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Abstract 

The problem we investigate deals with the optimal assignment of resources to the activities of a stochastic project network. We seek to 
minimize the expected cost of the project include sum of resource utilization costs and lateness costs. We assume that the work content 
required by the activities follows an exponential distribution. The decision variables of the model are the allocated resource quantities. We 
construct a continuous time Markov chain model for the activity network and use the PhaseType distribution to evaluate the project 
completion time. Then we use Fibonacci search over the interval of permissible allocations to the activity to seek the minimum expected 
cost.  
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1. Introduction 

Projects are defined as a finite set of activities that are 
required to achieve a specific objective; an activity is 
defined as an action that consumes time and resources. 
Typically, the use of resources entails an expanse that 
varies with the magnitude and duration of their use, and 
the project has a promised completion date which should 
be considered, else it incurs a tardiness penalty. In this 
paper we are concerned with the optimal allocation of 
resources to activities in project under stochastic 
condition in order to optimize an economic objective 
function composed of the sum of the cost of resources 
used and the penalty incurred if the project is completed 
later than its promised completion date. A great deal of 
research has been done pertaining to project scheduling 
since the field's inception [6],[17] [12]. 

The objective of the RCPSP studies is to schedule 
activities in such a manner to meet resource availability 
and precedence constraints in order to optimize an 
objective function typically related to the project 
completion time. The RCPSP can be subdivided into 
unimodal and multimodal cases. unimodal, or single-
mode problem, imply that each activity has a single 
execution mode. In order words both the activity duration 
and its requirement for a set of resources are fixed and  
 

 
 
 
Known. In multimodal problem, on the other hand, each 
activity can be processed in one of several modes. 
Resource constraints can be classified as renewable or 
non-renewable. Renewable resource constraints put limits 
on the amount of a particular resource that can be utilized 
at a particular time in the project. Non-renewable resource 
constraints limit the amount of a particular resource that 
can be utilized in total throughout the project’s life. The 
multimodal RCPSP is closely related to the problem at 
hand. These problems are often referred to as Time-Cost 
Trade off problems (TCTP). At its core, the TCTP 
assumes that the duration of an activity is a function of 
the resources assigned to its completion. Normally, 
greater resource allocation will demand a greater expense, 
thus we have a trade off between the time to complete a 
project and its cost. When the task duration is a linear 
function of the assigned resources we have the Linear 
Time Cost Trade off (LTCT) problem. Notably, 
Fulkerson [11] studied this problem under the objective of 
minimizing project cost subject to completion before a 
due date. He then solved the problem through the use of 
primal-dual concepts in linear programming and 
developed an approach to compute the complete cost 
curve of the project as a function of the project’s due 
dates [6], [11], [19], [25].  
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 If the resource’s allocation is limited to distinct values described a “Policy Iteration-like” approach to achieve 
we have the Discrete Time-Cost Trade off (DTCT) the optimum in finite number of steps. Azaron et al. used 
problem. Hindelang and Muth developed a dynamic control theory to studied resource allocation in Markov 
programming (DP) algorithm to solve this problem in PERT Networks [2]. 
pseudo-polynomial time when the corresponding AOA 
project graph is series-parallel. [14]. In the case where the 
graph is not series-parallel, De et al provide an update to 4. Problem Definition 
the DP algorithm of Hindelang and Muth [4]. 
 Valls et al. study the RCPSP with some activities Given a multimodal activity network (‘multimodal’ 
facing stochastic interruptions and processing times [24]. means that each activity can be performed at any number 
Gutjahr et al. consider scheduling problems similar to our of levels of resource intensity applied to it, with resulting 
own. However, in their approach activities can have one shorter or longer duration), with a stochastic work content  

a a a

14  

of two possible distributions depending on whether or not (W
a project is crashed [13]. apply to each activity (x ), so that the total cost is j 
 minimized. This cost includes the resource cost and the 
 delay cost. The duration of an activity depends on its 
2. Continuous Time Markov Chains work content and on the amount of resource allocated to 
 it. To evaluate the delay cost, a due date must be specified  

In this paper, we assume that the work content of any (T ), as well as the unit cost per period tardy (c s L

task is an exponentially distributed random variable. As a We imposed the following assumptions: 
direct result of this assumption, activity durations are also • The work content of each activity is a random variable 
exponential random variables since the duration is derived that follows an exponential distribution with parameter  
from the work content via the relation Y = W/x, in which λ j j

W is the (random) work content and x is the resource • The amount of resource applied to any activity is  
Allocation. Further, when we assume independence of bounded from below and from above; l ≤ x j j j

