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Abstract 

In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as 
an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The 
study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many difficulties such 
system nonlinearities and all types of constraints can be catered for and implemented easily. The application of Pontryagin’s minimum 
principle to this problem was resulted in a standard two-point boundary value problem (TPBVP), solved numerically. Then, the 
formulation was developed to find the maximum payload and corresponding optimal path. The main advantage of the proposed method is 
that the various optimal trajectories can be obtained with different characteristics and different maximum payloads. Therefore, the designer 
can select a suitable path among the numerous optimal paths. In order to verify the effectiveness of the method, a simulation study 
considering a two-link flexible manipulator was presented in details. 
 
Keywords: Flexible Manipulator; Finite Element Method; Pontryagin Minimum Principle. 

1. Introduction 

Most industrial robots in use today are composed of 
heavy and stiff links to satisfy the required repeatability 
and accuracy. These links, therefore, have inherently a 
large inertia, requiring in turn a long time to complete the 
motion and more power consumption in the actuators. To 
increase the productivity by fast motion and to complete a 
motion with small energy consumption, industrial robot 
manipulators are required to have light weight and 
flexible structures. On the other hand, the manipulators 
are typically used to repeat a prescribed task a large 
number of times, so even small improvements in their 
performance may result in large monetary saving. 
Sensitivity analysis of the geometric parameters such as 
length, thickness and width on the maximum deflection of 
the end effector and vibration energy of a single link 
flexible manipulator was investigated by Korayem et al. 
(2012). 

Finding the full load motion for a point-to-point task 
can maximize the productivity and economic usage of the 
manipulators. Thomas et al. (1985) used the load  

 
 
 

 
capacity as a criterion for sizing the actuators of robotic 
manipulators at the design stage. In their study, they 
considered the maximum load in the neighbourhood of a 
robot configuration. The first formulation to obtain the 
maximum payload of a manipulator in point to point 
motion was presented by Wang and Ravani (1988). They 
used the iterative linear programming (ILP) method to 
solve the problem. Wang et al. (2001) solved the optimal 
control problem with the direct method in order to 
determine the maximum payload of a rigid manipulator. 
The basic idea of this work is to parameterize the joint 
trajectories by using B-spline functions and tuning the 
parameters in a nonlinear optimization until a local 
minimum that satisfies the constraints achieved. This 
method leaks from limiting the solution to a fixed-order 
polynomial as well as complexity issues arose in 
differentiating torques with respect to joint parameters 
and payload due to their constraints and discontinuity. 
Korayem and Ghariblu (2004) were presented a 
computational algorithm for maximum load determination 
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via linearizing the dynamic equation and constraints on 
the basis of Iterative Linear Programming (ILP) approach 
for flexible mobile manipulators. But because of some 
ILP approach’s difficulties, in their work the link 
flexibility has not been considered either in the dynamic 
equation or simulation procedure.  
In contrast, the optimal control method is known as an 
appropriate method in the cases where the system has a 
large number of degree of freedom, especially when 
nonlinear terms are large and fluctuating, e.g., in 
problems with consideration of flexibility in joints or 
links, gravity acceleration or having high speed motion. 
Furthermore, optimization of the various objectives is 
targeted by means of this approach. On the other hand, 
because of the nature of the optimal control problem, 
many difficulties like system nonlinearities and all types 
of constraints may be catered for and implemented easily. 
Thus, this method was widely used as a powerful and 
efficient tool in analysing the nonlinear system, such as 
path planning of the different types of rigid and mobile 
manipulators (Bertolazzi et al. (2005), Bessonnet and Chesse 
(2005), Callies and Rentrop (2008) and Korayem et al. 
(2011)). 
On the other hand, in case of dynamic modelling flexible 
manipulators, the finite element method (FEM) has been 
used to solve very complex structural engineering 
problems during the past years. One of the main 
advantages of FEM over the most of other approximate 
solution methods is the fact that FEM can handle irregular 
geometries routinely. Another significant advantage of 
FEM, especially over analytical solution techniques is the 
ease with which nonlinear conditions can be handled. A 
comprehensive comparison of FEM with other available 
methods for dynamic robot analysing is addressed by 
Korayem and Rahimi (2011). In finite element modelling 
of dynamical manipulators, the elastic deformations are 
analysed by assuming a known rigid body motion and 
later superposing the elastic deformation with the rigid 
body motion (Usoro et al. (1986)). Dogan and 
Istefanopulos (2007) developed finite element models to 
describe the deflection of a planar two-link flexible robot 
manipulator. Zhang et al. (2004) proposed dynamic 
equation of planar cooperative manipulators with link 
flexibility in the absolute coordinates with the 
Timoshenko beam theory and the finite element method. 
Rashidifar et al. (2012) used finite element method to model 
a single link flexible manipulator by dividing the system 
into 10 elements. Then, they presented optimization of 
input shaping technique for vibration control of the 
system using genetic algorithms. Zebin (2012) presented 
theoretical investigation into the dynamic modelling and 
characterization of a constrained two-link flexible 
manipulator using finite element method. Then, the final 
derived model of the system was simulated to investigate 
the behaviour of the system. Mohamed and Tokhi (2004) 
derived the dynamic model of a single-link flexible 
manipulator using FEM and then studied the feed-forward 
control strategies for controlling the vibration. Yue et al. 

