
An Inexact-Fuzzy-Stochastic Optimization Model for a Closed Loop 
Supply Chain Network Design Problem 

Behnam Vahdania,*, Mani Sharifib 
aInstructor, Young Researchers Club, Qazvin Branch, Islamic Azad University, Qazvin ,Iran 

b Assistant Professor, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University,Qazvin, Iran 

Received 2 December, 2011; Revised 19 March, 2012; Accepted 27 May, 2012 

Abstract  

The development of optimization and mathematical models for closed loop supply chain (CLSC) design has attracted considerable interest 
over the past decades. However, the uncertainties that are inherent in the network design and the complex interactions among various 
uncertain parameters are challenging the capabilities of the developed tools. The aim of this paper, therefore, is to propose a new 
mathematical model for designing a CLSC network that integrates the network design decisions in both forward and reverse supply chain 
networks. Moreover, another objective of this research is to introduce an inexact-fuzzy-stochastic solution methodology to deal with 
various uncertainties in the proposed model. Computational experiments are provided to demonstrate the applicability of the proposed 
model in the CLSC network design. 
Keywords: Supply chain management; Facility location; Two-stage optimization; Multiple uncertainties. 

1. Introduction  

The significance of remanufacturing, product 
recovery and recycling of end-of-life products has 
progressively increased due to the rapid diminishment of 
raw material resources, greater consciousness of the 
environmental impacts of disposal, reducing space in 
landfills and growing levels of pollution (Kerr and Ryan, 
2001, Hong and Ke, 2011). As these issues start to impact 
the manufacturers’ behavior and customers’ decisions, 
manufacturers are increasingly demanded to consider the 
impacts of their products on the environment. In order to 
deal with these concerns, manufacturers have to extend 
the traditional supply chain and consider the 
environmental influences of all products and procedures 
until they are returned at the end-of-life, which is referred 
to as the closed loop supply chain (CLSC) (Kooi et al., 
1996; Beomon, 1999). CLSCs are supply chains in which, 
in addition to the conventional forward flow of materials 
from suppliers to consumers, there are flows of products 
back to manufacturers. Instances involve products returns 
from retailers to the manufacturers, consumed products 
that are exchanged in for a discount on the purchase price 
of a new product and end-of-life products that are 
returned for recovery, disposal or recycling (Schultmann 
et al. 2006, Wang and Hsu, 2010). The well-organized 
implementation of CLSC enables the companies to 

 

 
 
 

 
generate a more economical source of supplying parts, 
assemblies and products. Another recognized advantage 
of CLSC is protecting the environment from a variety of 
hazardous elements through waste management (Chang et 
al. 2011, Pires et al. 2011 and Vahdani et al. 2012a). 

One of the biggest challenges in designing CLSC 
networks is the simultaneous consideration of forward and 
backward flows of products. Products are returned to the 
manufacturers by consumers for many reasons.  Also, 
these returns are mostly delayed, in reality, due to the lack 
of a predefined process for putting returns back into the 
forward chain. Moreover, another challenge is the 
shortened life cycle of returned products. Therefore, most 
of activities and occurrences in the CLSCs are subject to 
uncertainties (Vahdani et al. 2012b). As pointed out 
before, the uncertainties involved in the reverse flow due 
to their natures are higher than those involved in the 
forward flow of supply chain (Fleischmann et al., 2004). 
These uncertainties are further intensified through not 
only interactions among the parameters that show 
uncertainties but also combinations of these uncertainties. 
Hence, effective CLSC management under the 
uncertainties should be based on a variety of decision 
support studies. Thus, advanced optimization 
methodologies are desired (Vahdani et al. 2012a). 

* Corresponding author E-mail: b.vahdani@ut.ac.ir  

 

Journal of Optimization in Industrial Engineering 12 (2013) 7-16

7



A major part of the literature on supply chain network 
design deals with forward supply chains in which 
products are transmitted from suppliers to manufacturers, 
from manufacturers to distributors, from distributors to 
retailers and ultimately to customers. However, in the last 
ten years, a considerable amount of empirical research has 
been done in the area of reverse logistics and CLSCs. A 
comprehensive survey of the field is provided by Vahdani 
et al. (2012b). We now provide a brief review of the 
literature that is relevant to the focus of the present paper. 
Listes (2007) developed a generic two-stage stochastic 
programming model for the design of CLSC networks and 
utilized a decomposition based approach to solve the 
problem. Du and Evans (2008) presented a bi-objective 
optimization problem that minimizes overall costs and 
total tardiness of a reverse logistic network for repair 
services. Outputs of the model are facility capacity 
arrangements, the flow of defect, and repaired products 
between the customers and the service facilities. Pati et al. 
(2008) proposed a mixed-integer goal programming 
model to determine the facility location, channel and flow 
of different varieties of recyclable wastepaper CLSC 
network. They investigated the maximization of product 
quality improvement and environmental benefits as well 
as the minimization of reverse logistics costs.  

Pishvaee and Torabi (2010) investigated a bi-
objective possibilistic optimization model in order to 
minimize the total cost of CLSC and the total tardiness of 
delivered products in a CLSC network design. Franca et 
al. (2010) also developed a bi-objective model under 
uncertainty in order to maximize the profit and minimize 
the total number of defective raw material parts. Vahdani 
et al. (2012a) proposed a bi-objective interval fuzzy 
possibilistic chance-constraint mixed integer linear 
programming model for designing a reliable network of 
facilities in the CLSC under uncertainty. Similarly, 
Vahdani et al. (2012c) presented a fuzzy multi-objective 
robust optimization model to configure a reliable CLSC 
network. Ramezani et al. (2013) developed a multi-
objective mathematical programming model under 
uncertainty for CLSC network design, in which 
maximization of the profit and responsiveness as well as 
minimization of defective parts from suppliers are the 
three objective functions. 

