability is larger than 80 percent. 
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4. The Proposed algorithm 

In this paper, we use the decomposition approach that 
yields two algorithms, namely, assignment and scheduling 
algorithms in separate stages. Fig. 2 depicts the flowchart of 
the solving approach, and both algorithms are described in 
the next section. 

4.1. assignment algorithm 

As mentioned earlier, we use the decomposition 
approach for objective function optimization. At its first 
stage which includes assigning operations to machines, 
assignment algorithm is used. Using scheduling algorithm, 
we want to establish an appropriate assignment algorithm 
solution and after scheduling algorithm process, we select 
the best solution.  

We develop Fattahi et al. [5] solution seed and 
neighborhood generator structure, and in neighborhood 
structure, we select one operation randomly and change the 
assignment SA algorithm pseudo-code which is illustrated 
in Fig. 3 where AssignN denotes number of iterations in each 
SA algorithm temperature, S is current solution that is 
generated randomly for initial solutions; Sc is S 
neighborhood and S* is the best solution obtained.  

 
Parameters setting 
input temperature T, final temperature T0 , number of iteration 

AssignN  , and L 

generate initial solution randomly = S   
evaluate S = F 
n=1, n1=1 
while Ti < T 
 while n < 

AssignN  

  while n1<L 
  select a neighborhood Sc of S 
  evaluate  Sc  with scheduling algorithm =  Fc    
  compute Δ = Fc – F 
  if Δ <= 0 
   then S = Sc  ; F = Fc  
  else 
   generate a random variable ~ (0,1)P  
   if ( / )e iT P−Δ >  
    then S = Sc  ; F = Fc     
   end if 
  end if 
  n1=n1+1 
  end while  
  n = n + 1 
 end while 
 update Ti 
end while 
if  F < F* 
 F* = F  ;  S* = S 
end if 

 
 

4.2. scheduling algorithm 

As mentioned earlier, after assignment algorithm, we use 
the scheduling algorithm to schedule operations on 
machines. The generated Sc is the input to the scheduling 
algorithm, algorithm solutions evaluated by total objective 
function that provide three different objectives: 

Min: F(c) =0.5* F1(c) +0.3* F2(c) + 0.2* F3(c) 
Scheduling algorithm initial solution is output of the 

assignment algorithm. In this stage, we use the solution 
seed by Fattahi et al. [5] again. For neighborhood generator, 
select one machine randomly and change priority between 
operations and then evaluate objective function. The 
scheduling algorithm pseudo-code is presented in Fig. 4 
where SchedulN denotes number of iterations in each SA 
algorithm, temperature for algorithm better performance, its 
parameters had to set hence in the next section, we treat 
algorithm. Overlappings in operations could be classified in 
three different classes: first class, second class, and third 
class. In the first class, all operations in one job have the 
same overlapping coefficient that is represented by ,j hov  . 

,j hov  is between zero and one. Thus, if overlapping  
coefficient  for a job is   

 
 
parameters setting 
input temperature T, final temperature T0 , number of iteration 

SchedulN  , and L 
input solution from assignment algorithm = S   
evaluate S = F 
n=1, n1=1 
while Tf < T 
 while n < 

SchedulN  
  while n1<L 
  select a neighborhood Sc of S 

evaluate  Sc  with function  
(0.5* F1(c) +0.3* F2(c) + 0.2* F3(c)) =  Fc   

  compute Δ = Fc – F 
  if Δ <= 0 
   then S = Sc  ; F = Fc  
  else 
   generate a random variable ~ (0,1)P  

   if ( / )e iT P−Δ >  
    then S = Sc  ; F = Fc     
   end if 
  end if  
  n1=n1+1 
  end while  
  n = n + 1 
 end while 
 update T 
end while 
if  F < F* 
 F* = F  ;  S* = S 
end if 
 
 
 

Fig.  3.  Assignment algorithm pseudo-code Fig.  4.  Scheduling algorithm pseudo-code 
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0.1 and the operation process time is 20 units after passing 
(20*0.1=2) unit could start next operation of that job on an 
idle machine. If overlapping in operations is to be 
overlooked, overlapping coefficient must be set equal to 
one for all jobs. The second class of overlapping considers 
different overlapping coefficients for different jobs, thus 
each job consists of one overlapping coefficient and 1*N 
matrix is made. The third class of overlapping considers 
different overlapping coefficients for each operation so it 
made a matrix. In Fig. 10, we can see an example of this 
matrix. 