(2001) used the finite element method for describing the 
dynamics of the system and computed the maximum 
payload of kinematically redundant flexible manipulators. 
Finally, they numerically simulated a planar flexible robot 
manipulator to validate their research work.  

     Nowadays the advantages of optimal control theory 
are well established and a host of issues related to this 
technique have been studying specially in the field of 
optimal motion planning of robots (Briot et al. (2012), 
Korayem (2013) and Bjorkenstam et al. (2013)). Rahimi et al. 
(2009) proposed indirect solution of open-loop optimal 
control method to trajectory optimization of flexible 
link/joint manipulator in the point-to-point motion. In the 
mentioned work, despite ILP based studies the complete 
form of the obtained nonlinear equation was used. Thus, 
unlike the previous ILP based works to solve the problem 
linearizing equations was not required. However, the 
paper employed assumed modes method to derive the 
robot dynamic moreover; fining the full load was not 
considered in this research study. 

The main objective of the presenting paper is to 
provide a nonlinear dynamic modelling and optimal 
control of flexible manipulators in order to determine the 
dynamic load carrying capacity of such robots. The paper 
firstly deals with the nonlinear modelling of the general 
flexible links robot manipulators. Then, the optimal 
control problem that with employing of Pontryagin's 
minimum principle supports the execution of the 
optimization solution of model is expressed as a brief 
review; subsequently, an application example with the 
two-like flexible manipulator is presented and discussed 
to demonstrate the effective performance of the proposed 
approach. Lastly, the paper is concluded with highlighting 
the feature properties of the proposed model. 

2. Dynamic Modeling  

The finite element method is broadly used to derive 
dynamic equations of elastic robotic arms. Researcher 
usually used the Euler–Bernoulli beam element with 
multiple nodes and Lagrange shape function to achieve 
the reasonable finite element model. The node number 
can be selected according to requirement on precision. 
But, increasing the node number may enlarge the stiffness 
matrix and it cause to long and complex equations. Hence, 
choosing the proper node number is very important in the 
finite element analysing.  
The overall finite element approach involves treating each 
link of the manipulator as an assemblage of n elements of 
length il . Consider link i to be divided into elements 'i1', 
'i2', . . . , 'ij', . . . 'ini' of equal length, li, where ni is the 
number of elements of the ith link. Let us define the 
following notation, where subscript ij refer to the jth 
element of link i. OXY is the inertia system of coordinates, 

iii YXO  is the body-fixed system of coordinates attached 
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to link i. ui,2j-1 is the flexural displacement at the common 
junction of elements 'i(j - 1)' and 'ij' of link i. ui,2j is the 
flexural slope at the tip of the common junction of 
elements 'i(j - 1)' and 'ij' of link i. This slope is measured 
with respect to axis ii XO . For each element the kinetic 
energy , ijT , and potential energy, ijV , are computed in 
terms of a selected system of generalized coordinate , q, 
and their rate of change with respect to time, q . It is 
convenient to define ri as the position vector of link i in 
the inertia reference frame in terms of the position of each 
point in the body-fixed coordinate system: 
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where i
iT 1  is the transformation matrix from iii YXO  to 

its previous body-fixed coordinate system. It is obvious 
that OXYYXO 000 is the inertia system of coordinates. 
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where ijx  is the distance along ii XO  in a body-fixed 
coordinate system from node (j-1), li is the length of the 
elements in the ith link and i  is the joint angle between 
link i and i-1. Finally, ijy is defined as the element 
displacement and expresses the deformation of each link 
due to its original shape: 
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where u is flexural displacement at the common junction 
of elements 'i(j-1)' and 'ij' of link i. k  is the shape 
functions (Hermitian functions) of a beam element and 
obtain as: 
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 Consequently, kinetic energy, ijT , and potential energy, 

ijV , for the jth element of link i can be computed by the 
following equation: 
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In above equation, the potential energy is consisted of two 
parts. One part is due to gravity ( gijV ) and another is 

related to elasticity of links ( eijV ). im  and iEI  are the 

mass and the flexural rigidity of thi  element, respectively. 
After that, for each of these elements the kinetic energy 

ijT  and potential energy ijV are computed in terms of a 
selected system of n generalized variables 