With regard to the matters enumerated, the aim of 
this study is to introduce a mathematical programming 
model for designing a logistics network of facilities under 
uncertainty. To make the model more applicable, the 
developed model incorporates both environmental and 
system uncertainties (Ho, 1989). Furthermore, we develop 
a solution approach for a better inclusion of dynamic 
aspects and multiple uncertainties in order to incorporate 
inexact programming, fuzzy programming and stochastic 
programming into the mathematical optimization model. 

The main innovations in this paper (to differentiate 
our efforts from those already published on the subject) 
are as follows: 

 Designing a new logistics model for facility location 
in the steel scrap recycling network to integrate 
strategic and tactical decisions in the supply chain. 

 Addressing a conventional network structure which 
supports the cooperation collection, recycling, 
transfer and disposal processes; therefore, it can be 
applied to various industrial fields. 

 Considering multi-suppliers with different 
requirements to approximate the current industrial 
practice. This issue gives rise to having various 
routes for waste collection. 

 Consideration of the constraints of capacity of 
bidirectional facilities and disposal centers in the 
model. 

 Proposing a mathematical programming model 
under uncertainty which handles different sources of 
uncertainties by jointly considering the 
unavailability or incompleteness and imprecise 
nature of data. 

 Proposing a hybrid solution approach by combining 
a number of efficient solution methods from the 
recent literature, namely inexact programming, fuzzy 
programming and stochastic programming to solve 
the proposed mathematical programming model. 

The rest of the paper is organized as follows. Problem 
definition and formulation are described in Section 2 in 
detail. The proposed hybrid solution methodology is 
given in Section 3. Computational experiments are 
provided in Section 4. Finally, the paper is concluded in 
Section 5. 

2. Problem Description and the Proposed Model 

In this study, a CLSC network is investigated that is 
concerned with the iron and steel industry. The structure 
of the CLSC network is depicted in Figure 1. In this 
problem setting, we generalize capacitated 
remanufacturing network design problem settings by 
deciding on the locations of the forward and reverse 
channel facilities, i.e., we determine the optimal locations 
of the manufacturing/ remanufacturing facilities, 
distribution centers, collection centers and disposal 
centers. This setting is applicable to a company that 
wishes to establish a new CLSC network for managing 
multiple types of products. Under this setting, we 
coordinate the forward and reverse flows using 
capacitated bidirectional facilities and product-specific 
hybrid metal manufacturing facilities, which lead to a 
common infrastructure for managing the forward and 
reverse flows. 

 We note that the capacities at the bidirectional 
facilities represent aggregate capacities that can be shared 
by all products. Thus, for the purpose of incorporating the 
non-uniformity in the capacity usage, as before, we utilize 
product-specific coefficients as modifiers to one capacity 
use unit. Moreover, we do not consider any capacity 
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limitation on the candidate hybrid metal manufacturing 
facilities. It is worthwhile to note that the inclusion of 
capacities in bidirectional facilities induces a stronger 
relation among the forward and reverse flows associated 
with different types of products. In the CLSC setting, we 
are interested in determining the best locations of the 

hybrid metal manufacturing facilities, bidirectional 
facilities and the disposal centers with respect to the 
known customer zone locations and the best flow of 
products in the CLSC network such that the total cost of 
location, processing and transportation is minimized.
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Fig. 1. The underlying structure of the CLSC network

2.1. Assumptions  

 The locations of the customer zones are 
predetermined. 

 The locations of the hybrid metal manufacturing 
facilities, bidirectional facilities and disposal centers 
are undefined. 

 Capacities of the bidirectional facilities and disposal 
centers are limited. 

 On account of the fact that accessibility to reliable 
and sufficient historical data are scantily possible 
and also because of the some parameters with 
uncertain natures, appropriate approaches are 
utilized to model the lack of knowledge regarding 
certain ill-known parameters. 

 Multiple types of steel scraps are moved through the 
network. 

 In the proposed model, shortages are not permissible 
and the supply capacity of the selected supplier is 
unlimited. 

2.2. Sets and indices 

푃: The number of products	(푝 = 1,2,… , 푃) 
퐿: The number of candidate hybrid metal manufacturing 
facilities (푙 = 1,2,… , 퐿) 
퐼: The number of customer zones (푖 = 1,2,… , 퐼) 
푇: The number of potential disposal centers (푡 =
1,2,… , 푇) 
퐵: The number of candidate bidirectional facilities 
(푏 = 1,2,… , 퐵) 
훺: Set of potential scenarios	(휃 ∈ 훺) 

