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Abstract 

In today’s competitive transportation systems, passengers search to find traveling agencies that are able to serve them efficiently 
considering both traveling time and transportation costs. In this paper, we present a new model for the traveling salesman problem with 
multiple transporters (TSPMT). In the proposed model, which is more applicable than the traditional versions, each city has different 
transporting vehicles and the cost of travel through each city is dependent on the transporting vehicles type. The aim is to determine an 
optimal sequence of visited cities with minimum traveling times by available transporting vehicles within a limited budget. First, the 
mathematical model of TSPMT is presented. Next, since the problem is NP-hard, a new hybrid parallel simulated annealing algorithm with 
a new coding scheme is proposed. To analyze the performance of the proposed algorithm, 50 numerical examples with different budget 
types are examined and solved using the algorithm. The computational results of these comparisons show that the algorithm is an excellent 
approach in speed and solution quality. 
Keywords: Traveling salesman problem; Transporter vehicles; Budget constraint; Mathematical programming;Simulated annealing 
algorithm.

1. Introduction  

The travelling salesman problem (TSP) is one of the most 
important problems in combinatorial optimization. The 
inputs are a collection of cities and the travel cost between 
each pair of cities. The purpose of the TSP is to find out 
the cheapest way of visiting all the cities only once and 
returning to the first city. Practical applications of the TSP 
consist of many problems in science, technology and 
engineering, such as vehicle routing, wiring, scheduling 
operations, flexible manufacturing, VLSI layout and etc 
(Lawler et al., 1985; Rego et al., 2011).  
The travelling salesman problem with multiple 
transporters (TSPMT) is a new type of the classical TSP 
in which the salesman must visit all cities considering the 
available transporting vehicles in each city using given 
transportation cost. The TSPMT involves determining a 
tour starting and ending at the depot, and visiting each 
node exactly once. The total cost of traveling by each 
vehicle (such as: train, bus, airplane, and etc.) should not 
be greater than the total available budget. The objective of 
this problem is to minimize the total travelling time 
assuming limited budget. 

 
 
 
 

The TSPMT is more intractable than the classical TSP 
versions; so, it is a NP-hard problem. Therefore, there  is 
no exact algorithm capable of solving all instances of the 
problem in a reasonable time, especially in large-sized 
problems. There are various approaches and numerous 
approximate methods which have been developed so far 
to solve TSP with various conditions. Many researches 
have been presented under both exact and heuristic 
methods to solve TSP. Exact methods include cutting 
plane, liner programming (LP) relaxation techniques 
(Dantzig et al., 1954), branch and bound algorithm (B&B) 
(Padberg and Rinaldi, 1980), B&B based on assignment 
problem relaxation (Held and Karp, 1971; Balas and 
Christofids, 1981), and dynamic programming (Crowder 
and Padberg, 1980; Grötschel and Holland, 1991; Ergan 
and Orlin, 2006). However, small-sized problems can be 
solved by exact methods. On the other hand, large-sized 
problems have been solved using heuristic and 
probabilistic method such as 2-opt, 3-opt (Lin and 
Kernighan, 1973), Markov chain(Martin et al., 1991) and 
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metaheuristic algorithms such as Tabu search (Knox, 
1989; Glover, 1990; Pedro et al., 2013), genetic algorithm 
(Goldberg and Lingle, 1985; Grefenstette et al., 1985; 
Hopfield and Tank, 1985; Goldberg, 1989; Jog et al., 
1989; Whitley and Starkweather, 1989; Braun, 1991; 
Xing et al., 2008;Kuroda et al., 2010; Albayrak and 
Allahverdi, 2011; Majumdar and Bhunia, 2011; Nagata 
and Soler, 2012) and ,neural networks (Zhang et al., 
2012), particle swam optimization, simulated annealing 
algorithm (Kirkpatrick et al., 1983; Bonomi and Lutton, 
1984; Kirkpatrick and Toulouse, 1985; Lam, 1988; 
Marinakis and Marinaki, 2010) , ant colony optimization 
(Branke and Guntsch, 2004; Bianchi, 2006; Bontoux and 
Feillet, 2008; Jun-man and Yi, 2012; Mavrovouniotis and 
Yang, 2013), memetic algorithm (Bontoux et al., 2010), 
scatter search (Liu, 2008) and etc.To the best of our 
knowledge the TSPMT has never been previously studied. 
Our main contribution is to present the TSPMT model 
and solve it using a new hybrid parallel simulated 
annealing algorithm. The rest of the paper is organized as 
follows: In section 2, the mathematical model of the 
classical TSP and TSPMT are presented. In section 3, the 
solution methodologies such as direct parallel simulated 
annealing (PSA1) and parallel simulated annealing 
algorithm (PSA2) are specially explained. In section 4, 
the computational results have been presented for small, 
medium, and large sized problems in which we have 
compared the results of PSA1with PSA2 for 50 numerical 
examples with three different budget types. Also, the 
computational results of PSA1 and PSA2 are compared to 
LINGO software results for small-sized problems. 
Finally, conclusions and future researches are presented in 
section 5. 