activity times with respect to one another we have a activity. 
Markov PERT Network (MPN) [1], [2]. • The availability of the resource is unlimited and is a 
 The term Markov PERT Network originated with continuous variable that may be allocated in any 
Kulkarni and Adlakha and referred to stochastic activity intensity within an interval between lower and upper 
networks where activity times followed an exponential bounds. 
distribution. Further, they provided a method for analysis Note that this assumption does not conflict with the 
involving uniformly directed cut sets (UDC’s) that earlier assumption of unlimited resource availability. It 
allowed one to transformed the PERT network into a only contains the resource allocation to any individual 
Continuous Time Markov Chain [15], [5]. activities. 
 • We assume the total resource availability is abundant 
 enough to accommodate all activities running in parallel 
3. Resources Optimal Allocation at a given time. 
 • We assume that the cost of resource allocation to 
The literature has been of little help on the problem of activity J is quadratic in allocation over the duration of 
resource allocation in project network. Tereso et al. the activity [20], [21], [22], [23]. 
considered resource allocation in multi-modal activity 
networks [20], [23], [22], [23]. They address the 4.1. Project completion time analysis in PERT networks 
stochastic version of the problem and assume exponential 
distribution for the work content of activities. Morgan Kulkarni and Adlakha developed a methodology for 
[18] derived a fast method for optimizing resource transforming a project network with exponentially 
allocation in a single stage stochastic activity network. distributed activity completion times into a CTMC. We 
Morgan used Sample Path Optimization and appealed to will now describe their notation and methodology [15]. 
Geometric Programming to solved the single stage Let G = (V,A) be a PERT network with set of nodes V =  
problem. Morgan stated that his procedure could be {v , v , . . ., v 1 2 m 1 2 n

applied to any distribution of work content provided it is Duration of activity a A is either an exponentially  
amenable to random sampling.[18],[20],[21],[22],[23]. distributed with the parameter λ , or Erlang distributed
Elmaghrby and Ramachandra studied the problem of with the parameters (λ , n ).   a a 
optimal resource allocation in a Markov PERT Network First, we transform the original PERT network into a new 
with respect to an economic objective [7], [8], [9]. Their one, in which all activity durations have exponential 
objective function was comprised of the expected cost of distributions. To do that, we substitute each Erlang  
the resources and the cost of expected tardiness. They activity with the parameters (λ , n ) with n

j), we wish to decide on the amount of resource to

) [3], [26].

: Wj ~ exp(λ ) .

≤u , for all

} and set of activities A = {a , a , . . ., a }.

a  

series of
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exponential activities with the parameter λa. Now, Let G' 
= (V',A') be the transformed network, in which V' and A' 
represent the sets of nodes and arcs of this transformed 
network, respectively. The source and sink nodes are 
denoted by s and t, respectively. For a ∈ A', let α(a) be 
the starting node of arc a, and β(a) be the ending node of 
arc a  

Definition 1. Let I(v) and O(v) be the sets of arcs 
ending and starting at node v, respectively, which are 
defined as follows: 
I(V)={a∈A': β(a)=V}    (v∈V')                                    (1) 

 

   O(V)={ a∈A': α(a)=V}   (v∈V')                               (2) 

Definition 2. If X  V', such that s ∈ X and t ∈ X 
= V'- X, then an (s, t) cut is defined as: 
 (x,x)={ a∈A' : α(a) ∈X , β(a) ∈X}                          (3) 

An (s, t) cut (X,X) is called an uniformly directed cut 
(UDC), if(X,X)  is empty. 

Example 1. Before proceeding, we illustrate the 
material by an example. Consider the network shown in 
Fig. 1. 

 

 

 

 

 

Fig. 1. Example Network 

Clearly, (1, 2) is a uniformly directed cut (UDC), because 
V' is divided into two disjoint subsets X and X, where s 
∈ X and t ∈ X. The other UDCs of this network are (2, 
3).  

Definition 3. Let D = E  F is a uniformly directed cut 
(UDC) of a network. Then, it is called an admissible 2-
partition, if I(β(a))  F, for a ∈F. 

Definition 4. During the project execution and at time 
t, each activity can be in one of the active, dormant or idle 
states, which are defined as follows: 
Active: an activity is active at time t, if it is being 
executed at time t.    
Dormant: an activity is dormant at time t, if it has finished 
but there is at least one unfinished activity in I(β(a)). If an 
activity is dormant at time t, then its successor activities 
in O (β (a)) cannot begin. 
Idle: an activity is idle at time t, if it is neither active nor 
dormant at time t. 
The sets of active and dormant activities are denoted by 
Y(t) and Z(t), respectively, and X(t) =(Y(t),Z(t)). 
 
 Tabel 1 

All admissible 2-partition cuts of the example network 

1. (1a, 3a) 

2. (2a, 3a) 

3. (1a, 3d) 

4. (2a, 3d) 

5. (2d, 3a) 

6. ( , ) 

 

Consider Example 1, again. If activity 2 is dormant, it 
means that this activity has finished but the activity 3 is 
still active. Table 1, presents all admissible 2-partition 
cuts of this network. E contains all active while F includes 
all dormant activities. Now, let S denote the set of all 
admissible 2-partition cuts of the network, and 
s=s{(,)}.Note that X(t) = (,) implies that Y(t) = 
 and Z(t) = , i.e. all activities are idle at time t and 
hence the project is completed by time t. It can be proved 
that {X(t), t  0} is a continuous-time Markov process 
with state space S.[1],[2]                              

As mentioned before, E and F contain active and 
dormant activities of a UDC, respectively. When activity 
a finishes (with the rate of λa), and there is at least one 
unfinished activity in I(β(a)), it moves from E to a new 
dormant activities set, i.e. to F'. Furthermore, if by 
finishing this activity, its succeeding ones, O(β (a)), 
become active, then this set will also be included in the 
new E', while the elements of I(β (a)), which one of them 
belongs to E and the other ones belong to F, will be 
deleted from these sets. Thus, the elements of the 
infinitesimal generator matrix Q = [q{(E,F),(E',F')}],(E,F) 
and(Eً',F ')]∈ S', are calculated as follows:  

