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Abstract 

This research presents a new application of the cloud theory-based simulated annealing algorithm to solve mixed model assembly line 
sequencing problems where line stoppage cost is expected to be optimized. This objective is highly significant in mixed model assembly 
line sequencing problems based on just-in-time production system. Moreover, this type of problem is NP-hard and solving this problem 
through some classical approaches such as total enumeration or exact mathematical procedures such as dynamic programming is 
computationally prohibitive. Therefore, we proposed the cloud theory-based simulated annealing algorithm (CSA) to address it. Previous 
researches indicates that evolutionary algorithms especially simulated annealing (SA) is an appropriate method to solve this problem; so we 
compared CSA with SA in this study to validate the proposed CSA algorithm. Experimentation shows that the CSA approach outperforms 
the SA approach in both CPU time and objective function especially in large size problems. 

Keywords: Sequencing problem; Mixed-model assembly line; Just-in-time production system; Cloud theory; Simulated annealing; 
Minimizing line stoppages.  
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1. Introduction 

This research presents a new application of simulated 
annealing algorithm based on cloud theory (CSA) in order 
to address mixed model assembly line sequencing problem 
in a just-in-time (JIT) production system. A mixed model 
assembly line (MMAL) is a type of production lines where 
a variety of products having similar characteristics are 
assembled. The effective utilization of a mixed-model 
assembly line requires solving two problems in a sequential 
manner: 1) line design and balancing, and 2) determination 
of the production sequence for different models. 
Determining the balance and the sequence of products to be 
produced on MMALSPs has received considerable 
attention from researchers. In this work, we focus on the 
mixed-model sequencing problem assuming that line 
balancing has already been achieved using an average cycle 
time for the products to be assembled. This problem is 
known as the Mixed-Model Assembly Line Sequencing  

 

 
 
 
 

Problem (MMALSP). To validate the proposed algorithm, 
we compare CSA with simulated annealing algorithm (SA) 
that is known as an effective algorithm to consider in 
MMALSP. The comparison of two algorithms is based on 
two groups of problems; small and large size problems that 
are designed for structure of line stoppages cost objective 
function. SA is a Monte Carlo based optimization approach 
that simulates the physical annealing process to find the 
optimal solution Laarhoven et al. [14]. Temperature is 
descended gradually at each step and it is constant in each 
stage until the stop criteria is satisfied, the resulted 
solutions are acceptable if they are improved; otherwise it 
will be accepted with a certain probability. 

Cloud theory is a model in the fuzzy theory which is 
related to quality concepts and quantity data, Deyi et al. 
[4]). We used cloud theory-based on Metropolis law to 
produce a group of continuous temperatures close to a fixed 
temperature. Manufacturing random temperatures based on 
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cloud theory can preserve diversity. In Section 2, literature 
review on MMALSP, SA and cloud theory will be 
presented. Section 3 presents a description of the 
MMALSP problem and will formulate line stoppage cost 
objective. Section 4 will introduce the proposed cloud 
theory-based simulated annealing algorithm. Section 5 
illustrates the computational results which compared the 
results of CSA with SA in two groups of small-medium and 
large size problems. Finally Section 6 provides conclusions 
and suggestions for future research. 

