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Abstract 

In this paper, a new online robot motion planner is developed for systematically exploring unknown environments by intelligent mobile 
robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by 
online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first and breadth-first 
searches on the GVG. The planner is equipped with components such as step generation and correction, backtracking, and loop handling. 
It is fast, simple, complete, and extendable to higher spaces. 
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1. Introduction 

For a robot to perform its tasks correctly and safely, 
planning its actions and motions is indispensable. A perfect 
robot is no longer considered just a mechanism, but a 
software-supported hardware. The software must process 
the robot’s knowledge of surroundings and take appropriate 
measures to guarantee the robot’s collision avoidance and 
goal accomplishment. 

The robot’s knowledge of surroundings is either 
collected locally from robot’s input devices such as sensors 
and cameras, or globally accessed via an environment map. 
Based on the scale of data acquisition, the robot’s approach 
to planning will differ. 

When no prior representation of the surrounding is 
available, a map of the environment has to be built 
incrementally. Thus, the mobile robot faces three 
fundamental questions as “Where am I?”, “Where am I 
going?” and “How can I get there?” (Leonard and Durrant-
Whyte [17]). The first question, which is on position 
estimation, is commonly referred to as localization. Related 
to localization is the concept of navigation. A system that 
can help a robot to establish its location or by some means  

 

 
 

Help it to find its way through its workspace correctly is 
called a Navigation System. 

Navigation Systems are roughly classified into two 
groups: relative and absolute position measurements. 

The relative position measurement approach, also 
known as dead reckoning, is further divided into two 
subgroups: Odometry, which uses encoders to measure 
wheel rotation and/or steering orientation; and inertial 
navigation, which uses gyroscopes and sometimes 
accelerometers to measure rate of rotation and acceleration. 
These approaches are subject to errors due to external 
factors beyond the robot's control such as wheel slippage or 
collisions. More importantly, dead reckoning errors 
increase unless the robot employs sensor feedback in order 
to recalibrate its position estimation. 

The absolute position measurement approach contains a 
few techniques including Guidepath, active beacons, 
artificial landmark recognition, natural landmark 
recognition, and model matching. Guidepath is a static path 
(e.g. a wire that transmits audio or radio signals, or a 
magnetic stripe) which a robot can follow. Guidepaths are 
not suitable in applications where mobile robots should 
move freely. Being one of the simplest forms of robot 
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navigation, Guidepath is used mostly for Automatic Guided 
Vehicles (AGVs) (Johansson [14]). 

In Active Beacons, a set of light or radio signal 
transmitters (beacons) are used whose locations in the 
workspace are known in advance, and at least three of them 
must be “visible” (detectable) for a robot at all workspace 
locations. In the artificial landmark recognition method, 
objects or images with a distinctive shape are placed in the 
workspace for easy recognition. The positions of the 
objects are known, and if three or more objects are 
detectable at a certain position, an estimation of the 
position can be calculated. 

In the natural landmark recognition method, the used 
objects already exist in the workspace, rather than being 
placed for robotic applications. Mostly they are easily 
distinguishable man-made structures like curbs, wall-floor 
edges, etc. In model matching, the information acquired 
from the robot’s onboard sensors is compared to a map or 
world model of the environment. Map-based positioning 
often includes improving global maps based on new 
sensory observations in a dynamic environment and 
integrating local maps into the global map to cover 
previously unexplored areas. 

Online navigation algorithms are those which plan the 
robot’s motions in unknown environments using sensory 
data, and are generally categorized into two major groups: 
navigation using touch sensing, and navigation using range 
finding (laser/sonar sensors or camera vision). 

Using one of the first methods for touch-based 
navigation, Lumelsky and Stepanov [18] presented bug 
algorithms for a point robot to move from a source point to 
a destination point, using touch sensing in a planar terrain 
populated with arbitrary shaped obstacles. Also, Cox and 
Yap [10] developed algorithms to navigate a rod to a 
destination position in planar polygonal terrains. A good 
review of early works on online path planning is provided 
in Rao et al. [23]. 

Recently, sensor-based motion planning has been done 
for real-time applications and unknown environments as in 
Brooks et al. [4] for kinodynamic constraints, and in Sam 
Ge et al. [25] for dynamic constraints. 

During the past decade, technological advancements in 
sensor equipments caused the evolution and sophistication 
of navigational techniques. The long-range sensors 
obviated the need for robot-obstacle touch which is an 
unfavorable case in most motion planning environments 
and leads to physical damages to the robot. There are 
numerous studies done about sensor-based or vision-based 
navigation methods (e.g. Choset et al. [9]). Recent robotic 
manipulators are equipped with a camera for accomplishing 
fine motion planning tasks. An informative work dealing 
with sensors and sensor-based planning methods is 
Borenstein et al. [3]. 