5. Tuned proposed algorithm  

To improve performance of the proposed algorithm, we 
needed to set algorithm parameters. Efficient algorithm 
parameters can be classified into two major classes: 
assignment algorithm parameters and scheduling algorithm 
parameters. In addition, they can be presented as follows: 1-
maximum  iteration defined by N 2- initial temperature of 
SA algorithm defined by T 3- frozen temperature defined 
by 0T  4- number of iterations in each algorithm temperature 
defined by L . 

Parameters tuned with the use experimental design for 
maximum neighborhood in both algorithms assignment and 
scheduling. Experiments result in changes affiliated to 
consideration problem size. To examine the proposed 
algorithm, 24 problems are defined and then solved by the 
mathematical model presented in section 2 and branch and 
bound approach. One-hour CPU time restriction is set for 
solving problems. If problems are solved in this time 
restriction, they are classified as small size; if this time 
restriction is just lower or upper bound distinguish, 
problems are classified as medium size and if in the 
identified time, the branch and bound approach cannot enter 
a feasible space, problems are classified as large size. For 
this classification, 9, 9, and 6 random problems were 
generated, respectively. For parameter setting, a problem 
from each class was selected randomly: number 6 for small 
size class, problem number 14 for medium size and 
problem number 19 for large size class. 

If objective function does not reduce more than 
0.01ε = in 100 algorithm iterations, algorithm will stop to 

decrease running time risk. 
To apply experiments and algorithm running, other 

parameters are set empirically and the experiment level is 
indicated in Table 1. Table 2 shows a designed ANOVA 
test for three pattern problems. 

Table 1  

DOE, assignment and scheduling algorithms parameter 

Table 2  
Experimental design ANOVA with two factors   

    ss df ms f P-Value 

Sm
al

l s
iz

e 
pr

ob
le

m
 A 174.845 3 58.28167 0.666667 0.5847 

B 524.535 3 174.845 2 0.1546 

interaction 524.535 9 58.28167 0.666667 0.7271 

Error 1398.76 16 87.4225     

Total 2622.675 31       

M
ed

iu
m

 si
ze

 
pr

ob
le

m
 

A 6772.44 3 2257.48 1.134648 0.3649 

B 10694.3 3 3564.766 1.791711 0.1893 

interaction 20816.85 9 2312.984 1.162545 0.3792 

Error 31833.39 16 1989.587     

Total 70116.99 31       

La
rg

e 
si

ze
 p

ro
bl

em
 A 11021.38 3 3673.793 4.988057 0.0125 

B 28686.85 3 9562.282 12.9831 0.0001 

interaction 2037.473 9 226.3859 0.307373 0.9612 

Error 11784.28 16 736.5178     

Total 53529.98 31       

 

Problem size Problem 
number 0T  fT  L  

Level of assignment algorithm 
neighborhood 

Level of scheduling algorithm 
neighborhood 

Small 6 100 0.1 10 40 , 50 , 60 , 70 20 , 30 , 40 , 50 
Medium 14 150 0.1 15 60 , 75 , 90 , 105 30 , 45, 60 , 75 
Large 19 200 0.1 20 80 , 100 , 120 , 140 40 , 60 , 80 , 100 
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Table 3 
Proposed algorithm parameters setting  

 
Considering the first ANOVA experiment, there is no 

significant difference between small size problems with the 
defined level in Table 1, therefore reducing problems 
running time uses a lower level of neighborhoods that is 40 
neighborhoods for assignment algorithm and 20 
neighborhoods for scheduling algorithm. For medium size 
problems, its ANOVA indicates that there is no significant 
difference between neighborhoods levels of assignment and 
scheduling algorithms, and both algorithms use lower level 
of neighborhood. The numbers of neighborhoods in 
medium size problems for assignment and scheduling 
algorithms are 60 and 30 respectively. Finally, the ANOVA 
experiment for large size problems shows that numbers of 
neighborhoods in assignment and scheduling algorithms 
have significant differences.  

By using multi comparative experiments, it is concluded 
that the best number of neighborhoods in assignment 
algorithm is 100 and in scheduling algorithm is 60. The 
proposed algorithm parameters for solving problems are 
presented in Table 3. 