2. Literature Review 

Following the first study on mixed model assembly line 
conducted by Kilbridge and Webster [10], several 
researchers studied the MMALSP. Thomopoulos [30], Dar-
El and Cother [2], Dar-El and Cucuy [3] addressed 
minimizing line length goal and offered an integer 
programming and heuristic procedure to resolve this 
problem. Okamura and Yamashina [26] offer a heuristic 
method to consider minimizing line stoppage objective 
function. These studies have different objectives such as 
minimizing line length or line stoppages, but their common 
feature is that they all address the final assembly line and 
ignore other levels in the multi-level production systems. 
The first analyses of mixed-model, multi-level production 
systems were made by Monden [25], and Miltenburg and 
Sinnamon [23]. They consider multi-level model 
production systems to solve the same problem with the 
objective of keeping a constant rate of supply of every part 
used by the system. Miltenburg et al. [24] studies the 
mixed-model sequencing problem by considering the 
variation in production rates of the finished products. He 
developed a dynamic programming and also two heuristics 
to solve the problem. In a follow-up study, Miltenburg and 
Sinnamon [23] consider the same problem and propose 
heuristic procedures to solve large-sized problems. Kubiak 
and Sethi [13] studied the MMALSP with the objective of 
minimizing product-usage variation. They developed an 
assignment model to generate optimal schedules for 
MMALs. Bard et al. [1] developed a model involving two 
objectives; minimizing the overall line length and keeping a 
constant rate of part usage. They solved the problem by 
using the weighted sum and proposed a tabu search (TS) 
method. Hyun et al. [9] addressed three objectives: 
minimizing total utility work, keeping a constant rate of 
part usage, and minimizing total setup cost. This problem 
was solved by proposing a new genetic evaluation and 
selection mechanism. They named this new algorithm by 
PS-NC GA. McMullen [16] considered two objectives: 
minimizing the number of setups and keeping a constant 
rate of part usage, and solved this problem by using the 
weighted sum and TS method. Korkmazel and Meral [12] 
developed the weighted-sum approach for two goals 
introduced by Monden [25]. McMullen and Frazier [17] 

developed a simulated annealing (SA) method for the 
model used by McMullen [16] and compared it to the Tabu 
Search method. McMullen et al. ([18, 19, 20]) also solved 
the same problem using genetic algorithms (GAs), 
Kohonen self organizing map (SOM), and ant colony 
optimization (ACO), respectively, and compared their 
performance with SA and TS methods. Mansouri [11] also 
solved the same problem using genetic algorithms. He 
introduced a new selection mechanism and in small size 
problems where produced by McMullen [16] used a total 
enumeration (TE) to find pareto-optimal frontier.  
Tavakkoli-Moghaddam and Rahim-Vahed [28] solved the 
problem proposed by Hyun et al. [9] by using a new 
memetic algorithm. McMullen and Tarasewich [21] 
considered the problem of mixed-model sequencing 
through setups. They developed a beam search heuristic to 
generate efficient frontiers. Their experimental results 
indicate that the proposed approach performs well in terms 
of both solution quality and computation times.  

3. Mixed Model Assembly Line Sequencing Problem 

Mixed-model assembly lines are flow oriented 
production systems. These production lines are capable of 
responding customer requirements when their demands 
change continually. For a variety of models, withholding 
low inventories are needed for successful performance of 
JIT production systems. The effective utilization of a 
mixed-model line requires that managers address two key 
problems: Miltenburg & Sinnamon [23]: 
  (i) The assignment of tasks to workstations (i.e. the line 
balanc-ing problem). 
  (ii) The sequencing of models on the line (i.e. mixed 
model sequencing problem). 
In this work, we focus on the mixed-model sequencing 
problem assuming that line balancing has already been 
achieved using an average cycle time for the products to be 
assembled. 
Descriptions of some terminologies for the lines are 
presented below: 
 (1) Launch interval: is defined as a fixed-time at interval 
which successive work-pieces are fed into a station. There 
are two types of launching intervals: (a) fixed rate 
launching in which the launching period is a weighted 
average of the total assembly time for all products to be 
assembled over all stations, in this case production cycle 
time must be less than or equal model cycle time; and (b) 
Variable rate launching in which the launching period is the 
task time of the last product launched at the first station so 
the worker at the first station can start working on the next 
product immediately after completing work on the current 
product. When units are launch at variable rates and in an 
arbitrary order, it is necessary for optimum utilization of 
the line, that worker cycle time must be equal to maximum 
model cycle time of unit, Kilbridge and Wester [10].  
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(2) Starting point of work: the starting point of workplace 
in a station is upstream position where a worker starts 
working on it. This point may be either on the zero 
reference point or within the station in a closed-station 
system, and may be within or before the zero reference 
point in an open-station system. 
 (3) Minimal part set (MPS): in this research, a minimal 
part set is defined as the smallest possible set as parts in the 
same proportion as the demands mix during the whole 
working period. Suppose the model A, B, and C have the 
demand of 500, 300, and 400 units, respectively, then, it is 
difficult to sequence a total of 1200 or more work-piece at 
one time. This demand set {500,300,400} is divided by its 
largest common divisor (which is 100 in this case) to obtain 
the minimal part set a {5, 3,4}. The problem of scheduling 
all products during the working period is then reduced to 
finding the assigned order of models to stations in 
minimum part sets {5, 3, 4} order. The number of times 
that a minimal part set repeats in order to complete the 
demand during and the entire working period is the largest 
divisor, called frequency, F. In this case, F = 100. 
Motivations for working with the minimum part set are as 
follows: First, it is becoming common practice in industry 
to plan for production in terms of the minimum part set, 
especially in flexible manufacturing. Second, the approach 
greatly simplifies the computations, thereby permitting the 
derivation of optimal solution for problems of realistic size. 
Third, the results obtained from working with the minimum 
part set MPS rather than the full part is surprisingly better. 
Dar-EL and Cother [2], Thomopoulous [30]. 
(4) Closed station: In closed station, the worker must work 
within the limits of the station; the worker is not allowed to 
move out of his work limit area when he assembles the 
product. This happens, for instance, in pits or in paint 
booths where the assigned work cannot be accomplished 
outside. 