1.1. Generalized Voronoi Graphs 

The concept of Generalized Voronoi Graphs (GVG) or 
Medial Axis (MA) first appeared in the literature in 1967 
when Blum [2] introduced the notion of a skeleton 
discussing Medial Axis Transform (MAT). He compared 
the symmetric or medial axis transform with a grass fire 
phenomenon where the fire on the borders of a grass field 
broke out toward the center. The fire fronts met and 
quenched in some points which formed the medial axis. 
Blum showed that these points are the centers of Maximal 
Inscribed Discs (MID). To mathematically express the 
MID, we need to define some terms: 

Definition 1. Let W stand for the workspace and C its 
configuration space. Then Cfree represents the free 
configuration space and Cobs denotes the C-space occupied 
by obstacles. Let the set of all possible distance values 
between any two elements in the Cfree be called D: 

D: = {||x – y|| | x, y ∈ C}. 

The Distance Transform DT: Cfree → D assigns to every 
Cfree element the minimal distance to the Cobs: 

DT (x ∈ Cfree):= min {||x – y|| | y ∈ Cobs}, 

where ||•|| is some arbitrary metric like Euclidean distance. 
The Distance Map is the set of all Cfree elements along with 
their associated distance values: 

DM (Cfree):= {x, DT(x) | x ∈ Cfree}. 

Definition 2. Since no boundary point is closer to x than 
DT(x), every element (x, DT(x)) of the distance map defines 
the Locally Maximal Disc centered around x: 

LMD(x) := { y | ||x – y|| < DT(x)}, 

describing the disc with maximal radius from among the 
values in D and centered around x which is completely 
contained in Cfree. 

Definition 3. A Maximal Inscribed Disc (MID) is a locally 
maximal disc which is not completely contained in any other 
disc. The set of maximal inscribed discs in Cfree is therefore: 

MID(Cfree): = { LMD(x ∈ Cfree) | ∀ y ∈ N(x), 
                LMD(x) ⊄ LMD(y) }, 

where N(x) denotes the neighborhood of x. A MID touches 
at least two boundary points of Cfree. 

Definition 4. The loci of the centers of maximal inscribed 
discs comprise the Medial Axis, and the transformation of an 
object to its medial axis is called Medial Axis Transform. 

Fig. 1 shows the Maximal Inscribed Discs and the 
Medial Axis of an L-shaped environment. 

In Chin et al. [5], the medial axis of a simple polygon is 
calculated in linear time complexity, which is better than 
the previously known O(nlogn). The authors decompose 
the polygon into pseudo-normal histograms, influence 
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histograms and xy monotone histograms. A normal 
histogram is a simple polygon whose boundary consists of 
a base edge and a chain that is monotone with respect to the 
base, and a pseudo-normal histogram is a normal histogram 
with a missing corner. The medial axis for xy monotone 
histograms is then computed and merged to obtain the 
medial axis for the polygon. 

 

 
Fig. 1. Medial Axis (middle line) and some Maximal Inscribed Discs for a 
simple 2D L-shape. The axis is a piecewise quadratic curve representing 
the local symmetry axes. 

 
In Datta [12], a constant-time O (1) algorithm for 

computing the medial axis transform of an n×n binary 
image on a reconfigurable mesh size of n×n×n is presented. 
The mathematical properties of the medial axis are well 
studied in Choi et al. [6]. 

In Dardenne et al. [11] the MA for completely discrete 
objects in the form of pixels or voxels is approximated 
based on the Voronoi graph computed from a set of nodes 
distributed across the boundary. The approximations are 
robust to noise and suitable for mesh generation. 

The medial axis has found applications in extracting 
skeletons from 3D neuron images (Petřek1 et al. [20]), 
Binary Data Compression (Pujar et al. [21]), solid modeling, 
motion planning, etc. In Wilmarth et al. [26], the medial axis 
transform is combined with a probabilistic roadmap planner 
(PRM) where randomly generated points in configuration 
space are connected by local methods (Kavraki and 
Latombe, [15]). The drawback of this planner emerges in 
narrow passages, where the probability of locating a random 
point in those regions is quite small, leading to a failure in 
connecting the two ends of the corridor. In Wilmarth et al. 
[26], a method for sampling the C-space is proposed, where 
randomly generated configurations, free or not, are retracted 
onto the medial axis of the free space without computing the 
medial axis explicitly. 

1.2. Incremental Construction of Voronoi Graphs 

Sensor based planning by incremental construction of 
the GVG includes three phases: (1) connecting the start 
point to GVG, (2) navigating through GVG roadmap, and 
(3) constructing a path to the vicinity of the goal. The 
properties associated with these phases are called 

accessibility, connectivity and departability, respectively, 
and are essential for a roadmap regarded for path planning. 

There were some attempts to take advantage of the 
maximum clearance property of the Voronoi diagram, and 
to build the Voronoi diagram iteratively (e.g. Masehian et 
al. [19]). In Rao et al. [24], some proofs for four basic 
properties of Voronoi diagrams including (1) finiteness, (2) 
connectivity, (3) local constructability, and (4) terrain 
visibility are stated. Then they suggest an algorithm for the 
navigation of a circular robot in unknown terrains by 
iteratively visiting the Voronoi vertices. Rao [22] then 
extended these results to generalized polygons in plane. 