2.3. Parameters  

퐹 ±: The fixed cost of opening a bidirectional facility at 
location	푏  
퐹 ±: The fixed cost of opening a disposal center for 
product 푝  at location 푡  
퐹 ±: The fixed cost of opening a hybrid metal 
manufacturing facility for product 푝  at location 푙  
퐶 ±: The unit transportation cost from a location 푎  to a 
location 푞 for 푎, 푞 ∈ 퐿, 퐼, 푇, 퐵 in scenario	휃 
훾 ±: Storage capacity coefficient at the bidirectional 
facility for distribution processing for product 푝 
훾 ±: Storage capacity coefficient at the bidirectional 
facility for collection processing for product 푝 
휂 ±: The unit distribution processing cost of product	푝 
at bidirectional facility 푏 in scenario휃 
휂 ± : The unit obliterate cost of product	푝  at disposal 
center 푡 in scenario휃 
휌 ±: The unit collection processing cost of product 푝 at 
bidirectional facility 푏  in scenario휃 
휀 ±: The unit manufacturing cost of product 푝 shipped 
out at hybrid metal manufacturing facility 푙 in scenario휃 
퐷퐸 ± : Demand of customer zone 푖  for product 푝  in 
scenario휃  
훿 ±: Return fraction at customer zone 푖 for product 푝 in 
scenario휃 
훽 ± : The unit remanufacturing cost of product 푝 
shipped out hybrid metal manufacturing facility 푙  in 
scenario휃 
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훼 ± : Recovery fraction for product 푝  at hybrid metal 
manufacturing facility 푙 in scenario휃 
퐶퐴푃 ±: Storage capacity at bidirectional facility 푏 in 
scenario휃 
퐶퐴푃 ±: Storage capacity for disposal product 푝 at 
disposal center 푡 in scenario휃 
휉 ±: The recycling rate of product 푝 return of customer 
zone 푖 in scenario휃 
휋 : Probability of scenario 휃 

2.4. Decision variables  

푉 ± = 1; if	bidirectional	facility	푏	is	open
0; otherwise																																								 	 

푠 ± = 

1; if	hybrid	metal	manufacturing	facility	푙	is	used	for	product	푝	
0;otherwise																																																																																																			 

푓 ±

= 1; if	disposal	center	푡	is	used	for	product	푝																													
0; otherwise																																																																																									 

푧 ± =
1;if	customer	zone	i	is	assigned	to	bidirectional

facility	b	for	the	reverse	flow	of	product	
0;otherwise	

 

푤 ±

=
1; if	customer	zone	푖	is	assigned	to	bidirectional	

facility	푏	for	the	forward	flow	of	product	
0; otherwise

 

푦 ±: The total quantity of product 푝 transported from 
bidirectional facility 푏  to hybrid metal manufacturing 
facility 푙 in scenario휃 

푥 ± : The total quantity of new and remanufactured 
product 푝  transported from hybrid metal manufacturing 
facility 푙 to bidirectional facility 푏 in scenario휃 

푈 ±: The total quantity of waste product 푝 transported 
from bidirectional facility 푏  to disposal center 푡  in 
scenario휃 

2.5. Model  

min푧± ≅ ∑ 퐹 ±푉 ± +∑ ∑ 퐹 ±푓 ± +
∑ ∑ 퐹 ±푠 ± +∑ ∑ ∑ ∑ 휋 (휌 ± +∈

퐶 ±)훿 ±퐷퐸 ±푤 ± +
∑ ∑ ∑ ∑ 휋 (훼 ±훽 ± + 퐶 ±)푦 ±

∈ +
∑ ∑ ∑ ∑ 휋 휀 ± 푥 ± − 훼 ±푦 ±

∈ +
∑ ∑ ∑ ∑ 휋 퐶 ±

∈ 푥 ± +

∑ ∑ ∑ ∑ 휋 (휂 ± + 퐶 ±)퐷퐸 ±푧 ±
∈ +

∑ ∑ ∑ ∑ 휋 (휂 ± + 퐶 ±)푈 ±
∈   

(1) 
S. t.: 
 
∑ 푤 ± = 1   				∀푖 ∈ (1,2, … , 퐼)                                                                                                              

       (2) 
∑ 푧 ± = 1 				∀푖 ∈ (1,2,… , 퐼)                                                              

                                                            (3) 
∑ 푓 ± = 1 			∀푝 ∈ (1,2,… , 푃)                                                                          

                                                (4) 
∑ 푠 ± = 1 			∀푝 ∈ (1,2,… , 푃)                                                        

                                                                   (5) 
∑ 푦 ± = ∑ 휉 ± 훿 ±퐷퐸 ±푤 ±  		∀푝 ∈
(1,2,… , 푃), ∀푏 ∈ (1,2,… , 퐵), 휃 ∈ 훺            

                                             (6) 
∑ 푈 ± = ∑ (1 − 휉 ±) 훿 ±퐷퐸 ±푤 ±			∀푝 ∈
(1,2,… , 푃), ∀푏 ∈ (1,2,… , 퐵), 휃 ∈ 훺        

                                      (7) 
∑ 푦 ± = ∑ 휉 ± 훿 ±퐷퐸 ±푠 ±  		∀푝 ∈
(1,2,… , 푃), ∀푙 ∈ (1,2,… , 퐿), 휃 ∈ 훺             

                                            (8) 
∑ 푈 ± = ∑ (1 − 휉 ±)훿 ±퐷퐸 ±푓 ±			∀푝 ∈
(1,2,… , 푃), ∀푡 ∈ (1,2,… , 푇), 휃 ∈ 훺         

                                     (9) 
∑ 푥 ± = ∑ 퐷퐸 ±푠 ±   		∀푝 ∈ (1,2,… , 푃), ∀푙 ∈
(1,2,… , 퐿), 휃 ∈ 훺																					                 

                             (10) 
∑ 푥 ± = ∑ 퐷퐸 ±푧 ±   		∀푝 ∈ (1,2,… , 푃), ∀푏 ∈
(1,2,… ,퐵), 휃 ∈ 훺																					        

                                      (11) 
∑ ∑ 훾 ± 퐷퐸 ±푧 ± +
∑ ∑ 훾 ± 훿 ±퐷퐸 ±푤 ± ≲ 퐶퐴푃 ±푉 ±   		∀푏 ∈
(1,2,… ,퐵), 휃 ∈ 훺                                                         (12) 
∑ 푈 ± ≲ 퐶퐴푃 ±푓 ±				∀푝 ∈ (1,2,… , 푃), ∀푡 ∈
(1,2,… , 푇), 휃 ∈ 훺                                 