3.1. Assumptions 

Different products with similar production characteristics 
are produced on the assembly line which has a finite 
number of workstations. a conveyor speed has a constant 
rate cv (in this survey 1cv = ). Figure 1 shows a conveyor 
belt with different products.  Similar products are launched 
onto the conveyor at a constant rateγ . The line is 
partitioned into J stations. It is assumed that the stations are 
all of closed types. A closed station has boundaries that 
workers cannot cross. Such a closed station is often found 
in reality where the use of facilities is restricted within a 
certain boundary. The tasks allocated to each station are 
properly balanced and their operating times are 
deterministic. The worker moves downstream on the 
conveyor while performing his/her tasks to assemble a 
product. To complete the job, the worker moves upstream 
to the next product. The travel times of workers are 
ignored. There are two types of worker schedules, early 
start schedule and late start schedule in the literature. An 

early start schedule is more common in practice and is used 
in this survey, Hyun et al. [9]. The bulk of literature 
confirms that setup times between different products are 
negligible. MPS is a vector representing a product mix, 
such that 1 1( ,..., ) ( / ,..., / )a ad d D H D H=  where a the 

total number of models is,

 

( 1,..., )iD i a=  is the number 

of products of model type i that needs to be assembled 
during the entire planning horizon and H is the greatest 
common divisor or the largest common factor of

 
1 2, ,..., aD D D . This strategy operates in a cyclical manner.  

Assuming that the total demand for products is H and 
demand for models is a  in the planned period, obviously, 
H/D times the repetition of producing the MPS products 
can meet the total demand in the planning horizon. 

 
 

Fig. 1. A Diagram of assembly line conveyor belt in closed station 
 

Other assumptions are considered as follows: 
1) The assembly line is a closed station ones; 
2) No buffer exists between any two adjacent stations; 
3) The layout of the mixed-model line assembly system is 
one dimensional; 
4) The worker must work within the work zone assigned to 
him; 
5) A work-piece is loaded on the conveyor belt every l 
minute   ( 1γ = ); 
6) Work-pieces are fixed on the moving belt; 
7) There is no more than one work-piece at a station at a 
time; 
8) Each station has only one worker; 
9) Stations in the system are connected by a moving 
conveyor; 
10) Workers perform at a constant rate in either direction of 
movement; 
11) Maximum length of assembly line is given. 
Figure 2 illustrates the construction of mixed model 
assembly time for an example with MPS = (B,C,B,A,B,A). 