A well-known work dealing with incremental 
construction of Hierarchical Generalized Voronoi 
Diagrams belongs to Choset in Choset and Burdick [7] and 
Choset et al. [9]. The importance of these studies lies in 
their completeness and applicability to higher dimensions 
than planar. Since the Voronoi Diagram is disconnected in 
three and more dimensional spaces, some “bridge” edges 
(called GVG2) are used to maintain the connectivity of the 
GVG in high dimensions. The structure of Choset’s algo-
rithm depends extensively on the mechanism of the robot in 
hand (as in the Nomad® 200 robot with a sonar sensors 
ring), and is tailored for discrete information acquired from 
sensor readings.  

In incremental construction of Hierarchical Generalized 
Voronoi Diagrams, the main procedure for incrementally 
building the GVG edge involves mathematical 
computations, that is, numerical continuation techniques as 
well as a need for implementing a correction step through 
Newton’s recursive correction function, a calculation 
tailored to meet points considered m+1-equidistant faces. 
Although this approach is precise, the usually limited 
number of sensors and their incomplete perception of the 
world overshadow this advantage and force the robot to 
‘guess’ its next direction. 

The meet points (i.e. Voronoi vertices) are perceived by 
a comparative analysis of different sensor readings; that is, 
by watching for an abrupt change in the direction of the 
(negated) gradients to the m closest obstacles (Choset et al. 
[8]). A meet point is attributed as an m+1-equidistant point 
in ℜm space (e.g. 3 in planar cases) and calculations on this 
non-generic assumption are established. However, this is 
not the case with many situations where more than m+1 
Voronoi edges conjoin at a single meet point, or there are 
inaccuracies in defining the borders of obstacles. 

This approach renders numerous problems like dead 
reckoning error, localization error, sharp corners problem, 
weak meet points and problems due to hyper-symmetrical 
environments which are addressed in Choset et al. [8]. 

In the present paper, we propose a new motion planner 
which systematically and intelligently searches the 
workspace by incrementally building the Medial Axis or 
the Generalized Voronoi Graph of the free workspace. The 
paper is organized in this way: the following section 
describes the algorithm’s components in detail, and section 
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3 provides all steps of the algorithm. Section 4 illustrates 
some simulations and deals with important issues such as 
completeness and time complexity. Also, a Potential Fields 
variant of the algorithm is proposed. Finally, section 5 
presents the conclusion. 

2. Algorithm Components 

The online motion planner developed in this paper takes 
advantage of a number of basic geometric components, 
which together with a few control matrices allow the robot 
to perform motion planning tasks. These components are: 

1. Distance checking component, 
2. Departure component, 
3. Projection component, 
4. Correction component, 
5. Backtracking component, 
6. Loop handling component. 

A high-level explanation of the online motion planner, 
which describes how the above components are integrated 
and incorporated in a single model, is presented below: 

The algorithm begins with positioning the robot on the 
Start point and collecting information about its distance 
from surrounding obstacles. If the Goal point is in the 
robot's line of sight, then the robot’s current location is 
connected to the Goal via a straight line, and the planning 
task terminates accordingly. Otherwise, depending on the 
robot’s location (which can be either on MA edge, MA 
vertex, or not on MA at all), its next action is planned as 
follows: 

If the robot is not on the MA, then it must correct its 
position by moving directly toward the MA. Afterwards, it 
must repeat the distance checking step. 

If it is already on the MA, the robot should take a step 
along the MA in a promising direction. Nevertheless, this 
projection could ‘derail’ the robot from the MA (as in the 
previous case); so a correction step might be necessary to 
maintain the robot on maximum clearance from obstacles. 
This step guarantees that no collision will occur through the 
course of planning. 

If during the navigation, the robot comes too close to an 
obstacle, it does a backtracking behavior, and traces back 
the trajectory points until a vertex (meet point) is reached. 
In that case, the robot starts exploring another edge 
stemmed from that vertex. It should be noted that all edge-
traversing tasks (except for the backtracking operation) are 
accomplished through gradual construction of the MA via 
successive projection-correction steps. 

Before we present the details of each component, a 
mathematical notation is introduced to establish a 
framework for the algorithm: 

Let P(x) = {ρ1, ρ2, …, ρr} be the set of radial visibility 
(or sonar) rays emanated from the robot at location x. Each 
ρi has a magnitude |ρi|, and an angle θi. 

Let PM(x) = {ρm
1, ρm

2, …, ρm
s} be the set of rays having 

minimum distances from different convex obstacles sorted 
in an ascending order. So the first element, ρm

1, is the radius 
of the Maximal Inscribed Disc, MID(x) (see Fig. 5). 
Obviously, PM(x) ⊂ P(x). Note that PM(x) is not just a set of 
relatively small elements of P(x); the fact that the minimum 
distances from different convex obstacles are calculated 
determines the elements of PM(x) to be local minimums in 
the rays histogram. 