                                        (13) 
푉 ±, 푠 ±, 푓 ±, 푤 ±, 푧 ± ∈ {0,1}					∀푏 ∈
(1,2,… ,퐵), ∀푙 ∈ (1,2,… , 퐿), ∀푝 ∈ (1,2,… , 푃), ∀푡 ∈
(1,2,… , 푇), ∀푖 ∈ (1,2,… , 퐼)																																																		                                                                                          

                  (14) 
 푦 ±, 푥 ±, 푈 ± ≥ 0				∀푏 ∈ (1,2,… ,퐵), ∀푝 ∈
(1,2,… , 푃), ∀푙 ∈ (1,2,… , 퐿), ∀푡 ∈ (1,2,… , 푇), 휃 ∈ 훺         

        (15) 
The first three terms in the objective function 

represent the fixed costs associated with locating the 
product-specific bidirectional facilities, disposal centers 
and hybrid metal manufacturing facilities, respectively. 
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The fourth term shows the transportation costs from the 
customer zones and collection processing costs at the 
bidirectional facilities. The fifth term denotes the 
transportation costs from the bidirectional facilities to the 
hybrid metal manufacturing facilities, in addition to the 
remanufacturing costs at the hybrid metal manufacturing 
facilities. The sixth term represents the total cost of 
manufacturing the new products. The seventh term shows 
the transportation costs from the hybrid metal 
manufacturing facilities to the bidirectional facilities. The 
eighth term denotes the transportation costs from the 
bidirectional facilities to the customer zones, in addition 
to the distribution processing costs at the bidirectional 
facilities. Finally, the ninth term represents the 
transportation costs from the bidirectional facilities to the 
disposal centers, in addition to the obliterate costs at the 
bidirectional facilities. Constraint set (2) ensures that a 
customer zone 푖  is assigned to exactly one bidirectional 
facility for the reverse flow of products. Constraint set (3) 
ensures that a customer zone 푖 is assigned to exactly one 
bidirectional facility for the forward flow of products.  
Constraint set (4) guarantees that, for each product	푝, a 
single dedicated disposal center location 푡 is established. 
Constraint set (5) guarantees that, for each product	푝, a 
single dedicated hybrid metal manufacturing facility 
location 푙 is established. Constraint sets (6)–(11) represent 
the flow conservation for each product type at the hybrid 
metal manufacturing facilities, bidirectional facilities, 
customer zones and disposal centers. Constraint set (12) 
ensures that the total forward and reverse shipment at any 
bidirectional facilities does not exceed its aggregate 
processing capacity. Constraint set (13) enforces the 
capacity restrictions at the disposal centers. Constraint 
sets (14) and (15) are the restrictions on the decision 
variables. 

3. Methodology  

3.1. Inexact-fuzzy linear programming 

Consider an inexact-fuzzy linear programming model 
as follows (Huang et al. 1993): 
  
min푍 ≅ 퐶±푋±                                                             (16) 
푆. 푡.:	 
 
퐴±푋± ≲ 퐵±                                                                  (17) 
푋± ≥ 0                                                                          (18) 
 

Where 	퐴± ∈ {푅±} × , 퐵± ∈ {푅±} × , 퐶± ∈
{푅±} × , {푅±}  denotes a set of interval numbers, 	푋± 
represents a set of decision variables; the 	(−)	 and 
(+)superscripts denote the lower and upper bounds of 
parameters or decision variables; and symbols ≅ and ≲
	represent fuzzy equality and inequality, respectively. In 

fact, a decision in a fuzzy environment can be defined as 
the intersection of membership functions equivalent to 
fuzzy objective and constraints (Chang et al. 1997; Li et 
al. 2009; Li et al. 2010). Set a fuzzy goal (G) and a fuzzy 
constraint (E) in a space of decision alternatives, a fuzzy 
decision set (D) can then be formed in the intersection of 
G and E. Hence, we have 	퐷 = 퐺 ∩ 퐸 , and 
correspondingly: 
 
휇 = 푚푖푛{휇 , 휇 }                                                         (19) 

where 휇 ,휇  and 휇  denote membership functions of 
the fuzzy decision, fuzzy goal and fuzzy constraint, 
respectively (Zimmermann, 1985). Let 휇 (푋±);	(푖 =
1,2,… ,푚)  be the membership functions of constraints 
and 	휇 (푋±); (푗 = 1,2,… , 푛)	  be those of goals. A 
decision can then be defined by the following 
membership function (Huang et al. 2001; Li et al. 2009; 
Li et al. 2010): 
 
휇 (푋±) = 휇 (푋±) ∗ 휇 (푋±)                                      (20) 
휇 (푋±) = min {휇 (푋±)}                                              (21) 

where (∗)  denotes a possibly context-dependent 
aggregator, and	휇 (푋±) can be interpreted as the degree to 
which 푋± satisfies fuzzy inequality in the objective and 
constraints. A desired decision is thus the one with the 
highest 휇 (푋±) value (Li et al. 2010): 
 
max휇 (푋±) = maxmin휇 (푋±), 		푋± ≥ 0                  (22) 

where 휇 (푋±)  should be zero if the objective and 
constraints are violated; and 1 if they are totally satisfied. 
Consequently, the inexact fuzzy linear problem can be 
converted into a common linear programming model by 
introducing a new variable of 휆 = 휇 (푋±)  which 
corresponds to the membership function of the fuzzy 
decision (Zimmermann, 1985; Chang et al. 1997; Huang 
et al. 2001; Li et al. 2009; Li et al. 2010). Thus, model 
(16-18) can be converted into: 
 
max휆±                                                                          (23) 
푆. 푡.:	 
 