6. Experimental results 

As maintained in section 4, we randomly generated three 
classified problems with the mathematical model solving by 
branch and bound method solving and time observation. 
Using lingo software, we solved all problems by the 
mathematical model and branch and bound method. The 
result of solving the small size problems with the branch 

and bound method is convergent to optimal solution less 
than one hour, and for medium size problems, just lower 
and upper bounds are obtained by the branch and bound 
method and they cannot be convergent to optimal solution. 
The results of solving the third class of problems with the 
branch and bound method is not convergent to feasible 
solution space, therefore the third class of problems are 
solved with the mathematical model and B & B method and 
the results are shown in Table 4 (see Appendix). 

We programmed our proposed algorithm with Matlab 
software and solved it with 2.4 GHz, Pentium 4, 512MB 
Ram PC. The results of the proposed algorithm presented in 
Table 4 can be compared with the results of branch and 
bound method. 

Flexibility coleus denotes the mean number of assigned 
machines to each operation. We use ( )2cv  index for the rate 
of diffusion to determine algorithm convergence 
represented in equation 17. ( )2cv  index results are also 
shown in Table 4. If ( )2cv index is in low level, the 
algorithm has a good convergence. 

2( )
1

2 1
2( )

( )

n
f fi

i
n
f

cv

−∑
=

−=  (17) 

In the above formula, f  is the mean of objective function 
in algorithm repetition, N denotes number of algorithm 
repetition which is considered 10 in this paper, and if  is 
objective function in i th algorithm run time.

 

Number of scheduling 
algorithm neighborhood 

Number of assignment 
algorithm neighborhood L  fT  0T  

Problem 
number Problem size 

20 40 10 0.1 100 6 Small 
30 60 15 0.1 150 14 Medium 
60 100 20 0.1 200 19 Large 
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Table 4 

 Proposed algorithm and the results of the mathematical model solved with Branch and Bound method  



Journal of Industrial Engineering 5(2010) 17-28 
 

25 
 

For considering overlapping assumption in the three 
defined classes, we use problem 16 here. As described in 
section 4-2, in the first class of overlapping, all overlapping 
coefficients are the same, that is, in this paper we use 0.1 
for all numerical examples. Problem 16 is defined in Table 
5, and the effect of 0.1 overlapping coefficient is depicted 

in Fig. 5. The second class of overlapping is defined using 
[0.2 0.1 0.3 0.2 0.5 0.2] matrix that from left to right 
represents overlapping coefficients of job number 1 to job 
number 6. In Fig. 6, you can see the effect of this matrix of 
overlapping coefficients on operations in optimal solution.

                                                           Table 5 
                                                           Problem 16 operations process time 

Job No. operation 
Machine 

1 2 3 4 5 6 7 

1 

1,1O  
147 123 145     

1,2O  
123 130  140    

1,3O  
   140 160 200  

2 

2,1O  
214  150     

2,2O  
 66 87 99    

2,3O  
    178 95 150 

3 

3,1O  
87 62      

3,2O  
  180 105   145 

3,3O  
   190 100 153  

4 

4,1O  
87 65      

4,2O  
  250  173   

4,3O  
   145  136  

5 

5,1O  
128 123 145     

5,2O  
  86 65 47   

5,3O  
    110 85  

6 

6,1O  
 145 320 154    

6,2O  
  123 150 192   

6,3O  
    120 240 180 

 
The third kind of overlapping considered here is the 

overlapping coefficient for each operation. Its matrix is 
shown in Fig. 7, and the overlapping coefficient matrix 
solution of problem 16 is illustrated in Fig. 8.  

  Fig. 5. Problem 16 with overlapping coefficient 0.1 Gantt chart 
 

In order to show the effect of overlapping assumption, 
we solve the problem with two approaches: firstly, with 
overlapping in operations (with 0.1 overlapping coefficient) 
and then without overlapping in operations.  

 
Fig. 6. Problem 16 with overlapping coefficient matrix [0.2 0.1 0.3 0.2 0.5 

0.2 
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Fig.  7.  Overlapping coefficient for each operation in jobs 

Fig. 8. Problem 16 with overlapping coefficient matrix in Fig 7 Gantt 
chart 

In the first approach, with considering overlapping in 
operations, a better objective function is observed. The 
results of overlapping in problem 16 are shown in Fig. 5 
and the results of problem 16 without overlapping are 
shown in Fig. 9. The results indicate that overlapping in 
operation reduces makespan and consequently reduces total 
function.  