)...,( ,2,1 nqqqq  and their rate of change q . These 
energies are then combined to obtain the total kinetic 
energy, T, and potential energy, V, for the entire system. 
Finally, using Lagrange equations the equations can be 
written in compact form as:  

,)(),()( UqGqqCqqM    (7) 

where M is the inertia matrix, C is the vector of 
Coriolis and centrifugal forces, G describes the gravity 
effects and U is the generalized force inserted into the 
actuator. 

3. Formulation of the Optimal Control Problem 

3.1. Statement of the optimal control problem 

By defining    TT qqXXX ,, 21  , Eq.(7) can be 
rewrite in state space form as: 

))(),(()( tUtXftX   (8) 
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For the maximum payload determination problem the 
state departing from the initial conditions 00 )( xtx   must 
reach the final conditions ff xtx )(  during the overall 

time ft  in such a way that the maximum payload can be 
carried. Generating optimal movements can be achieved 
by minimizing a variety of quantities involving directly or 
not some dynamic capacities of the mechanical system as 


ft

t
dttUtXLuJ

0

))(),(()(  (9) 

where the Lagrangian L may be specified in quite varied 
manners. In the presenting paper, the attention is 
restricting to define the performance measure as: 

dtXWXRTTTJ ft
t

TT 
0

)(5.0)( 220  (10) 

In the presented study, the objective function is defined as 
a function of the actuators velocities and torques to 
minimize energy consumption of the system Liu and Dong 
(2012). The objective function expressed by (10) is 
minimized over the entire duration of the motion. The 
first term in (10) is presented to minimize the total torque 
consumption of the system. The second and third terms 
are minimized the overall state variables during the 
motion. In the above equation, 2

T
2 XWX  is the 

generalized squared norm of the state vector with respect 
to a symmetric, semi-definite weighting matrix W , 

TRTT  is the generalized squared norm of the input 
vector regarding to a symmetric, definite weighting 
matrix R . This can combine, for instance, energy 
consumption, actuating torques, travelling time or 
bounding the velocity magnitude or maximum payload. 
By defining U as a set of admissible control torque over 
the time interval the imposed bound of torque for each 
motor can be expressed as: 

}{   UUUU  (11) 

If U  be a set of admissible control torque over the time 
interval ],[ 0 fttt  , for a specified payload, the optimal 

control problem is to obtain the UtU )(*  in such a 
manner that the objective criterion in Eq. (9) is minimized 
subject to the motion equations, boundary values and 
torque constraints. 

 
3.2. Necessary condition for optimality 

Now as the formulation of the optimal control problem 
has been completed, the solution of optimal problem 
should be formulated. In the presenting paper, an indirect 
solution of the optimal control is employed to solve the 
path planning problem. This technique provides an 
excellent tool to calculate optimal trajectory with high 
accuracy for robots that include, in this case, flexible 
arms. This method can overcome the high nonlinearity 

nature of the optimization problem in spite of using 
complete nonlinear states. Accordingly, the method is a 
good candidate for the cases where the system has a large 
number of degrees of freedoms or high nonlinearities such 
as the flexible manipulators. By implementing 
Pontryagin's minimum principle for solving optimization 
problems the necessary conditions for optimality are 
obtained as stated on the basis of variational calculus. 
Defining the Hamiltonian function as: 

),,,(),,(),,,,(* tmUXLtUXfYtmYUXH p
T

p   (12) 

in addition to costate time vector-function Y(t) that 
verifying the costate vector-equation (or adjoint system)  

XHY T  *  (13) 

and the minimality condition for the Hamiltonian as: 
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leads to transform the problem of optimal control into a 
non-linear multi-point boundary value problem, that there 
exist some numerical techniques for solving such 
problems. 
Hence, the important task is to be achieving the explicit 
formulation of conditions (8), (13) and (14). Noticeably, 
these calculations need to compute the Jacobian matrices 
that require handling huge amounts of arithmetic 
operations when coping with complex dynamical systems. 
The fulfilment of such requirements with remaining all 
nonlinear state and control constraints is the main 
advantage of the presenting research study. There exist 
some numerical techniques for solving such problems, a 
number of which have been reported in associated 
literature such as those by Kirck (2009). 