퐶±푋± ≤ 푍 − 휆±(푍 − 푍 )		                                      (24) 
퐴±푋± ≤ 퐵 − 휆±(퐵 − 퐵 )                                       (25) 
푋± ≥ 0                                                                          (26) 
0 ≤ 휆± ≤ 1                                                                   (27) 

where 푍  and 푍    are the lower and upper bounds of 
the objective’s aspiration level, respectively, and 휆± is the 
control variable equivalent to the degree of satisfaction 
for the fuzzy decision. Huang et al. (1995) developed an 
interactive two-step algorithm to solve the above problem. 
The sub-model for 휆  equivalent to 푍  can be formulated 
in the first step when the system objective is to be 
minimized; the other sub-model for 휆  can then be 
formulated based on the solution of the first sub-model.  
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3.2. Multistage-stochastic programming  

In several problems, uncertainties may be expressed 
as random variables. Thu,s the relevant decisions must be 
made at each time stage under varying probability levels. 
Such a problem can be formulated as a scenario-based 
multistage stochastic programming model as follows (Li 
et al. 2009; Li et al. 2010): 
 
min푍 = ∑ 퐶 푋 + ∑ ∑ 푃 퐿 푌                    (28) 
푆. 푡.: 
 
퐴 푋 ≤ 퐵 ,					ℎ = 1,2, … ,푚 ; 푠 = 1,2,… , 푆             (29) 
퐴 푋 + 퐴 푌 ≤ 퐷 ,					푘 = 1,2,… ,푚 ; 푠 =
1,2,… , 푆; 푡 = 1,2,… , 푇                                                  (30) 
푋 ≥ 0,  푠 = 1,2,… , 푆                                                   (31) 
푌 ≥ 0, 푠 = 1,2,… , 푆; 푡 = 1,2,… , 푇                             (32) 

where 푃  is the probability of occurrence in 
scenario푡 in period	푠, with	푃 ≤ 1 and ∑ 푃 = 1; and 
푇  is the number of scenarios in period 푠, with the total 
number of scenarios being	푇 = ∑ 푇 . 

3.3. Interval-fuzzy multistage linear programming 

One of the approaches that can deal with multiple 
uncertainties presented in terms of fuzzy sets, inexact 
values, and random variables is an interval-fuzzy 
multistage linear programming mode which is as follows 
(Li et al. 2008c; Li et al. 2009; Li et al. 2010): 
max휆±                                                                          (33) 
푆. 푡.: 
 
∑ 퐶±푋± +∑ ∑ 푃 퐿± 푌± ≤ 푍 − 휆±(푍 − 푍 )  

(34) 
퐴± 푋± ≤ 퐵 − 휆±(퐵 − 퐵 ),					ℎ = 1,2,… ,푚 ; 푠 =
1,2,… , 푆                                                                        (35) 
퐴± 푋± + 퐴± 푌± ≤ 퐷 − 휆±∇퐷± ,					푘 =
1,2,… ,푚 ; 푠 = 1,2,… , 푆; 푡 = 1,2,… , 푇                        (36) 
푋± ≥ 0,  푠 = 1,2,… , 푆                                                  (37) 
푌± ≥ 0, 푠 = 1,2,… , 푆; 푡 = 1,2,… , 푇                            (38) 
0 ≤ 휆± ≤ 1                                                                   (39) 

 In model (7), a 휆± level close to 1 would correspond 
to a high possibility of satisfying the objective under 
advantageous conditions; conversely, a 휆±  value near 0 
would be related to a solution that has a low possibility of 
satisfying the objective under demanding conditions. A 
two-stage method is proposed for solving the interval-
fuzzy-stochastic programming model. The sub-model 
for	휆 corresponding to	푍  can be formulated in the first 
step when the system objective is to be minimized; the 
other sub-model (푍 ) can then be formulated based on 
the solution of the first sub-model. Thus, the first sub-

model is formulated as follows (Qin et al. 2007; Li et al. 
2008c; Li et al. 2010):  

 
max휆           (40) 
S.t.: 
 
 
∑ ∑ 푐 푥 + ∑ 푐 푥 +

∑ ∑ 푃 ∑ 푙 푦 + ∑ 푙 푦 ≤ 푍 −
휆 (푍 − 푍 )      (41) 
∑ 푎 푆푖푔푛 푎 푥 +
∑ 푎 푆푖푔푛 푎 푥 ≤ 퐵 − 휆 (퐵 −
퐵 ),					ℎ = 1,2,… ,푚 ; 푠 = 1,2,… , 푆    (42) 

∑ 푎 푆푖푔푛 푎 푥 +
∑ 푎 푆푖푔푛 푎 푥 +

∑ 푎́ 푆푖푔푛 푎́ 푦 +
∑ 푎́ 푆푖푔푛 푎́ 푦 ≤ 퐷 − 휆 (퐷 −
퐷 ),					푘 = 1,2,… ,푚 ; 푠 = 1,2,… , 푆; 푡 = 1,2,… , 푇  (43) 
푥 ≥ 0, 푗 = 1,2,… , 푗 , 푠 = 1,2,… , 푆    (44) 
푥 ≥ 0, 푗 = 푗 + 1, 푗 + 2, … , 푛 , 푠 = 1,2,… , 푆   (45) 
푦 , 푗 = 1,2,… , 푗 , 푠 = 1,2,… , 푆, 푡 = 1,2,… , 푇 	  (46) 
푦 , 푗 = 푗 + 1, 푗 + 2, … , 푛 , 푠 = 1,2,… , 푆, 푡 =
1,2,… , 푇 	      (47) 
0 ≤ 휆 ≤ 1      (48) 