 

 

3

UDC2 

λ1=0.1 

2λ1=0.2 
UDC1 

1 

λ 3=0.07 
1

2

3
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In Example 1, if we consider E = {1, 3}, F = (), E' = {2, 
3} and F' = (), then E' = (E _ {1}) O(β (1))], and thus 
from (4b), q{(E,F), (E',F')} = λ1.              
{X(t), t  0} is a finite-state absorbing continuous-time 
Markov process. Since q{(,), (,)} = 0, this state 

would be an absorbing one and obviously the other states 
are transient. Furthermore, we number the states in S such 
this Q matrix be an upper triangular one.[1],[2].

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Graphical Representation of the six states of the CTMC 

 

4.2. Continuous Phase-Type Distributions  

The name “phase type” distribution stems from the 
fact that an Erlang distribution is derived as the sum of 
“stages” or “phases”, all exponentially distributed with 
the same parameter λ. The generalized Erlang distribution 
of order m has m phases (stages) each is exponentially 
distributed but with possibly different parameters λ1, · · · , 
λm.[1], [16], [20], [21], [22], [6].                                

Definition 5. A continuous probability distribution F(·) 
is of the phase type (PH-distribution) 
if it is the distribution of the time until absorption in a 
finite-state Markov process with a single absorbing state; 
that is, there exists a probability vector (α, αm+1) and an 
infinitesimal generator matrix of the form                           
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where e is a m × 1 vector of ones, Ti,i < 0 for 1  i  m, 
and Ti,j  0 for i  j.                                   

Also, 
Te + T0 = 0                                                                 (4) 
and the initial probability vector of Q is given by the 
vector (α, αm+1), with 
α · e + αm+1= 1                                                                  (5) 

  
The pair (α,T) is called ‘representation’ of F (·) . In our 
case, the process starts in state 1 with probability 1. States 

1, . . . , m are transient so that absorption into state m + 1 
from any initial state is certain.                                     
The first result is that the matrix T is non-singular (a 
necessary and sufficient condition for the states 1, . . . , m 
to be transient). Observe that                      

Tk            0 as   k          .                                                    
     

Assuming an initial probability vector (α, αm+1), the 
c.d.f. of the time to absorption in state m + 1 
corresponding to the initial probability vector (α, αm+1) is 
given by                                   
F (z) = 1 − α · eTz · e, for z 0                                    (6) 

 
We make the following observations about the 

properties of the distribution F (·):                    
It has a jump of height αm+1at z = 0. Evidently this is the 
probability that the process starts in the absorbing state. 
This case is of no concern to us since it implies that the 
project is complete at its start, which would imply that 
there is no project. 
Its density portion f (z) = F' (z) on (0, ) is given by          
f (z) = F' (z) = α · eTz · T0                                          (7) 

 
In our case the “portion” of the domain of x is the whole 
real line including the point at the origin because αm+1= 0.  
                            
The non-central moments (about the origin) 'i of F (·) 
are all finite and given by 
'i=(-1)i*i(αT-ie),for i0                                           (8)    

λ 3

λ 3

5

6

λ 2

3

1

2 4

(1a,3a) 

(2a,3a) (2d,3a) 
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5. Description of Algorithm      

In order to solve the problem at hand, we focus our 
research on a modified steepest descent algorithm. We 
first compute an approximation to the partial derivative of 
the expected cost with respect to the allocation to each of 
the activities and then choose to modify the allocation to 
the activity that has the greatest negative derivative. Next 
we use line search techniques to find the minimum 
expected cost allocation to the chosen activity while 
holding the other allocations constant. The algorithm 
iterates using these two steps until a specified stopping 
criterion is met. In order to execute any of these steps, we 
first must be able to compute the expected cost at a 
particular allocation. 

5.1. Cost Computation  

As previously described, the expected cost of  
the project contains two terms: 
E[C(X)]=(Xa/λa)+CL.{max(0,m1-Ts)}                           (9) 

                                                        
The first term relates exclusively to the level of 

resource allocation. Since the work content distribution 
parameter, λi, is given for each activity the expected cost 
of resource allocation can be computed directly. The 
second term, which relates to the lateness of the project 
with respect to a given due date, Ts, can be computed by 
the non-centeral moments of the phase-type distribution. 
As previously described, the non-centeral moments 
function of the phase-type distribution is obtained 
following the relation:                           
mk=(-1)k*k(αT-ke)                                                   (10) 

 
Since that we use the p-state Erlang distribution in our 

computation then: 

!
)(

P

upp
uf eu  


1

                                             (11) 

 

)( 0001                                                 (12) 

 
 
 
T=  
 
 
 
 
With consider the above information we can compute the 
expected cost of lateness based on the following relation:  
Lateness cost expected = cl*{max (0, project complete 
real time-Ts)}   
The expected of project complete time is as first-stage 
moment of phase-type distribution that with consider the 
k-stage moment then:                             

m1= (-1)1*1(αT-1e) = - αT-1e                                  (13) 
 

that in the above relation ,e, is a ones vector and  α  is : 
α = (1 0 0 0 … 0)                                                     (14) 

 
and with substitution in 5.3 relation we have : 
Lateness cost expected= cl*{max (0, - αT-1e -Ts)}       (15)  

 
With consider the above relation the total costs expect is: 
E[C(X)]= (Xa/λa)+ CL.{max(0, -α T-1e -TS)}           (16) 

5.2. Selecting Candidate Activities 

In general, our algorithm optimizes the project cost by 
changing the allocation to one activity at-a-time. We now 
need to explain the procedure to select activities that are 
the best candidates for optimization. The best candidates 
in our procedure are those that could lead to the greatest 
decrease in expected project cost.           