4. Simulation for a Two Link Flexible Manipulator 

In this section, a flexible two link manipulator with the 
concentrated payload of mass pm  connected to the 
second link as depicted in Fig. 1 is considered to 
simulation. 

 
Fig.  1.  A two-link manipulator with flexible links. 
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The physical parameters of the model used in these 
simulation studies were 6

2211 .100 mkgIEIE  , 
mLL 121     and kgmm 521  . 

By defining the state vectors as follows:  
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The sate space equation of the system can be written as: 

6...1;)(, 22212  iiFxxx iii  , (16) 

where F2(i) can be obtained from Eq. (7). And the 
boundary condition can be expressed as:  
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In order to derive the equations associated with optimality 
conditions, penalty matrices can be selected as: 
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So the objective function is obtained by substituting Eq. 
(18) Into Eq. (10) as below 
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Then, by considering the costate vector as 
 1221 ... yyyY  , the Hamiltonian function can be 

expressed from as: 
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where 12,..,.1, ixi  can be substituted from Eq. (16). 
Using Eq. (13) differentiating the Hamiltonian function 
with respect to the states, result in costate equations as 
follows: 
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The control function in the admissible interval can be 
computed using Eq. (14), by differentiating the 
Hamiltonian function with respect to the torques and 
setting the derivative equal to zero. Then, by applying 
motors torque limitation, the optimal control becomes: 




















UUU

iotherwiseU
UUU

PU

ii

i

ii

i 2,1;  (22) 

The actuators which are used for medium and small size 
manipulators are the permanent magnet D.C. motor. The 
torque speed characteristic of such D.C. motors may be 
represented by the following linear equation: 

1222212222
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where  miiiS  / , i  and mi  are the stall torque and 

maximum no-load speed of thi  motor, respectively. In the 
presenting study, these parameters are considered as 

rad/s   3.5miw  and N.m   30si .  
Finally, 24 nonlinear ordinary differential equations are 
obtained by substituting Eq.(23) into Eqs. (21) and (16), 
which with 24 boundary conditions given in Eq. (17) 
construct a two point boundary value problem (TPBVP). 
Nowadays there are numerous influential and efficient 
commands for solving such problems that are available in 
different software such as MATLAB®, MATEMATHICA 
or FORTRAN. These commands by employing competent 
methods such as shooting, collocation, and finite 
difference solve the problem. In this study, BVP4C 
command in MATLAB® which is based on the 
collocation method is used to solve the obtained problem. 
The details of this numerical technique are given in 
Shampine et al. (2000). 

5. Results and Discussion 

In this simulation, finding the maximum payload value 
carried between the initial and final point, during the 
overall time 5.1ft second is presented. Using the 
obtained equations at section 2 and on the basis of the 
presented control method in section 3, the robot path 
planning problem is investigated by increasing the 
payload mass until the maximum allowable load is 
determined. The penalty matrices are considered to be W= 
(20, 20, 1, 1, 1, 1)  and R =diag(0.1). The maximum 
payload for these values of penalty matrices is found to be 
1 kg. The obtained angular velocities and torque curves 
graphs for a range of pm  are shown in Fig.s 2 and 3. It 

can be found that, increasing the pm  results in enlarging 
the velocity values. Also, as shown in the figures, 
increasing the payload increases the required torque until 
the maximum payload, so that for the last case the torque 
curves lay on their limits. Hence, it is the most possible 
values of the torques and increasing the payload that can 
lead to violating the boundary conditions. 
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Fig.  2- Angular velocities and torques of motors – First joint 
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Fig. 3. Angular velocities and torques of motors – Second joint 

6. Conclusion 

Full load motion planning of flexible manipulators for a 
given two-end-point task in point-to-point motion, based 
on indirect solution of optimal control problem has been 
addressed in this paper. We employed the finite element 
method to model and derive the nonlinear dynamic 
equations of flexible manipulator. It was found that in the 
presence of nonlinear and highly fluctuated terms in 
dynamic equations, open loop optimal control approach is 
a superior candidate for generating the full load motion 
path. The Hamiltonian function has been formed and the 
necessary conditions for optimality have been derived 
based on Pontryagin's minimum principle. The obtained 
equations established a two point boundary value problem 
which was solved by numerical techniques. Finally, 
simulations for a two-link planar manipulator with 
flexible links were carried out and the efficiency of the 
presented method was illustrated. The obtained results 
demonstrate the power and efficiency of the method to 
overcome the high nonlinearity nature of the optimization 
problem which with other methods may be very difficult 
or impossible. The optimal trajectory and corresponding 
input control obtained using this method can be used as a 
reference signal and feed forward command in control 
structure of flexible manipulators. 
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