 
where 푥±(푗 = 1,2,… , 푗 )  are the first-stage decision 

variables with positive coefficients in the objective 
function, and	푥±(푗 = 푗 + 1, 푗 + 2,… , 푛 ) with negative 
coefficients; 	푦± (푗 = 1,2,… , 푗 , 푡 = 1,2,… , 푇 )  are the 
second-stage decision variables with positive coefficients 
in the objective function, and 푦± (푗 = 푗 + 1, 푗 +
2, … , 푛 , 푡 = 1,2,… , 푇 )  with negative coefficients. 
Solutions to 푥 (푗 = 1,2,… , 푗 ), 푥 (푗 = 푗 + 1, 푗 +
2, … , 푛 ) , 푦 (푗 = 1,2,… , 푗 , 푠 = 1,2,… , 푆, 푡 =
1,2,… , 푇 ), 푦 (푗 = 푗 + 1, 푗 + 2, … , 푛 , 푠 =
1,2,… , 푆, 푡 = 1,2,… , 푇 )  and 휆  can be obtained from 
the above sub-model. Based on the above solutions, the 
second sub-model for 휆  (corresponding to	푍 ) can be 
formulated as follows (Qin et al. 2007; Li et al. 2008c, 
2010): 

 
max휆        (49) 
S.t.: 
∑ ∑ 푐 푥 + ∑ 푐 푥 +

∑ ∑ 푃 ∑ 푙 푦 + ∑ 푙 푦 ≤ 푍 −
휆 (푍 − 푍 )      (50) 
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∑ 푎 푆푖푔푛 푎 푥 +

∑ 푎 푆푖푔푛 푎 푥 ≤ 퐵 − 휆 (퐵 −
퐵 ),					ℎ = 1,2,… ,푚 ; 푠 = 1,2,… , 푆    (51) 

  
∑ 푎 푆푖푔푛 푎 푥 +

∑ 푎 푆푖푔푛 푎 푥 +

∑ 푎́ 푆푖푔푛 푎́ 푦 +

∑ 푎́ 푆푖푔푛 푎́ 푦 ≤ 퐷 − 휆 (퐷 −
퐷 ),					푘 = 1,2,… ,푚 ; 푠 = 1,2,… , 푆; 푡 = 1,2,… , 푇   

(52) 
푥 ≥ 푥 , 푗 = 1,2, … , 푗 , 푠 = 1,2,… , 푆   (53) 
0 ≤ 푥 ≤ 푥 , 푗 = 푗 + 1, 푗 + 2,… , 푛 , 푠 = 1,2,… , 푆   

(54) 
푦 ≥ 푦 	, 푗 = 1,2,… , 푗 , 푠 = 1,2,… , 푆, 푡 = 1,2,… , 푇   

(55) 
0 ≤ 푦 ≤ 푦 , 푗 = 푗 + 1, 푗 + 2, … , 푛 , 푠 =
1,2,… , 푆, 푡 = 1,2,… , 푇      (56) 
0 ≤ 휆 ≤ 1      (57) 

Solutions to 푥 (푗 = 1,2,… , 푗 ), 푥 (푗 = 푗 +
1, 푗 + 2,… , 푛 ) , 푦 (푗 = 1,2,… , 푗 , 푠 = 1,2,… , 푆, 푡 =
1,2,… , 푇 ), 푦 (푗 = 푗 + 1, 푗 + 2, … , 푛 , 푠 =
1,2,… , 푆, 푡 = 1,2,… , 푇 )  and 휆  can be obtained from 
the above sub-model. Therefore, combining the solutions 
of sub-models (40-48) and (49-57), the solution for the 
inexact fuzzy-stochastic programming model can be 
obtained as follows: 
 
푥± = 푥 , 푥 , ∀푗, 푠	    (58) 
푦± = 푦 , 푦 , ∀푗, 푠, 푡	    (59) 
휆± = 휆 , 휆      (60) 
푍± = 푍 ,푍      (61) 
 

Based on the above-mentioned description, an 
interval-fuzzy-stochastic logistics model can be 
formulated as follows: 

 
max휆±       (62) 
S.t.: 