The following subsections explain the components of 
the algorithm in more detail. 

2.1. Distance Checking Component 

This component provides information about the robot’s 
environment. Consider Fig. 2 for instance, which illustrates 
a point robot among obstacles. It emits sonar or laser rays 
to measure its distance from the surrounding obstacles. 
Here the number of sensors r is 360, i.e. one sensor per 
degree. In real experiments this number is usually less, e.g. 
18 or 36 sensors. The rays represent the set P(x). 

 

 
Fig. 2. Sonar rays emanated from a point robot amid obstacles. 

 
 

To calculate the minimum distances from all visible 
obstacles, the robot must perform a simple arithmetic 
manipulation on magnitudes and angles of the rays. Fig. 3 
depicts a polar histogram of ray magnitudes.  

Fig. 4 is the Cartesian plot of the ray magnitudes. The 
local minimums in this histogram represent the rays with 
shortest distances from distinct obstacles. Fig. 5 shows 
these rays, which are elements of the set PM(x) = {ρm

1, ρm
2, 

ρm
3, ρm

4}. ρm
1 is the minimal ray and is the radius of the 

Maximal Inscribed Disc.  
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Depending on the distances from obstacles, three cases, 
depicted in Fig. 6, can express the robot’s position relative 
to the Medial Axis: 

Case 1:  ρm
1 << ρm

2, …, ρm
s : 

This condition indicates that the robot is very close to 
one obstacle and is likely to collide with it (Fig. 6(a)). 
Therefore, this is an unstable and unfavorable case, and 
must be corrected and resolved to Case 2 or 3. To make this 
premise more pragmatic and verifiable, it can be rephrased 
as |ρm

1 − ρm
2| > ε, where ε is a small tolerance value.  

Case 2:  ρm
1 = ρm

2 << ρm
3, …, ρm

s : 

This case implies that the robot is located on the Medial 
Axis and maintains the maximum clearance from two 
obstacles (Fig. 6(b)). In the real world applications, the 
exact equality of ρm

1 = ρm
2 may not be attained, and so it 

can be relaxed to |ρm
1 − ρm

2| ≤ ε. 
 
 

 
Fig. 3. Radial rays magnitudes plotted in polar coordinates. 

 
 

 
Fig. 4. Ray magnitudes plotted in Cartesian coordinates in which the local 
minima correspond to shortest distances from visible obstacle edges. 
 

 
Fig. 5. Shortest distances from different convex obstacles. The minimal 
ray represents the radius of the Maximal Inscribed Disc (MID). 
 

Case 3:  ρm
1 = ρm

2 = ρm
3 << ρm

4, …, ρm
s : 

This case indicates that the robot is located on a Medial 
Axis vertex (i.e. meet point) as in Fig. 6(c). Again we can 
define a tolerance value for real-world applications as 
|ρm

1 − ρm
2| ≤ ε and |ρm

1 − ρm
3| ≤ ε. 

The above conditions determine the location of the robot 
in relation to the Medial Axis roadmap and the surrounding 
obstacles, based on which the next step to be taken by the 
robot is determined. 
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(a) 

 
(b) 

 
(c) 

Fig. 6. The robot performing a distance check: Medial Axis, Maximal 
Inscribed Disc, and shortest rays are shown. (a) Case 1: ρm

1 << ρm
2, …, ρm

5. 
(b) Case 2: ρm

1 = ρm
2 << ρm

3, …, ρm
5. (c) Case 3: ρm

1 = ρm
2 = ρm

3 << ρm
4, ρm

5. 
 
 
Setting the tolerance value ε properly is of great 

importance since determining the occurred cases depends on 
it directly. Generally, the smaller is the ε, the more precise 
would be the robot’s motions. This means that the robot’s 
path matches with the actual Medial Axis more precisely, but 
at the cost of more computations due to smaller step size and 
thus a slower motion (Fig. 7(a)). Contrarily, a large ε would 
result in generation of a ‘thicker’ and roughly-approximated 
medial axis; that is, a large set of points would be falsely 
considered as Medial Axis points although the computation 
cost is lower (Fig. 7(b)). 

 
 

 
(a) 

 
(b) 

Fig. 7. Moving in a passageway with (a) small tolerance value ε, and (b) 
large tolerance value ε. Note the loss of precision and noncompliance of 
the robot’s motion to the real Medial Axis in (b), which theoretically lies 
exactly in the middle of the channel. 

2.2. Departure Component 

This component is activated when after performing a 
visibility check, the robot finds out that the Goal point lies 
inside its visibility envelope. In that case, the robot’s 
current position is connected to the Goal point via a straight 
line, as in Fig. 8. New trajectory points are then created by 
an interpolation of the connecting line using a step size of 
λ. The component’s name, i.e. departure is adopted from 
the fact that the robot generally departs from the Medial 
Axis to reach the Goal. 