The two terms of the project cost behave diametrically 
opposite in their response to changing resource 
allocations. The project resource cost increases linearly 
with respect to an increase in resource allocation to any 
activity. On the other hand, increased resource allocation 
to the activities tends to shorten their expected duration 
and so the expected lateness cost would decrease with 
respect to such a change in allocation. A decrease in 
overall cost, therefore, could be obtained from either a 
decrease or an increase in resource allocation. 

An important observation is that the expected project 
cost is a convex function with respect to the allocation to 
a single activity. This fact is a result of the two convex 
components of cost. The expected cost of lateness 
decreases convexly due to the exponential distributions on 
which it is based. Further, since the resource costs are 
linear (hence convex) in the resource allocation, the sum 
of the two costs is convex. Thus, repeatedly optimizing 
allocations to single activities one-at-a-time will descend 
monotonically to reach the optimal solution. Since no 
analytical expression is known for the partial derivative of 
the cost function with respect to the allocation to any 
activity aj, we must rely on approximations to proceed. 
Such an approximation would enable us to select the 
activities to which a change in allocation could cause the 
greatest change in expected cost. If we compute the cost 
associated with a small change in allocation, , to a 
particular activity we can approximate the derivative of 
the cost function by first taking the difference between 
this cost and the cost of the initial resource allocation and 
then dividing by the magnitude of . Since a decrease in 
cost can occur via an increase or a decrease in allocation, 
and thanks to the convexity of the cost function, the best 
candidate allocations are those with the steepest- descent 
causing a decrease in cost. Further, if  is constant across 
all activities, we can simply find the change in allocation 
reflecting the greatest decrease in cost. Further, if  is 

-                      0   0     ……      0 

   0           -           0     …...       0 

   0             0      -         …...      0 

   0             0         0   0     …....      
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constant across all activities, we can simply find the 
change in allocation reflecting the greatest decrease in 
cost. Letting X+a = X + , denote the allocation X with the 
value of the a th allocation increased by the amount , 
further we allow X-a = X –  to denote the allocation with 
the a th allocation decreased. We calculate E[C(X+a)] and 
E[C(X-a)] for each activity. With E[C(X)] in hand, we find 
E[C(X+a)] – E[C(X)] and E[C(X-a)] – E[C(X)] for each 
activity, a, and use this as a value of the derivatives of the 
cost function with respect to the allocation to a. We select 
the activity corresponding to the greatest decrease in cost 
as the candidate activity. If the decrease in cost comes 
from X+a , the allocation to activity a must be increased. 
Likewise, if this comes from X-a , we must decrease the 
allocation to activity a. Since we are dealing with 
minimization of the cost function, for certain network 
structures both increasing and decreasing the allocation 
can cause an increase in cost. Thus it is important to 
check both an increase and decrease in allocation rather 
than assuming that an increase in cost in one direction 
implies a decrease in cost in the opposite. 

5.3. Improving Computational Elements of Total Cost 

With respect to the cost function in section 4.1 we 
must calculate E[C(X+a)] and E[C(X-a)] for each activity. 
We let Q (X+a) represent the matrix Q with the allocation 
to activity a increased by the value . Note that increasing 
the allocation to a single activity may correspond to 
increasing the value of several entries in the original Q 
matrix, as well as the decreasing their corresponding 
elements along the main diagonal. Changing the 
allocation to activity i by  implies that we must change 
the values in the Q matrix by λi . This change can be 
viewed as matrix addition. These facts are best illustrated 
with an example from the project in Figure 1, where we 
change the allocation to activity 1 (λ1= 0.2) with = 0.1: 
 
 
Q(X+1)=        
 
 
 
 
 
Q(X+1)= Q+ 
 
 
 
 
Q(X+1)= Q+Ф+1                                                                                            (17) 
 

where, Q +a represents the matrix corresponding to the 
increase in allocation to activity a.                    

Note that the matrix Q +a  ,does not depend on the current 
allocation to the other activities. Here are several ways in 
which you can enter and format. 

5.4. Optimizing the Allocation to a Candidate Activity 

With a candidate variable in hand, we now seek to 
optimize the allocation of resources to that activity while 
leaving the other allocations unchanged. As previously 
stated, the expected project cost is a convex function with 
respect to the allocation to a single activity. Any convex 
optimization procedure could therefore be applicable 
here. However, due to the difficulty involved in finding 
exact analytical expressions for the partial derivatives of 
the cost function, we opt to use Fibonacci search as our 
method of determining the optimal allocation to the 
selected activity. Note that this “optimal” allocation is 
“locally optimal” in a sense as it depends upon the 
allocation to the other activities.                                 