 
Fig. 2. Diagram of operations in a closed workstation  

(Rahimi vahed et al [29]) 

Journal of Optimization in Industrial Engineering 8 (2011) 9-18

11



  

3.2. Minimizing Line Stoppage Cost 

   Initially, Okamora and yamashina [26] presented a model 
to minimize line stoppages and proposed a heuristic 
reduction, maximum point of completion time of models 
operation. One of the most important objectives is line 
stoppage in the actual and required capacity of the line 
which affects the stoppage of conveyer. This objective 
specifies a sequence for minimizing the cost of the line 
stoppages which changes in each sequence for part shortage 
of a model, enabling a good setup, etc. In fact, this 
objective considers the capacity of the line without using 
utility workers, bad condition for producing a model like 
the time of arriving the part of each model in each 
sequence. 
To minimize line stoppage cost Monden [25] maintain that 
one must avoid consecrating several models with large 
operation time. It is appropriate, after each model with 
large operation time, that one model with small operation 
time be allocated to the next position in sequence. 
Before presenting the mathematical representation of line 
stoppage cost goal, the following notations are defined: 
J       Number of workstations 
a       Number of unique products to be produced 
DT Total number of units for all products – also 
represents                 number of positions in sequence- 
The number of products produced in one cycle is given by: 

1

a

i
i

DT d
=

=∑                                       (1) 

 id   Demand for product 1,2,...,i a=   

 ijt    Operation time for one unit of model i  in station j  

jL    Length of workstation j  

jα′ Coefficient of variation of stations when line stoppages 
accurate that determinate as follow: 

max{ }ij
j

j

t
L

α′ =                                                   (2) 

jT   Determination of the operation time average for one 

unit of product in work station j :     

1
.

a

i ij
i

j

d t
T

DT
==
∑

                               (3)  

k     Counter of positions in sequence 

,i kX Total number of units of products i  produced over 

stages 1 to k   Mathematical formulation of this goal is presented below: 
 

( )( 1)
1 2 1

min 2
J DT a

j ij ik i k j
j k i

t X X Tα −
= = =

′ + −∑ ∑∑          (4) 

   . :s t  
 

1
1,2,...,

DT

ik i
k

X d i a
=

= =∑                                      (5) 

1
1 1,2,...,

a

ik
i

X i a
=

= =∑                                       (6) 

{0,1} 1,2,..., 1,2,...,ikX i a k DT∈ = =            
Equation (4.1) ensures that total demands of model are 
satisfied based on MPS in the planning horizon period. 
Equation (4.2) ensures that each position in sequence is 
used with one unit of products. 

3.3. Combinatorial Complexity 

   The number of feasible solutions increases exponentially, 
when the problem size increases. To find production 
sequences with desirable levels of all objectives NP-hard as 
pointed by Hyun et al. [9] is used. The total number of 
sequences for a MMALSP can be computed as follows: 

1

1

( )!

( !)

a

i
i
a

i
i

d
Total sequence

d

=

=

=
∑

∏
                                 (7)                     

Thus, problems with a large number possible solution 
usually cannot be solved optimality within a reasonable 
amount of time, Mansouri [15]. 

4. The proposed Cloud Theory-Based Simulated 
Annealing Algorithm 

4.1. Simulated Annealing Algorithm in General 

   Simulated annealing algorithm (SA) is a stochastic 
optimization method that is based on iterative strategy. SA 
can generate near-optimal solutions to combinatorial 
optimization problems. Kirkpatrick [11], Eglese [7] and 
Goldberg [8] provide fundamental descriptions of 
simulated annealing in addition to informative examples. 
Simulated annealing has been applied to a vast number of 
single and multiple objective optimization problems. It has 
a strong analogy to combinatorial optimization and the 
physical process of crystallization named annealing, 
Laarhoven et al. [14]. It is assumed here that the reader is 
familiar with the basics of Simulated Annealing. SA  starts 
from a high initial temperature, and searches the solution 
space to find near-optimal solutions randomly using 
metropolis criterion, and escapes from local optimum 
trapped through the acceptance of ‘‘bad solution’’ with a 
certain probability. As the temperature decreases gradually, 
it repeats the above process and finds the global 
optimization solution finally. As an effective combinatorial 
optimization method, SA has been proved to be strict in 
theory and useful in many application fields.  
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   The core of SA is Metropolis procedure, which simulates 
the annealing process at a given temperature T, Metropolis 
et al. [22]. This procedure is named after the scientist who 
devised a similar scheme to simulate a collection of atoms 
in equilibrium at a given temperature. This improving 
mechanism starts with a primary temperature 0T  and 