2.3. Projection Component 

The projection component is the propelling element of 
the motion planning algorithm. Each time activated, this 
routine expands the robot’s trajectory by a small step. The 
size and direction of this step is governed by a vector 
projected from the current point. 
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Fig. 8. Once the goal is visible to the robot, the Departure component is 
activated and the robot’s position is connected to the goal point via a 
straight line. The circles show the Maximal Inscribed Discs centered at 
points on the Medial Axis. 

 
 
This component is activated when it is verified that the 

robot is placed on the Medial Axis. Depending on that the 
robot is on a MA edge or vertex, two methods are utilized: 

(i) If the robot is located on a Medial Axis edge (e.g. on 
the point x in Fig. 9), it has exactly two obstacles 
nearest to it. 
 Recalling the mathematical notation presented 
earlier in this section, suppose that the rays 
corresponding to the shortest distances from different 
obstacles are {ρm

1, ρm
2} which intersect with the 

obstacle borders in points j1 and j2. Then the minimum 
vectors {ρ̃m1, ρ̃m2} are vectors having their start point on 
x ∈ MA and endpoints {j1, j2} on obstacle borders, 
respectively (Fig. 9). 

 We define two projection vectors as follows: 

1 2 1 2
1 2

1 2

, ( ),m m m mρ ρ ρ ρ

λ

= + = − +

= =

v v

v v

% % % %% %

% %
 

in which λ is a scalar indicating the magnitude of the 
vectors. The size of λ must be selected in a way that it 
neither decelerates the robot’s navigation improperly 
nor causes missing a meet point. 

These two projection vectors point to opposite 
directions. However, the more promising direction is of 
course the one which will make a forward move, rather 
than a backward one. The robot then takes a step along 
the promising direction, with a size of λ.  

(ii) If the robot is located on a Medial Axis vertex (e.g. on 
point x in Fig. 10), then it has more than two obstacles 
nearest to it. By using the notation of the previous case, 
we define the projection vectors as follows: 

1 2 2 3 3 1

1 2 3

1 2 3

, , ,

 = .
m m m m m mρ ρ ρ ρ ρ ρ

λ

= + = + = +

= =

v v v

v v v

% % % % % %% % %

% % %
 

 
Fig. 9. The projection component provides the robot’s movements by 
computing the most promising vector. Here the robot is on the edge of the 
Medial Axis. 

 
This concept can straightforwardly be generalized to 

vertices conjoining more than three edges. Among these 
projection vectors, a vector which does not produce a 
backward movement, is along a previously unexplored 
edge, and has an endpoint nearer to the Goal point is 
considered as ‘more promising’. If the location of the Goal 
is unknown, the vector is selected randomly from among 
unexplored, non-backward vectors. The robot then moves 
in the direction of the selected vector with a step size of λ.  

The step taken by the robot in the projection component 
may lead the robot away from the Medial Axis. For 
example, in Fig. 10, if the robot decides to move along v3̃, 
it will be off the roadmap. The online motion planner 
responds to this situation by employing the Correction 
Component. 

Figures 11(a) and 11(b) show the Projection Step during 
some simulations. 

 
Fig. 10.  The projection vectors are the sums of minimum vectors. Here 
the robot is on the vertex of the Medial Axis, and the most promising 
vector is the nearest to the goal. 

 

3v%
3
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1
mρ%

1v%

2
mρ%
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(a) 

 
(b) 

Fig. 11. Simulations of the projection step: (a) the robot is on the edge of 
the Medial Axis, and (b) the robot is on the vertex of the Medial Axis. 

2.4. Correction  Component 

This component guarantees that the robot remains on the 
Medial Axis roadmap as long as it has not reached the Goal. 
As mentioned earlier, the projection component may produce 
steps which despite having been taken along promising 
directions lead the robot off the main roadmap. This 
component may also be activated at the very beginning if the 
robot is not located on the Medial Axis initially. 

The mechanism of the correction step is again based on 
vectors. Suppose that the robot has taken a step in Fig. 12, 
calculated in the projection component. After performing a 
distance checking, the robot realizes that it is off-the-
roadmap (i.e. Case 1). The correction component is then 
invoked to correct this situation and transfer the robot to a 
more stable status (i.e. either Case 2 or Case 3). 

 

 
 
Fig. 12. The Correction step (downward arrow) adjusts the robot’s off-the-
roadmap status and relocates it on the Medial Axis. 
 
 

The correction step is taken along a vector with the 
direction of −ρm̃

1. In order to calculate the vector’s size, 
suppose that the robot is located on a point near an obstacle 
border as x in Fig. 13. The required step size λc for situating 
the robot on the Medial Axis is computed as follows: 

2 1 2 1
2

2 2
m m m m

c m

ρ ρ ρ ρ
λ ρ

+ −
= − =

% % % %
% . 

 

 
Fig. 13. The size of the correction step λc is calculated such that the robot’s 
position will transferred to lie on the Medial Axis roadmap. 