At its core, Fibonacci search, often referred to as 
“golden mean” search, finds the optimal point in a range 
of feasible values by repetitively shrinking the range, 
stopping when the range is sufficiently small to suggest a 
single optimal point. We define r as the inverse of the 
“golden ratio” and use r to give values for Xl and Xu. 
 r = 1/1.6180.618      and          1-r = 0.382 

Wilde shows is the most computationally efficient 
method of finding the optimal value of a variable when 
searching along a line. Given a lower bound, l, and an 
upper bound, u, on the range, two new points are 
calculated within the range: Xl and Xu where Xl < Xu :       

                                  XL=L+(U-L)*0.382                                             
(18) 

  
XU=L+(U-L)*0.618                                                  (19) 

 
For our purposes, these points represent different 

resource allocations [7]. 
If activity j was selected as the candidate activity and 

its cost decreases with increased allocation we let l be the 
current allocation and let u be upper bound for activity j 
while keeping the allocations to the other activities 
unchanged. If its cost decreases with decreased allocation, 
we define the upper bound as the current allocation and 
let l be the lower bound on the allocation to activity j. 
With these four values in hand (l, u, Xl, and Xu), we 
recursively redefine the new bounds on the range to our 
search to the minimum expected cost allocation. 
Optimization proceeds by first calculating the expected 
costs of allocations Xl and Xu. if E[C(Xl)] < E[C(Xu)] then 
the optimal value must lie between l and Xu, otherwise 
E[C(Xl)] > E[C(Xu)] and the optimal value must lie 
between Xl and u. If the two expected costs are equal, 
either bound can be used.             

-0 .27-0.02            0.2+0.02         0.07                0                  0        0     
       0                        -0.17                 0              0.07              0.1      0 
       0                            0           -0.2-0.02        0.2 +0.02         0        0    
       0                            0                    0                 -0.1             0   +0.1   
       0                            0                    0                    0        -0.07     0.07           
       0                            0                    0                    0              0         0 

-0.02                           0.02                0               0                  0        0     
       0                            0                   0                0                  0        0 
       0                            0              -0.02            0.02                0        0    
       0                            0                    0                0                  0        0  
       0                            0                    0                 0                 0        0  
       0                            0                    0                 0                 0        0 
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5.5.  Stopping Criteria 

The optimizing algorithm repeats the derivative 
approximation and Fibonacci search steps, finding a 
resource allocation with a lower expected cost in each 
iteration. The algorithm stops when the expected cost in a 
given iteration improved the expected cost by only a 
small amount. If Xk represents the best resource allocation 
after iteration k, the algorithm terminates when:  
E[C(Xk-1)] – E[C(Xk)] < p 

5.6. An Illustrative Example 

Consider the project represented by the graph in 
Figure 1. We assume an initial allocation of X0 = (1, 1, 1) 
with lower and upper bounds on allocation defined at 1 
and 3, respectively. In our calculations we let  =0.05, cL 
= 3, Ts = 8, and p =0 .005. First we compute the 
expected cost of the initial allocation: E[C(X0)] = 
68.9517. Next, we approximate the derivative of the 
expected cost with respect to the allocations to activities 
1, 2, and 3(Table 2): 

  
Table 2 

Example Derivative Approximation 

 
       
 
 
 
 
 
 
 

 
Since activity 3, yields the approximate derivative of 

greatest decrease in cost, it becomes the candidate 
activity. Thus, we take the bounds l= (1, 1, 1) and u = (1, 
1, 3) and we begin the Fibonacci search procedure with 
d =٠ .01. The following table (Table 3) details the 
optimization procedure: X5 = (1.4306, 1.4977, and 

1.4796) at a cost of 62.3555. Ramachandra &Elmaghrby 
solved the same example problem, though they limited his 
resource allocations to 0.25 increments. [7] His procedure 
resulted in a solution of X* = (1.5, 1.5, 1.5) at an expected 
cost of 62.38.

Table 3 

Fibonacci Search Procedure Example 

Iteration L3 U3 XL3 E[C(XL3)] XU3 E[C(XU3)] U3-L3 

0 1 3 1.7640 67.9215 2.2360 72.1344 2 

1 1 2.2360 1.4722 66.4928 1.7638 67.9202 1.236 

2 1 1.7638 1.2918 66.4519 1.4720 66.4923 0.7638 

3 1 1.4720 1.1803 66.9318 1.2917 66.4522 0.4720 

4 1.1803 1.4720 1.2917 66.4522 1.3606 66.3659 0.2917 

5 1.2917 1.4720 1.3606 66.3659 1.4032 66.3789 0.1803 

6 1.2917 1.4032 1.3343 66.3823 1.3606 66.3659 0.1115 

7 1.3343 1.4032 1.3606 66.3659 1.3769 66.3653 0.0689 

8 1.3606 1.4032 1.3769 66.3653 1.3869 66.3684 0.0426 

9 1.3606 1.3869 1.3706 66.3647 1.3769 66.3653 0.0263 

10 1.3606 1.3769 1.3668 66.3648 1.3706 66.3647 0.0163 

11 1.3668 1.3769 1.3707 66.3647 1.3730 66.3648 0.0101 

12 1.3668 1.3730 1.3692 66.3647 1.3706 66.3647 0.0062 

6. Computational Results 

The algorithm was tested on a set of 90 networks 
representing a variety of project network structures. 
Project networks were generated randomly using 