primary solution 0s , other solutions in the solution space 
are found in the following way: 0T  is decreased according 
to the cooling schedule function, reaching thermal 
equilibrium is time consuming and in this interval another 
solution news  is found in the neighbourhood of the 

previous solution currs . If the value of objective function of  

neighbourhood solution ( )newf s  is less than the current 
value in minimization problems, the new solution will be 
accepted; otherwise, first generate a random number  r  
between [0,1] that obeys uniform distributive rule, then the 

bad solution will be accepted with probability Tp e
−Δ

=  if 

r p< Where ( ) ( )
( )

new curr

new

f s f s
f s

−
Δ =    

and T is the current 

temperature. This process is repeated until one of the 
stopping criteria is satisfied. Laarhoven [14]. 

4.2. Solution Representation 

One of the most widely used representations for mixed-
model assembly line sequencing problems is job-to-
position representation. In this kind of representation, a 
single row array of the size equal to the number of all 
products to be scheduled is considered. The value of the 
first element of the array shows which job is scheduled 
first. The second value shows which job is scheduled 
second and so on. Suppose that an MPS be (ABABCB) that 
two numbers of product ‘‘A’’, three numbers of product 
‘‘B’’ and one number of product ‘‘C’’ must be satisfied. 
Table 1 shows how this representation is depicted. The 
operators often applied to real values need to be redefined 
to make them applicable on a permutation of jobs. Table 1 
shows the job-to-position representation.  

In so far as the proposed CSA algorithm obeys cloud 
theory and the concept of  fuzzy membership function pin 
et al. [27] and in order to obtain the real-coded 
representation from it, in this survey first 6 (the number of 
the jobs) random numbers between [0,1] are needed to be 
generated. Afterwards, these numbers will be sorted and the 
two smallest will be assigned to the first production model, 
category A; the next three smallest group of them will be 
assigned to the second production model, category B; and, 
finally, the last number will be assigned to the third 
production model, category C. Table 2 demonstrates the 
resulting real-coded encoding according to the random 
numbers in Table 3. 

 

Table 1 
Job to position representation for a MMALSP 

Location in a sequence 1 2 3 4 5 6 

job to be scheduled A B A B C B 
 

Table 2 
The continuous and real-coded representation of table 1 

Location in a sequence 1 2 3 4 5 6 

real-coded representation 0.0128 0.563 0.149 0.387 0.742 0.281

 
Table 3 
A sample set of random numbers 

n0.1 no.2 no.3 no.4 no.5 no.6 
0.149 0.0128 0.387 0.742 0.281 0.563 

4.3. Basic Concepts of Cloud Theory 

    The cloud theory model is created and developed based 
on membership function in fuzzy theory Di et al. [6]. Thus, 
transferring between quality concept such as natural 
language Deyi et al. [5] and quantity data representation, 
defined as membership function. Let D be the language 
value of domain v and mapping 

( ) [ ] ( )xMxvxvxM DD →∈∀→ ,,1,0: , if the 

distribution of  ( )xM D  is normal, it is named a normal 
cloud model. This map produces a group of random 
numbers, with stable tendency that is distinguished by 
expectation Ex, entropy En and super entropy, He. These 
three parameters reflect the quantitative features of the 
concept ( )xM D  ,Deyi et al [5]. Ex determines the centre 
of the cloud and En determines the range of the cloud. 
Figure 3, displays that about 99.74% of the total cloud 
drops distribute between [Ex-3En, Ex+3En]; He determines 
the degree of cloud drops dispersive, the larger the He is 
the more dispersive the cloud drops locate, Pin et al. [27]. 
A normal distribution of Y condition cloud generator 
(NYCCG) can create a drop of cloud ( ( )0,vxdrop i ) with 

three parameters Ex, En, He and certain 0u  as follows, Deyi 
and Yi [5]: 
NYCCG operator: 
                           Initiation: {Ex, En, He}, n, 0v  
                           For i = 1 to n 