For general cases, where the obstacle walls are not 
parallel, this step size also provides a good approximation 
for the deviation error. The correction vector is shown in 
Fig. 12 as a downward arrow. Another instance of the 
Correction step in a simulation is illustrated in Fig. 14. 

If after this correction the robot still does not lie on the 
roadmap, the Case 1 is not resolved yet. Consequently, 
correction must be repeated until the situation is transferred 
to Case 2 or 3. 

 

cλ
14243

1
mρ%2

mρ% x 

2
mρ%

j2

j1
1
mρ%

Moving direction 

Projection step 
M
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Fig. 14. A correction step activated during a simulation. 

2.5. Backtracking  Component 

This component is triggered when the robot reaches an 
obstacle boundary or a dead-end area. In order to prevent the 
robot from colliding with obstacles, we define the safety 
radius rs as the least permissible distance to obstacles 
boundaries. If during edge exploration, the condition ρm

1 ≤ rs 
is satisfied, the robot collides with an obstacle. As a result, 
the Backtracking component is activated to trace back the 
non-promising edge by selecting a new edge emanated from 
the last visited vertex, and extending that edge. A sample 
demonstration of the process is depicted in Fig. 15. 

The Backtracking step does not apply projection-
correction steps for excluding ‘wrong’ points of trajectory; 
rather, it simply removes those points from the existing 
trajectory points list. A simulation of the Backtracking 
movement is illustrated in Fig. 16. 

2.6. Loop Handling Component 

Although the projection vectors introduced in Section 
2.3 stipulate that the robot must avoid traveling along 
already explored edges, it is possible that during the course 
of navigation the robot encounters a previously-visited 
vertex of the roadmap. The robot becomes aware of such an 
event by means of integrating its prior information on that 
point with the Odometry information and the elements of 
the shortest rays’ matrix, PM(x), through sensor readings. 
Accordingly, the robot can infer that a loop exists in its 
trajectory. 

 

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 15. The Backtracking component traces back the collision-leading 
edges of the traversed trajectory. (a) The point c leads to a dead-end area, 
so the robot traces back the edge cb until it reaches the vertex b. (b) 
Another edge originated from vertex b is explored until point d, which is 
near to the obstacle boundary. (c) The edge db is backtracked, and since 
all edges of the vertex b are explored, the robot moves back to the last 
vertex reached before b (i.e. vertex a) by removing the edge ba. (d) A new 
edge ae is extended from the vertex a. 

Recall that the robot employs a depth-first search 
method to explore the Medial Axis roadmap. The 
backtracking component also traces back the trajectory in a 
reverse depth-first manner. Therefore, in order to make the 
robot to investigate ‘unexplored’ areas of the workspace, as 
well as to resolve the generated loop, it is rational to adopt 
a breadth-first strategy upon reaching a previously-visited 
vertex. 

 

a 

e

a 
b 

a 
b 

d 

a 
b 

c 

Correction 
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(a) 

 
(b) 

Fig. 16. Simulation of the Backtracking behavior. (a) The robot moves to 
the left from its start position. (b) After encountering a dead-end, 
backtracking to the right helps the robot to exit from the corridor. 

 
To apply the breadth-first search approach, the robot 

tries to move along an unexplored edge of the revisited 
vertex. This action guides the robot towards previously 
unexplored areas of the environment. If the current vertex 
does not have such edges, the robot will move towards the 
neighboring vertex it visited last time after the current 
vertex (i.e. according to its last itinerary). This operation is 
repeated for the new vertex (or vertices) until the robot 
moves along an edge outside the loop. 

The reason for naming this procedure as ‘breadth-first 
search’ is that the robot tries to expand all potential edges 
emanated from a revisited vertex (node) but not to probe 
deeply into successors of the node. 

As soon as a breadth-first movement is completed, the 
search strategy shifts to the depth-first approach, mainly to 
maintain the algorithm’s convergence toward the Goal 
point. Fig. 17 illustrates a simulation of this component. 

The Loop handling component guarantees a thorough 
coverage of the Medial Axis roadmap and prevents the 
robot from rambling along endless loops. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 17. Simulation of the Loop Handling behavior: (a) The robot has just 
passed a meet point and turns to the right. (b) After realizing that the right 
corridor is dead-end, the robot backtracks and after passing the meet point, 
selects the leftward edge to traverse. (c) The left corridor also proved to be 
dead-end, and so the robot backtracks toward the first meet point it 
encountered (at the bottom) and continues with an untraversed edge. The 
robot’s movement is similar to a reverse depth-first search. 

3. Algorithm Steps 

The main steps of the online motion planning algorithm 
are now presented based on the notation introduced earlier: 

STEP 1. Locate the robot on the Start point, s. Initialize 
the trajectory points set as: 

Traj ← {s}. 
Also set T = ∅, TV = ∅, and DE = ∅. These sets are 

updated later. 

STEP 2. Perform the Distance Checking component 
according to Section 2.1 to determine the sets P(x) and 
PM(x) (x denotes the current location of the robot). If the 
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Goal point is visible (i.e. is in the robot’s line of sight), 
then go to Step 8. Otherwise, continue with the next step. 