Fig.  9.  Problem 16 without overlapping coefficient Gantt chart 

When solving a scheduling problem with an overlapping 
one, a fundamental mistake may take place if one operation 
time is shorter than previous operation time. In this 
situation, maybe an operation ends before the previous 
operation. If in scheduling, we can use overlapping 
assumption (i.e. when one operation processes, there is an 
idle machine for next operation), to Fig. out the mistake just 
mentioned, we consider second operation process time 
equal to previous operation process time. The solution of 
problem 16 is in Fig. 5. In this Fig., the second operation of 
job number 6 after passing 14.5 time unit from first 
operation process is prepared to process on machine 3 (with 
0.1 overlapping coefficient) but because second operation 

process time is shorter than first operation time, we 
consider the first operation process time for the second 
operation. This is also the same with the third operation and 
we consider the first operation process time for the third 
operation too. In this case, the initial operation process time  

Fig.  10.  Modified operation process time with overlapping in operation 
assumption 

is considered for determining objective function. In Fig. 10, 
these mistake solving approaches are shown. As the 
manufacturing cost does not depend on the time of job 
completion but on machine working time, the Makespan is 
not an appropriate criterion, so we consider two other 
criteria: critical machine work loading time and all machine 
work loading time which are defined as objective functions. 
We thought that if Makespan is minimum, the two other 
objectives are minimized too, but it is not true. We solved 
problem 16 two times, first with one objective function (i.e. 
Makespan), and then with three objectives. As the results 
presented in Table 6 indicate when the Makespan is the 
objective function, total function increases, and if the cost 
depends on machine working time, the shop cost will 
increase too. Regarding the three objectives, the total 
function is lower than the first case and if the cost depends 
on machine working time, the shop cost will decrease. Fig. 
11 shows the Gant chart of the Makespan objective function 
resulted from solving problem 16, and Fig. 5 shows the 
Gant chart of the three objective functions. 

 

Fig.  11.  Gant chart of problem 16 solution with Makespan objective 
function 
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Table 6 

Multi-objective function in flexible job shop scheduling problems 

Makespan Critical machine 
work loading time 

Total work 
loading time 

Total 
function 

Fig 
No. 

426.3 395 2268 785.25 11 

445.8 395 2208 783 5 

 
Overlapping in operations assumption reduces makespan 

and in turn increases machines utilization. Problems due to 
both overlapping in operations assumption and lack of 
overlapping are compared in Fig. 12. Furthermore, best 
makespans for both of these approaches are shown. The 
Fig. indicates that adding overlapping to operations 
assumption results in improvement in both objective 
function and Makespan. 

Fig.  11.  Gant chart of problem 16 solution with Makespan objective 
function 

7. Conclusion and Future Research 

In this paper, multi-objective flexible job shop 
scheduling with overlapping in operations is described. 
Overlapping in operations assumption is commonplace in 
many industries like chemical, petrochemical and glass 
factories. Here, multi-objective flexible job shop scheduling 
is formulated with an introduced mixed integer linear 
programming (MILP), and using lingo software, the 
mathematical model is solved with the branch and bound 
method. As flexible job shop problem scheduling is NP-
Hard and overlapping in operations increases its 
complexity, multi-objective flexible job shop problem 
scheduling with overlapping in operations is strongly NP-
Hard. While these problems are NP-Hard, we can use 
heuristic and Meta heuristic algorithms for solving them. 
Thus, we introduced simulated annealing Meta heuristic 
algorithm. Besides, we introduced decomposition approach 
in order to reduce the complexity of solving problem in 
flexible job shop scheduling. In the first stage, we identified 
the assignment algorithm using SA algorithm. Assignment 
algorithm output was the initial solution of the scheduling 

algorithm. The scheduling algorithm was based on SA 
algorithm too. The proposed algorithm was programmed by 
Matlab software. To evaluate performance of the proposed 
algorithm, we used its comprehensive results and the 
mathematical model. The numerical results showed pattern 
problems were solved in a short time. Further, comparing 
performance of the proposed algorithm with the MILP 
model indicated that its result is very good. If the job shop 
cost relates to machine working time, just Makespan as the 
objective function cannot be a good evaluation criterion. 
Therefore, we defined a multi- objective function consisting 
of Makespan, critical machine work loading time, and total 
machine work loading time. To improve performance of the 
proposed algorithm, we used an experimental design with 
two factors. Finally, we introduced different overlappings 
in operations. 

To improve the results further, this study could use 
another heuristic and Meta heuristic algorithm for solving 
the problem. To be more like the real world events, 
dynamic scheduling with minimized total tardy objective or 
previous maintenance or random breakdown in machines 
could be considered in the study.  
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