                                0

0

( , )

. 2ln( )
( , )

i

i

En randn En He

x Ex En v
drop x u

′ =

′= ± −  

                            End 
                  Output: 1 0 0{( , ),..., ( , )}nx v x v  
Where randn (En, He) produces a random number with normal 
distribution whose expectation is En and standard deviation is He. 
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4.4. Cloud Theory-Based Simulated Annealing Algorithm in 
MMALSP 

At first, generate a random group of solutions, and get their 
standard deviation of line stoppage cost objective function, 
which is marked as STD, then the initial normalization 
temperature is: 
 

0 1.0 cot( / ) (8)T Arc STD π= −
Assume FT  be the final temperature and 0s  be the initial 
solution. Procedure of the CSA algorithm is given as 
follow: 
Cloud theory based simulated annealing algorithm: 
 
1:  Generate 50 solutions randomly and compute STD of 
their objective functions. 
2: Let 0 1.0 cot( / )T Arc STD π= −  

3: Initialize 0s   
randomly 

4: 0 0, , 0 , 0.9currT T s s k λ= = = =
   

  
// k: is iterations counter // 

5: while FT T>  

      / 0.001FT =
 
/ 

6:      while metropolis criteria is satisfied 
 
7:             0, , 1k k kHe T En T u T= = = −  

8:             
(' ',0,1)( )

3
randn uniformEn En He′ = + −  

9:             02ln( )T En u′ ′= −    

10:    ( )currf s ←Value of objective function with current 

                                Solution currs  

11:   news ←  use inversion operator to Generate 
neighbourhood    Solution 
 // 5 times run inversion method and best solution  
          (Solution with min objective function) is news // 

12:   ( )newf s ←  Value of objective function with new 

solution news  

13:   If  ( ) ( )new currf s f s≤ then 

14:   curr news s←  

15:   Else if  (' '0,1)Tp e rand uniform
−Δ

= < then 
16:                Accept news and curr news s← where 

  
( ) ( )

( )
new curr

curr

f s f s
f s

−
Δ =  

17:  Else keep currs to next stage 
18:  End if 
19:  k=k+1; 

20:  0 ;kT T λ=  
21:  End ‘metropolis’ while; 
22: End ‘stopping criteria’ while; 
At the high temperature, annealing process has random 
search tendency and the changeable range of annealing 
temperature is much wider. When the temperature 
decreases gradually, particularly at the low temperature, the 
search process is a goal directed search. The changeable 
range of annealing temperature is much narrower and less 
dispersive. So, the annealing process tends towards a stable 
status. With this explanation, the entropy En and the super 
entropy He should be positively correlated with the 
temperature stage, since En determines the range of the 
cloud and the super entropy He determines the cloud drops’ 
dispersive degree in cloud theory, Deyi et al. [4]. So in the 
proposed algorithm, they are both equal to the temperature 
T. 

 
Fig. 3. Three digital characteristics of a normal cloud Pin et al [27] 

4.3.1. New Temperature Annealing Process 

The annealing temperature in general SA is a certain 
value in every stage and the searching process is completed 
between neighbours, but the temperature update function in 
cloud theory-based simulated annealing algorithm is 
exponential. Let the stage counter is k, then the temperature 
update function is computed according to the following: 

0 ; 1,2,... ,0 1 (9)kT T kλ λ= = < <  

In this proposed update function, the temperature is 
gradually falling. In the CSA, at the end of each stage, 
temperature changes according to equation (8) as base 
temperature for next stage. Using a Y condition cloud 
generator and taking base temperature as a certain value 
produces a group of new values randomly that distribute 
around the base temperature like a ‘‘cloud”. In this 
generation annealing temperature, the fixed temperature 
point of each step becomes a changeable temperature zone, 
the course of temperature changing is nearly continuous 
and simulates the physical annealing process better as a real 
world annealing process. 