STEP 3. Compare the values of the elements of 
PM(x) = {ρm

1, ρm
2, …, ρm

s}: 

3.1  If ρm
1 << ρm

2, …, ρm
s  (i.e. Case 1 holds), the 

robot is off the Medial Axis roadmap. This situation 
must be corrected by taking Step 7. 

3.2  If ρm
1 = ρm

2 << ρm
3, …, ρm

s  (i.e. Case 2 holds), 
the robot is located on the Medial Axis edge. 

If ρm
1 ≤ rs (the safety radius), go to Step 4. 

Unless, update the trajectory matrix by appending 
the robot’s current position (x) by 

Traj ← Traj ∪ {x}. 

And continue the navigation along the roadmap 
according to Step 6. 

3.3  If ρm
1 = ρm

2 = ρm
3 << ρm

4, …, ρm
s (i.e. Case 3 

holds), the robot is located on a Medial Axis vertex 
(meet point). 

If the current meet point is recorded in the matrix 
T as a previously visited point, a loop has been 
detected in the course of navigation. So go to step 5. 

If not, append the robot’s current position (x) to 
the set of trajectory points already traversed by the 
robot, Traj: 

Traj ← Traj ∪ {x}. 

And update the following matrices: 

T ← T ∪ {(x , |J(x)|)}, J(x) = {MID(x) ∩ OB}. 

J(x) is the set of points on Obstacle Boundary 
(OB) which are also located on the Maximal 
Inscribed Disc centered on x. In other words, J(x) 
is the set of endpoints of the rays ρm

1, ρm
2, …, ρm

s 
(See Figures 9 and 10). T is the set of ordered pairs 
of meet points and the number of elements in their 
respective J(x). The symbol | • | shows the 
cardinality of the set. For instance, T = {(x1, 3), 
(x2, 3), (x3, 4)}. The next point to move towards is 
determined in Step 6. 

STEP 4. Backtracking step: This step removes the 
trajectory points extended toward a dead-end or 
obstacle boundary (e.g. a corner). It is performed also 
when there are no extendable edges from a vertex. From 
the last point of the matrix Traj eliminate all points 
preceding it until the last visited vertex is reached. Add 
all the eliminated points to the Dead Ends matrix, DE. 
In fact, New(Traj) = Old(Traj) \ DE. Mark the removed 
edge so that it will not be explored again. Then go to 
Step 3.3. 

STEP 5. Loop Handling step: This step imposes a change 
in search strategy from depth-first to breadth-first 
search. Append the revisited meet point to the matrix of 

revisited meet points, TV, and try to explore new edges 
emanated from it. If it is not possible, move to the very 
vertex you visited last time after the current meet point, 
and select a new edge to explore. Go to Step 6 for 
extending this new edge. 

STEP 6. Projection step: Select a vector and take a step in 
its direction with considering the forbidden directions 
determined by the facts that the robot’s next move: 

  - should not be backward (except in the 
Backtracking step), 

  - should not be along an already explored edge 
(except in the Loop Handling step), and 

  - should be in the most promising direction. 
  If the robot is placed on a Medial Axis edge, follow 

the procedure in Section 2.2(i). But, if it is on a vertex, 
perform the instructions in Section 2.2(ii), and then go 
to the next step. 

STEP 7. Correction step: This step is taken when it is 
identified that the robot does not lie on the roadmap. 
Perform the correction according to Section 2.4, and then 
update the matrix T ← T ∪ {(y, |J(y)|)}. Go to Step 2. 

STEP 8. Departure step: This step connects the current 
point to the visible Goal point. Through a linear 
interpolation, decompose the connecting straight line 
into several intervals (by interpolation) and append the 
endpoints of those pieces to the Trajectory. Upon 
reaching the Goal, report the Traj as the solution path, 
and terminate the algorithm. 
Fig. 18 shows the flowchart of the online motion 

planner. 

4. Experimentation and Discussion 

Fig. 19 illustrates some simulations of the developed 
online motion planner. Fig. 19(a) clearly indicates the 
algorithm’s completeness, and shows that it explores every 
corridor of the workspace. Fig. 19(b) shows the 
effectiveness of the loop handling component as it helps the 
robot to move out of the circular corridor, and Fig. 19(c) 
depicts the process of finding a start-to-goal path in 24.3 
seconds. All simulations were programmed and run in 
Matlab software. 

Below, some discussions on the algorithm’s properties 
including its completeness and complexity are provided. 

4.1. Completeness 

An interesting property of our online planning method is 
its completeness, that is, it has the ability to find the path to 
goal if it is reachable, or report that no such a path exists. 
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Fig. 18. Flowchart of the online motion planner 

 
Since the method utilizes a retraction roadmap of the 

environment (Medial Axis) which is connected (as proved in 
(Rao et al. [24]), any path that contains the MA roadmap and 
links to start and goal points is also connected. Therefore, the 
robot will reach the goal if it lies in Cfree. This guarantees that 
the algorithm is exact (Goldberg, [13]). 