RanGen2, developed by Vanhoucke et al [25] The 
RanGen2 generator allows the user to select networks by 
specifying values of six parameters. Work content 
distribution parameters were generated randomly in 
MATLAB. These parameters were sampled from a 
uniform distribution between 0.1 to 2 (table 4),2 to 4 
(table 5),4 to 6 ( table 6 ). The lower bound on resource 

Activity Xa E[C(Xa)] E[C(Xa)]-E[C(X0)] 

1, increase (1.05،1،1) 68.7290 -0.2227 

1, decrease (0.95،1،1) 69.2479 0.2962 

2, increase (1،1.05،1) 68.4048 -0.5469 

2, decrease (1،0.95،1) 69.6427 0.691 

3, increase (1،1،1.05) 68.2031 -0.7486 

3, decrease (1،1،0.95) 69.9052 0.9535 
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allocation was taken as 1 and the upper bound was 3 units 
for all activities. Relative lateness costs, cL, were fixed at 
3 for all examples and p was fixed at 0.005. 
Testing was conducted using the optimization algorithm 
initiated from 5 input allocations for each network; the 

optimization procedure was repeated 5 times, each with a 
different initial resource allocation. Details regarding the 
test cases and the test results can be found in Tables 4, 5 
and 6. 

Table 4  

Minimum and average cost and CPU time of proposed algorithm compared with Ramachandara  & Elmaghraby algorithm (Work content between 0.1 to 2) 

  network 

Indicators as RanGen2 
 Number 
of States 
CTMC 

Min CPU 
Time, sec 

Average 
CPU 
Time, sec 

Min cost 
(Proposed 
algorithm) 

Min cost 

(Ramachandara 

& Elmaghraby) 

 

Average CPU 
Time, sec 

(Ramachandara 

& Elmaghraby) 

I1 I2 I3 I4 I5 

1 8 0.25 0 0.16 1 74 0.2656 0.3844 23.457 23.7495 0.5781 

2 8 0.25 0 0.83 1 33 0.0781 0.2813 24.1752 24.5335 0.2344 

3 8 0.25 1 0.16 1 160 1.3438 2.0812 21.2507 23.1238 3.1406 

4 8 0.25 1 0.83 1 130 0.7813 0.8469 30.5796 21.4961 2.0313 

5 8 0.25 0.33 1 1 39 0.0938 0.2625 25.2088 25.5161 0.25 

6 8 0.75 0.8 1 1 11 0.0938 0.1313 37.8066 38.0995 0.1563 

7 8 0.75 0.8 0.5 1 18 0.0781 0.1094 37.7046 37.7862 0.1719 

8 8 0.75 0.8 0.5 0.5 17 0.0938 0.1187 37.2581 38.3859 0.1563 

9 8 0.75 0.99 0 1 25 0.1406 0.1781 36.0264 36.9784 0.2188 

10 8 0.75 0.99 0 0.25 21 0.0781 0.1125 34.6114 36.0189 0.1875 

11 12 0.25 0 0.5 0.8 77 1.2813 1.5594 32.2444 32.889 0.3594 

12 12 0.25 0 0.16 1 228 4.3906 10.8031 29.5245 32.5352 3.2831 

13 12 0.25 0.33 0.21 0.66 220 4.4844 13.143 29.7745 30.5352 3.1094 

14 12 0.75 0.75 1 1 16 0.1719 0.2375 49.1488 49.4606 0.1094 

15 12 0.75 0.75 0.5 1 18 0.1563 0.2344 50.1333 50.5557 0.0781 

16 12 0.75 0.75 0.5 0.61 20 0.1094 0.15 50.5208 50.9168 0.1094 

17 12 0.75 0.99 0 1 80 0.6094 0.6719 50.6085 50.0889 0.2969 

18 12 0.75 0.99 0 0.28 68 0.3281 0.4031 47.8124 49.4768 0.4063 

19 16 0.25 0.22 1 1 93 2.7031 3.0063 41.9197 42.3425 0.7831 

20 16 0.75 0.9 0 1 176 6.2188 6.9875 59.2728 59.9054 3.2969 

21 16 0.75 0.72 0 0 126 1.9063 2.2563 60.225 59.8496 1.3906 

22 16 0.75 0.72 0 1 118 2.1250 2.6781 59.7431 59.9645 1.2031 

23 16 0.75 0.72 0 0.5 64 0.4375 0.5938 59.4664 59.0757 0.3906 

24 16 0.75 0.81 0.5 0.92 26 0.375 0.45 59.1842 59.9391 0.1875 

25 20 0.25 0.08 0.82 1 224 13.475 15.971 65.7850 65.8190 7.0151 

26 20 0.75 0.71 0 1 202 10.8125 14.6844 66.9252 67.8665 6.0469 

27 20 0.75 0.71 0 0.71 66 0.8281 0.8438 65.2744 66.1366 0.5156 

28 20 0.75 0.71 0.42 0.9 178 6.3438 9.1312 67.6033 67.9182 4.3281 

29 20 0.75 0.78 1 1 28 0.5469 0.6281 68.2606 68.7138 0.2031 

30 20 0.75 0.78 0.62 1 31 0.7031 0.7531 68.6739 69.1353 0.2344 
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Table 5  