In Figure 4, the CSA backfire and re-annealing 
temperature process are simulated and performed as a 
sample problem (the backfire and re-annealing process 
explained by pin et al. [27]). It is shown that CSA has 
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continuous temperature based on backfire and re-annealing 
process and its simulated is so near to physical annealing 
process. But SA temperature is stable for the whole of 
iterations of algorithm; so SA does not accord with the 
physical annealing process of the solid material. In 
addition, it is obvious that the CSA has a quick 
convergence rather than SA. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 4.  Comparison of CSA backfire and re-annealing temperature process 
and SA temperature process, 0.9λ = . 

4.3.2. Inversion Method to Local Search Phase 

The local search used in this paper is the GA’s inversion 
operator. This operator helps the algorithm to escape from 
local minima and find new neighbour solution if there is 
better solution in the neighbourhood. Inversion is an 
operator that generates off springs from a single parent. It 
first chooses two random cut points in a parent. The whole 
elements between the cut points are reversed. An example 
of the inversion operator is depicted below:  

Before inversion:     A B B B A C C C C 
                After inversion:       A B  B C C A B C  C 

The proposed search procedure goes on, once iteration 
of an inversion operator was done. If a local search is not 
improved, then it will move to the next iteration of 
inversion. Maximum iteration is five times.  

5. Computational Results 

  In this paper, we proposed a CSA algorithm to solve 
MMALSP. Previous researches showed that evolutionary 
algorithms especially simulated annealing is an appropriate 
method for solving this problem; so, to validate CSA 
algorithm, we compared this algorithm with SA. We 

designed two groups of problem sets: small size and large 
size ones. 

5.1. Small Size Problems 

A set of ten problems is designed for small size 
problems where five problems have five workstations and 
models and five problems have eight workstations and ten 
models. The proposed CSA algorithm is applied to the 
above problems and its performance is compared, based on 
some comparison metrics, with the SA algorithm. Tables 4 
and 5 present input values comprising operations time, 
stations length and MPS for small size problems, where ten 
problems are designed for this subject. The results show 
that CSA is superior to SA in terms of convergence speed 
(see figure 4). Figure 5 shows the comparison of 
computational time between SA and CSA. In addition, for 
the study of CSA performance, we compared this algorithm 
with SA using the relative percentage deviation (RPD) with 
the following formula: 

 
 

 
 
 

 
 

 
Where lgsolA objective function’s value for a given 

algorithm is, minsol is the best value of objective function 
between both algorithms and        is number of small size or 
large size problems. Figure 6 clearly shows that the CSA 
mean and lower values of its RPD  are preferable to SA. 

 
Table 4 
Operation times on workstations and workstations length In small size 
problems 

Product Workstations 
 S1 S2 S3 S4 S5 S6 S7 S8 

Product1 25 5 21 15 23 11 3 18 
Product2 27 13 2 14 8 7 3 9 
Product3 5 28 9 20 16 8 16 20 
Product4 27 24 2 22 21 19 24 21 
Product5 19 29 4 23 27 15 28 23 
Product6 4 20 25 9 29 11 5 14 
Product7 9 2 21 21 17 25 17 3 
Product8 17 26 10 20 5 18 15 8 
Product9 29 28 29 6 5 17 1 27 

Product10 29 21 2 4 8 28 11 5 
Stations 
length 10 11 13 10 12 6 12 11 
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Table 5 
Small size problem set 

problems a( models) MPS 
PS1 5 (9,7,2,2,1) 
PS2 5 (5,5,3,3,3) 
PS3 5 (4,4,4,4,4) 
PS4 5 (6,6,5,3,2) 
PS5 5 (6,6,6,5,5) 
PS6 10 (11,5,3,3,2,2,1,1,1,1) 
PS7 10 (10,4,4,3,3,3,2,1,1,1) 
PS8 10 (6,5,5,4,4,3,3,3,2,2) 
PS9 10 (7,6,6,5,5,4,4,3,3,2) 