In order to provide the condition for completeness, the 
following question is to be answered: “will the algorithm 
show that a path to the goal does not exist if it is the case?” 
To answer, recall the Step 5 of the algorithm in Section 3 
where a matrix TV keeps the record of revisited meet points. 
If this matrix includes all meet points before the goal is 
reached, the robot can infer that there is no valid path 

toward the goal since no unexplored meet point remains 
and the workspace is searched completely. If this happens, 
the algorithm will terminate and report that there is no path 
from start to goal. 

4.2. Localization 

The robot’s localization is done by a combination of infor-
mation of odometry (wheel accelerometers, etc.) and sensor 
readings information about the Maximal Inscribed Discs. 
Since all the visited meet points and the number of unexplored 
edges emanating from them are stored in the matrix T, the 
meet point locations are constantly being compared and 
matched with previous data. Therefore, the localization errors 
are dynamically corrected and do not accumulate. 

4.3. Extension to Higher Dimensions 

The online planner can be generalized to higher spaces 
by taking advantage of the properties of GVG roadmap in 
higher dimensional spaces, and extending the MID to 
higher spaces which turn into Maximal Inscribed Balls 
(MIBs). 

4.4. Time Complexity 

The time complexity of the planner is directly related to 
the number of edges it should traverse and is equal to O(n), 
n being the number of obstacle vertices (Aurenhammer and 
Klein [1]). The time required to navigate an edge is 
proportional to the length of the edge and is independent of 
the number of vertices. Considering that the algorithm is 
complete and in the worst case would traverse all the 
Voronoi graph’s edges twice (one for traversing a new edge 
and one for backtracking it), the planner’s overall time 
complexity is in O(n). 

The space required to store control matrices (e.g. T) is 
related to the number of vertices which is in O(n). 

4.5. A Potential Fields Variation 

When knowledge of the location of Goal point is 
available at the outset, the proposed motion planner can be 
made more efficient by integrating the Potential Fields 
approach into it. 
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Fig. 19. Some simulations of the new motion planner. 

(a)       (b) 

(c) 
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The Potential Fields concept was first introduced by 
Oussama Khatib [16], and has shown a good performance 
especially for higher dimensions. A robot in the Potential 
Fields method is represented in the configuration space as a 
particle q (with a positive charge) under the influence of an 
artificial potential field U whose local variations reflect the 
‘structure’ of the free space. The total potential function 
(Fig. 20(c)) can be defined over the free space as the sum 
of an attractive (negative) potential (as in equation (1) and 
Fig. 20(a)) which pulls the robot toward the goal 
configuration, and repulsive (positive) potentials (as in 
equation (2) and Fig. 20(b)) which push the robot away 
from the obstacles. 

The attractive potential applied to the goal point is 
generally in the form of a paraboloid (as in (1)) and 
facilitates the departure phase. 

21
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0

0
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1 1 1
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U q q
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ρ ρ

ρ ρ

− ≤
=

>
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⎪
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( ) ( ) ( )att repU q U q U q= +     (3) 

        
(a)       (b) 

 
(c) 

Fig. 20. Potential Fields. (a) The goal potential has a unique minimum at 
the goal point. (b) The obstacle potential has a high value inside obstacles. 
(c) A path to the goal can be found from the start point by moving in the 
direction of the negative gradient of the combined total potential field. 
 

The proposed new algorithm can be integrated with the 
potential Fields concept readily, that is, the principal steps 
for this variation remain similar to the one described in 
Section 3 except for the following modifications: 

In the Projection component, among the alternative 
vectors, the one with the least potential is selected as the 
next and promising edge to be explored. When a new 
vertex is reached, its potential value is compared with the 

potential value of its preceding vertex. If a higher (worse) 
potential is recorded, instead of further exploration of the 
new vertex (i.e. a depth-first approach), the robot 
backtracks the last traversed edge and investigates a new 
edge associated with the preceding low-potential vertex 
(i.e. a breadth-first approach). 

This variation has the advantage that the repulsive 
potential of obstacles discourages the robot to move 
towards the vicinity of their boundary, and in turn leads it 
toward the goal point. 

5. Conclusions 

In this paper, a new online robot motion planner for sys-
tematically exploring unknown environments in real-time 
applications based on the Generalized Voronoi Graph (or 
Medial Axis) of the environment is proposed. The 
algorithm takes advantage of sensory data to find an 
obstacle-free start-to-goal path. It does so by utilizing a 
combination of depth-first and breadth-first searches. 

The planner is equipped with several components such 
as step generation and correction, backtracking, and loop 
handling. It is fast, simple, complete, and extendable to 
higher spaces. Besides, a variation to the online planner 
which incorporates the Potential Fields approach in the 
principal algorithm is discussed. This method has some 
advantages when the Goal position is known beforehand. 
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