∑ 퐹 ±푉 ± +∑ ∑ 퐹 ±푓 ± +
∑ ∑ 퐹 ±푠 ± +∑ ∑ ∑ ∑ 휋 (휌 ± +∈

퐶 ±)훿 ±퐷퐸 ±푤 ± +
∑ ∑ ∑ ∑ 휋 (훼 ±훽 ± + 퐶 ±)푦 ±

∈ +
∑ ∑ ∑ ∑ 휋 휀 ± 푥 ± − 훼 ±푦 ±

∈ +
∑ ∑ ∑ ∑ 휋 퐶 ±

∈ 푥 ± +
∑ ∑ ∑ ∑ 휋 (휂 ± + 퐶 ±)퐷퐸 ±푧 ±

∈ +

∑ ∑ ∑ ∑ 휋 (휂 ± + 퐶 ±)푈 ±
∈ ≤ 푍 −

휆±(푍 − 푍 )      (63) 
∑ 푤 ± = 1   				∀푖 ∈ (1,2, … , 퐼)                              (64) 
∑ 푧 ± = 1 				∀푖 ∈ (1,2,… , 퐼)                                 (65) 
∑ 푓 ± = 1 			∀푝 ∈ (1,2,… , 푃)                                 (66) 
∑ 푠 ± = 1 			∀푝 ∈ (1,2,… , 푃)                                 (67) 
∑ 푦 ± = ∑ 휉 ± 훿 ±퐷퐸 ±푤 ±  		∀푝 ∈
(1,2,… , 푃), ∀푏 ∈ (1,2,… , 퐵), 휃 ∈ 훺                            (68) 
∑ 푈 ± = ∑ (1 − 휉 ±) 훿 ±퐷퐸 ±푤 ±			∀푝 ∈
(1,2,… , 푃), ∀푏 ∈ (1,2,… , 퐵), 휃 ∈ 훺                            (69) 
∑ 푦 ± = ∑ 휉 ± 훿 ±퐷퐸 ±푠 ±  		∀푝 ∈
(1,2,… , 푃), ∀푙 ∈ (1,2,… , 퐿), 휃 ∈ 훺                             (70) 
∑ 푈 ± = ∑ (1 − 휉 ±)훿 ±퐷퐸 ±푓 ±			∀푝 ∈
(1,2,… , 푃), ∀푡 ∈ (1,2,… , 푇), 휃 ∈ 훺                             (71) 
∑ 푥 ± = ∑ 퐷퐸 ±푠 ±   		∀푝 ∈ (1,2,… , 푃), ∀푙 ∈
(1,2,… , 퐿), 휃 ∈ 훺																					                                       (72) 
∑ 푥 ± = ∑ 퐷퐸 ±푧 ±   		∀푝 ∈ (1,2,… , 푃), ∀푏 ∈
(1,2,… ,퐵), 휃 ∈ 훺																					                                       (73) 
∑ ∑ 훾 ± 퐷퐸 ±푧 ± +
∑ ∑ 훾 ± 훿 ±퐷퐸 ±푤 ± ≤ 퐶퐴푃 −
휆± 퐶퐴푃 − 퐶퐴푃 푉 ±  		∀푏 ∈ (1,2,… , 퐵), 휃 ∈ 훺          

                        (74) 
∑ 푈 ± ≤
퐶퐴푃 − 휆± 퐶퐴푃 − 퐶퐴푃 푓 ±				∀푝 ∈
(1,2,… , 푃), ∀푡 ∈ (1,2,… , 푇), 휃 ∈ 훺                             (75) 
푉 ±, 푠 ±, 푓 ±, 푤 ±, 푧 ± ∈ {0,1}					∀푏 ∈
(1,2,… ,퐵), ∀푙 ∈ (1,2,… , 퐿), ∀푝 ∈ (1,2,… , 푃), ∀푡 ∈
(1,2,… , 푇), ∀푖 ∈ (1,2,… , 퐼)						                                    (76) 
 푦 ±, 푥 ±, 푈 ± ≥ 0				∀푏 ∈ (1,2,… ,퐵), ∀푝 ∈
(1,2,… , 푃), ∀푙 ∈ (1,2,… , 퐿), ∀푡 ∈ (1,2,… , 푇), 휃 ∈ 훺         

        (77) 
The 푍  and 푍  are the lower and upper bounds of the 

objective function values obtained from a corresponding 
interval-stochastic integer programming model (Li et al. 
2008a,b; Li and Chen, 2011; Wang et al., 2012). Hence, 
the inexact-fuzzy-stochastic programming model can be 
converted into two deterministic sub-models. Interval 
solutions can then be obtained by solving the two sub-
models sequentially. The detailed solution process can be 
summarized as follows: 

Step 1: Identify all uncertain variables and acquire 
the related distribution functions. 

Step 2: Formulate a specific inexact-fuzzy-stochastic 
programming model. 

Step 3: Transform the developed model in step 2 into 
two sub-models, where	푍 	is desired since the objective is 
to minimize 	푍± ; formulate the first sub-model which 
corresponds to	푍 . 
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Step 4: Solve the 	푍 sub-model and obtain the 
solutions for 
휆 , 푍 , 푉 , 푠 , 푓 ,푤 , 푧 , 푦 , 푥 , 푈   
Step 5: Formulate the second sub-model which 
corresponds to	푍 . 

The objective is to minimize	푍±; formulate the first 
sub-model which corresponds to	푍 . 

Step 6: Solve the 	푍 sub-model and obtain the 
solutions for 
휆 , 푍 , 푉 , 푠 , 푓 ,푤 , 푧 , 푦 , 푥 , 푈
.Step 7: Combine the two sub-models’ solutions to obtain 
the solution of model. 

4. Computational Experiments 

To illustrate the validity of the proposed model and 
the usefulness of the solution methodology, several 
numerical experiments are implemented and the related 
results are reported in this section. To this end, three test 
problems are designed and their sizes are shown in Table 
1. Moreover, in each size of these problems three 
scenarios are considered. Depending on the characteristics 
and the quality of available data, it is assumed that the 
parameters of these models could be described by either 
discrete intervals or probability distributions. The detailed 
uncertain parameters are listed in Table 2. All the 
mathematical models are coded in the optimization 
software (i.e. GAMS).  

 
Table 1 
Sizes of the test problems 

Problem 
No. 

No. of 
products	(푃) 

No. Hybrid metal 
manufacturing 
facilities (L) 

No. Potential 
disposal centers 

(푇) 
1 3 3 2 

2 5 5 3 

3 5 7 8 

Problem 
No. 

No. of 
customer 
zones	(퐼) 

No. Candidate 
bidirectional 
facilities(퐵) 

    

1 7 3     

2 10 5     

3 12 8     

 
The inexact-fuzzy-stochastic mathematical programming 
model for designing CLSC network is to achieve a 
maximized satisfaction degree for objective function and 
constraints under uncertainty. 
 