PS10 10 (8,7,7,6,6,6,5,4,4,3) 
 

Table 6 
Large size problem set 
problems a(models) MPS 

PL1 10 (35,35,10,5,5,1,1,1,1,1,1,1,1,1,1) 
PL2 10 (30 ,30,15,10,5,5,1,1,1,1 ,1, 1,1,1,1) 
PL3 10 ( 20,20,15,15,10,6,6,6,1,1,1,1,1,1,1)  
PL4 10 (15,15,15,10,10,10,10,5,5,4,4,3,1,1,1) 
PL5 10 (8,8,8,8,8,7,7,7,7,7,7,7,7,6,6) 

 

 
 

Fig. 5. The average of computational time for CSA and SA 
 

 
                    Fig. 6. The RPD mean for CSA and SA 
 
 
 
 
 
 
 
 
 

Table 7 
Bill of Assembly Time configuration 

Product WORK stations 
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

Product1 25 5 21 15 23 11 3 18 4 5 
Product2 27 13 2 14 8 7 3 9 29 26 
Product3 5 28 9 20 16 8 16 20 1 18 
Product4 27 24 2 22 21 19 24 21 23 17 
Product5 19 29 4 23 27 15 28 23 25 5 
Product6 4 20 25 9 29 11 5 14 26 26 
Product7 9 2 21 21 17 25 17 3 3 19 
Product8 17 26 10 20 5 18 15 8 13 11 
Product9 29 28 29 6 5 17 1 27 9 16 
Product10 29 21 2 4 8 28 11 5 24 13 
Product11 6 23 14 15 25 9 6 25 14 3 
Product12 29 23 12 29 8 23 24 17 27 8 
Product13 29 12 23 11 25 23 10 30 6 5 
Product14 15 20 24 18 8 12 16 3 9 6 
Product15 24 6 6 7 28 17 6 14 5 8 
 Stations 
length 10 11 13 10 12 6 12 11 8 14 

 

5.2 Large Size Problems 

Since the proposed CSA algorithm must be efficient 
considering the MMALSP of real-world sized problems, 
another experiment is implemented for large sized 
problems; where five problems are designed with ten 
workstations and fifteen models. Table 6 presents the 
designed MPS for these five problems. Table 7 shows 
workstations length and assembly time configuration for 
total products in different workstations. 

   To compare the two algorithms, three metrics are 
considered. The first one is minimum objective function’s 
value. Result of comparison is shown in figure 7. We can 
see the objective function value for CSA will significantly 
decrease rather than SA as the problem size increases. The 
average of computational time when run ten times for each 
problem is shown in figure 8. The results show that with 
increase problem size between two algorithms, the 
computational time of CSA for reaching a solution is much 
less than SA in large size problems. As Figure 9 illustrates, 
there is a significant difference between CSA and SA 
algorithms in term of the average of RPD measure at 95 
percent confidence interval.  
 

 
Fig. 7. Minimum OFV for CSA and SA 
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Fig. 8. The average of computational time  for CSA and SA  

 

 
Fig. 9. The RPD mean for SA and CSA 

6. Conclusions 

In this study, a mixed-model assembly line sequencing 
problem was examined in JIT production systems. We 
considered minimizing line stoppage cost objective 
function as an important goal in MMALSP. Mathematical 
formulations for these objectives were provided and a new 
CSA approach was introduced to solve this problem. In 
order to make a valid comparison against competing 
solution methods, extensive two groups of test problems 
were provided and the reliability of the proposed CSA, 
based on some comparison metrics, was compared with SA 
algorithm as an appropriate approach to considering this 
problem. The results confirmed that the proposed CSA 
outperforms the SA approach in CPU time, objective 
function, and the average of RPD, especially in large size                  
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