Minimum and average cost and CPU time of proposed algorithm compared with Ramachandara  & Elmaghraby algorithm (Work content between 2 to 4)  

  network 

Indicators as RanGen2 
 Number 
of States 
CTMC 

Min CPU 
Time, sec 

Average 
CPU 
Time, sec 

Min cost 
(Proposed 
algorithm) 

Min cost 

(Ramachandara 

&Elmaghraby) 

 

Average CPU 

 Time, sec 

(Ramachandara 

&Elmaghraby) 

I1 I2 I3 I4 I5 

1 8 0.25 0 0.16 1 74 0.1563 0.1906 5.6026 5.1558 0.6406 

2 8 0.25 0 0.83 1 33 0.0469 0.0688 5.0840 5.1558 0.2500 

3 8 0.25 1 0.16 1 160 0.8125 0.8812 5.0600 5.1558 2.4844 

4 8 0.25 1 0.83 1 130 0.5469 0.5781 5.0300 5.1558 1.5156 

5 8 0.25 0.33 1 1 39 0.0625 0.0813 4.8900 5.1558 0.2188 

6 8 0.75 0.8 1 1 11 0.0313 0.0563 4.7400 5.1558 0.1406 

7 8 0.75 0.8 0.5 1 18 0.0313 0.0563 5.0900 5.1558 0.1406 

8 8 0.75 0.8 0.5 0.5 17 0.0313 0.0563 4.7500 5.1558 0.1250 

9 8 0.75 0.99 0 1 25 0.0469 0.0750 4.4461 5.1558 0.1536 

10 8 0.75 0.99 0 0.25 21 0.0313 0.0594 5.2045 5.1558 0.1875 

11 12 0.25 0 0.5 0.8 77 0.2188 0.2375 8.3667 9.5901 0.2813 

12 12 0.25 0 0.16 1 228 2.5938 2.9469 8.2595 9.5901 2.8438 

13 12 0.25 0.33 0.21 0.66 220 2.5000 2.8000 8.1880 9.5901 0.1094 

14 12 0.75 0.75 1 1 16 0.0469 0.0813 11.8230 9.5901 0.0938 

15 12 0.75 0.75 0.5 1 18 0.0625 0.0813 8.5453 9.5901 0.0938 

16 12 0.75 0.75 0.5 0.61 20 0.0469 0.0844 9.3016 9.5901 0.3281 

17 12 0.75 0.99 0 1 80 0.2500 0.2938 7.2338 9.5901 0.2656 

18 12 0.75 0.99 0 0.28 68 0.0938 0.1469 7.6864 9.5901 0.2344 

19 16 0.25 0.22 1 1 93 0.3750 0.4156 11.0511 11.9808 0.3906 

20 16 0.75 0.9 0 1 176 1.8594 1.9406 10.0459 11.9808 1.5625 

21 16 0.75 0.72 0 0 126 0.8594 0.8906 10.0106 11.9808 0.7344 

22 16 0.75 0.72 0 1 118 0.6875 0.7250 10.5003 11.9808 0.6563 

23 16 0.75 0.72 0 0.5 64 0.1875 0.2062 10.7162 11.9808 0.2344 

24 16 0.75 0.81 0.5 0.92 26 0.0625 0.0969 10.7580 11.9808 0.1094 

25 20 0.25 0.08 0.82 1  224 15.5648 17.2568 15.0010 14.1161 2.5011 

26 20 0.75 0.71 0 1 202 3.5156 3.5875 12.3616 14.1161 2.5000 

27 20 0.75 0.71 0 0.71 66 0.2656 0.3063 11.5614 14.1161 0.2344 

28 20 0.75 0.71 0.42 0.9 178 2.2656 2.3969 11.1153 14.1161 1.5469 

29 20 0.75 0.78 1 1 28 0.0781 0.1187 11.6613 14.1161 0.1250 

30 20 0.75 0.78 0.62 1 31 0.0938 0.1250 11.9852 14.1161 0.1563 
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Table 6  

Minimum and average cost and CPU time of proposed algorithm compared with Ramachandara  & Elmaghraby algorithm (Work content between 4 to 6) 

 network 

Indicators as RanGen2 
 Number 
of States 
CTMC 

Min CPU 
Time, sec 

Average 
CPU 
Time, sec 

Min cost 
(Proposed 
algorithm) 

Min cost 

(Ramachandara 

&Elmaghraby) 

 

Average CPU 

 Time, sec 

(Ramachandara 

&Elmaghraby) 