 
 
 
 
 

Table 2 
Sources of discrete intervals and random generation values in each 
scenario  

Param
eters 

Problem 1 Problem 2 Problem 3 
Scen
ario 

1 
 

(휋 =
0.5) 

Scen
ario 

2 
(휋
= 0.3) 

Scen
ario 

3 
(휋
= 0.2) 

Scen
ario 

1 
 

(휋 =
0.5) 

Scen
ario 

2 
(휋
= 0.3) 

Scen
ario 

3 
(휋
= 0.2) 

Scen
ario 

1  
(휋
= 0.5) 

Scen
ario 

2 
(휋
= 0.3) 

Scen
ario 

3 
(휋
= 0.2) 

퐹 ± 
[200
0,50
0] 

[200
0,50
0] 

[200
0,50
0] 

[350
0,70
00] 

[350
0, 

7000
] 

[350
0, 

7000
] 

[450
0, 

8000
] 

[550
0, 

9000
] 

[590
0, 

9600
] 

퐹 ± 
[260
0,53
00] 

[260
0,53
00] 

[260
0,53
00] 

[440
0, 

8300
] 

[440
0, 

8300
] 

[440
0, 

8300
] 

[540
0, 

9300
] 

[640
0, 

1030
0] 

[690
0, 

1130
0] 

퐹 ± 
[300
0,60
00] 

[300
0,60
00] 

[300
0,60
00] 

[400
0,90
00] 

[400
0,90
00] 

[400
0,90
00] 

[500
0,10
00] 

[500
0,11
00] 

[600
0,12
00] 

퐶 ± [20,
50] 

[30,
60] 

[40,
70] 

[35,
55] 

[45,
65] 

[50,
75] 

[45,
65] 

[55,
75] 

[75,
95] 

휂 ± [40,
60] 

[45,
65] 

[50,
70] 

[50,
75] 

[55,
80] 

[60,
90] 

[60,
85] 

[65,
90] 

[85,
110

] 

휂 ± [50,
80] 

[55,
90] 

[60,
95] 

[65,
100

] 

[70,
110

] 

[65,
105

] 

[75,
200

] 

[90,
150

] 

[90,
150

] 

휌 ± [15,
30] 

[18,
35] 

[20,
40] 

[20,
35] 

[30,
40] 

[35,
50] 

[30,
45] 

[60,
70] 

[60,
70] 

휀 ± [25,
40] 

[30,
58] 

[40,
65] 

[50,
75] 

[60,
80] 

[65,
90] 

[60,
85] 

[90,
100

] 

[90,
100

] 

퐷퐸
[50
0,15
00] 

[60
0,17
00] 

[75
0,16
00] 

[80
0,20
00] 

[85
0,21
00] 

[90
0,22
00] 

[90
0,30
00] 

[10
50,2
500

] 

[13
50,2
800

] 

훽 ± [15,
30] 

[20,
40] 

[30,
60] 

[30,
75] 

[40,
80] 

[55,
100

] 

[40,
85] 

[50,
90] 

[50,
90] 

퐶퐴푃

[10
00,3
000

] 

[11
00,3
100

] 

[12
00,3
200

] 

[15
00,3
500

] 

[14
50,3
600

] 

[13
00,3
700

] 

[25
00,4
500

] 

[34
50,5
600

] 

[39
50,5
900

] 

퐶퐴푃
[60
0,15
00] 

[70
0,16
00] 

[65
0,17
50] 

[80
0,16
00] 

[85
0,17
00] 

[90
0,20
00] 

[90
0,26
00] 

[95
0,27
00] 

[95
0,27
00] 

 
The expected objective function (cost) would range 

from 31.56 × 10  to 43.15 × 10  with the degree of 
overall satisfaction (휆±)  being [0.17, 0.83] for test 
problem 1 (Table 3). For test problem 2, the expected 
objective function (cost) would range from 59.07 × 10  
to 67.47 × 10  with the degree of overall satisfaction 
(휆±) being [0.14, 0.79] (Table 3). For test problem 3, the 
expected objective function (cost) would range from 
72.08 × 10  to 79.06 × 10  with the degree of overall 
satisfaction (휆±)  being [0.19, 0.8] (Table 3).The lower 
objective function value represents an alternative with a 
lower variety of costs, demands, capacities etc; the higher 
one corresponds to an alternative with a higher variety of 
costs, demands, capacities etc.  
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Table 3 
 Solution for the objective function and satisfaction degree 

Problem 
Objective function 

(푍±) 
Satisfaction 
degree(휆±) 

1 
[31.56 × 10 , 43.15
× 10 ] 

[0.17, 0.83] 

2 
[59.07 × 10 	, 67.47
× 10 ] [0.14, 0.79] 

3 
[72.08 × 10 , 79.06
× 10 ] [0.19, 0.8] 

 
The obtained results reveal that the proposed model 

has notable efficiency and usefulness for the facility 
location of CLSC networks. Moreover, these results 
reiterate that the proposed model is able to constructively 
capture and include the uncertainties involved in the 
various parameters of the model comprising of different 
types of costs, demands, capacities etc. Furthermore, it 
can be concluded that the proposed solution approach is 
well suited to solve the inexact-fuzzy-stochastic 
mathematical programming problem. 

5. Conclusions 

The objective of this paper was to develop and 
demonstrate an optimization model that can be utilized as 
a decision making tool for different members of supply 
chain for investigating the target values of the objectives 
they try to achieve. To this end, an inexact-fuzzy-
stochastic mathematical programming model is proposed 
which minimizes the total costs including the fixed costs 
associated with locating the product-specific bidirectional 
facilities, disposal centers and hybrid metal manufacturing 
facilities and transportation costs between various 
facilities. Furthermore, to cope with the issue of 
uncertainty in the CLSC network design, since most of 
the parameters in the problem are presented with an 
imprecise nature, a solution methodology is developed by 
combining inexact programming, fuzzy programming and 
stochastic programming. 
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