I1 I2 I3 I4 I5 

1 8 0.25 0 0.16 1 74 0.1406 0.1596 3.4964 3.6884 0.2813 

2 8 0.25 0 0.83 1 33 0.0313 0.0625 3.3076 3.6884 0.1563 

3 8 0.25 1 0.16 1 160 0.7344 0.7656 2.5637 3.6884 1.2969 

4 8 0.25 1 0.83 1 130 0.3125 0.4406 2.3734 3.6884 0.8906 

5 8 0.25 0.33 1 1 39 0.0469 0.1094 3.2650 3.6884 0.1563 

6 8 0.75 0.8 1 1 11 0.0156 0.0437 2.7133 3.6884 0.0781 

7 8 0.75 0.8 0.5 1 18 0.0156 0.0437 3.3269 3.6884 0.0938 

8 8 0.75 0.8 0.5 0.5 17 0.0156 0.0469 2.7610 3.6884 0.0781 

9 8 0.75 0.99 0 1 25 0.0313 0.0500 3.2623 3.6884 0.1250 

10 8 0.75 0.99 0 0.25 21 0.0156 0.0500 2.6876 3.6884 0.1094 

11 12 0.25 0 0.5 0.8 77 0.1875 0.2188 4.5422 5.3054 0.2656 

12 12 0.25 0 0.16 1 228 2.1406 2.3750 4.4821 5.3054 3.2188 

13 12 0.25 0.33 0.21 0.66 220 2.1563 2.2313 4.6764 5.3054 2.8906 

14 12 0.75 0.75 1 1 16 0.0313 0.0563 5.0176 5.3054 0.0938 

15 12 0.75 0.75 0.5 1 18 0.0313 0.0563 4.0127 5.3054 0.0938 

16 12 0.75 0.75 0.5 0.61 20 0.0313 0.0594 4.5733 5.3054 0.0938 

17 12 0.75 0.99 0 1 80 0.1875 0.2313 4.5974 5.3054 0.3281 

18 12 0.75 0.99 0 0.28 68 0.1719 0.2000 5.1726 5.3054 0.2344 

19 16 0.25 0.22 1 1 93 0.3438 0.3688 5.9100 6.8014 0.4063 

20 16 0.75 0.9 0 1 176 1.4375 1.4969 6.4102 6.8014 1.6250 

21 16 0.75 0.72 0 0 126 0.6250 0.6531 5.9549 6.8014 0.6250 

22 16 0.75 0.72 0 1 118 0.2969 0.5250 5.3433 6.8014 0.6563 

23 16 0.75 0.72 0 0.5 64 0.1563 0.1844 6.0259 6.8014 0.2031 

24 16 0.75 0.81 0.5 0.92 26 0.0313 0.0750 5.7961 6.8014 0.1094 

25 20 0.25 0.08 0.82 1 224 3.9652 4.0125 6.2356 8.1932 2.9652 

26 20 0.75 0.71 0 1 202 2.4531 2.6500 6.7732 8.1932 2.4688 

27 20 0.75 0.71 0 0.71 66 0.2188 0.2437 7.6308 8.1932 0.2656 

28 20 0.75 0.71 0.42 0.9 178 1.0469 1.6625 6.6994 8.1932 0.2344 

29 20 0.75 0.78 1 1 28 0.0625 0.0938 6.6575 8.1932 1.6719 

30 20 0.75 0.78 0.62 1 31 0.0625 0.0969 7.4988 8.1932 0.1094 

 
These results show that this algorithm is relatively 

efficient as many of the networks were solved a few 
seconds on average. The computed optimal costs across 
all 5 input allocations differed by less than 2% in the 
entire test networks. One important observation that 
immediately can be seen is the correlation between the 
number of states in the CTMC and the computation time 
required for optimization. Clearly, as the number of states 
in the CTMC grows the computational requirement of the 
algorithm increases exponentially. This algorithm in 
comparison with Elmaghrby & Ramachandra method is 

efficient with respect to quality solution. This topic 
statistically is proof as following: 

Null hypothesis = 0:µD = 0 
Inverse hypothesis = 1: µD >0 
α=0.05 , D=-0.7089, Di

2=200.804  
SD=((Di

2 - nD2)/n-1)1/2=1.3221  
t0= -5.0890 
t0.05,89= 1.665              Acceptance area =(-,1.665] 
 

With consider the value of the t0 statistical and the 
acceptance limit, the null hypothesis is accepted and the 
inverse hypothesis is not accepted. In the other words the 



Journal of Industrial Engineering 6(2010) 13-23 

23 
 

procedure is stated in this paper improved the solution 
quality respect to the Elmaghrby and Ramachandra 
method. In continuance about the solution time we have: 

Null hypothesis = 0:µD = 0 
Inverse hypothesis = 1: µD >0 
α=0.05 , D=0.7139, Di

2=600.6387 
SD=((Di

2 - nD2)/n-1)1/2=2.4966 
t0=9.4891                Acceptance area = (-, 1.665] 
That the value of t is not in acceptance area thus 

Elmaghrby & Ramachandra method is better from 
Viewpoint solution time. 

7. Conclusion 

In this paper, we investigated the optimal assignment of 
resources to the activities of a stochastic project network. 
We constructed a continuous time Markov chain (CTMC) 
model for the activity network and we used the 
PhaseType distribution to evaluate the project completion 
time. Then we used Fibonacci search over the interval of 
permissible allocations to the activity to seek the 
minimum expected cost. Computational results showed 
that our proposed algorithm is better than Elmaghrby & 
Ramachandra method with respect to solution quality and 
computational time. 
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