2. Mathematical Formulations 

There are a wide range of formulations of TSP in the 
literature with different assumptions, constraints and 
properties. In this section, we present two model 
formulations, the first model is a classical form of the 
symmetric TSP and the second one is about TSPMT 
model which has been developed in this research. 

2.1. The classical TSP problem 

In the classical symmetric TSP, the distance/cost between 
each pair of cities is the same in each direction. The 
classical closed tour TSP can be formulated as follows 
(Rego et al., 2011): 
 
Model 1: 
 
Minimize  

෍෍ܿ௜௝ݔ௜௝

௡

௝ୀଵ

௡

௜ୀଵ

																																																																												(1) 

෍ݔ௜௝

௡

௜ୀଵ

= 1												∀	݆ ∈ ܰ																																																					(2) 

෍ݔ௜௝

௡

௝ୀଵ

= 1												∀	݅ ∈ ܰ																																																					(3) 

	௜௝ݔ ∈ {0,1}						∀݅, ݆ ∈ ܰ																																																								(4) 
In this formulation, the objective function is to minimize 
the total traveling costs all over the arcs used to complete 
the tour. Constraints (2) and (3) are the standard 
assignment constraints. In addition, subtours elimination 
constraints (SECs) are needed.  

2.2. Sub tours eliminating constraints (SECs) 

A key part of a TSP is to make sure that the tour is 
continuous. Without such constraints we often will get 
solutions containing degenerate tours between 
intermediate nodes and not connected to the starting city. 
The originally SECs were firstly presented by Dantzing et 
al. (1954): 
 
෍෍ݔ௜௝

௝∈ௌ௜∈ௌ

≤ |ܵ| − 1											∀ܵ ⊆ ܰ/{1}, ܵ ≠ Ø													(5) 

Unfortunately this formulation creates an exponential 
number of constraints and becomes impractical even for 
small problems. A different SCE proposed by Miller et 
al.(1960) which has only a maximum of (n-2)2 
constraints, at the disadvantage of a weak LP relaxation: 
 
௜ݑ − ௝ݑ + 1 ≤ (݊ − 1)(1− ,݅)∀			  (௜௝ݔ ݆) ∈ ,ܣ ∶ ݅, ݆ ≠ 1									(6)	 
In (6) a new set of variables U={ui:i∊N, i≠1}is required. 
The ui are arbitrary real numbers, but it can be ranked to 
non-negative integers representing the sequence in which 
the nodes are being visited.  

2.3. The TSP problem with multiple transporters 
(TSPMT) 

The TSP with multiple transporters (TSPMT) is an 
extension of the classical TSP in which a salesman can 
visit all cities by different transporting vehicles with given 
cost. Each type of transporting vehicles has special cost 
and traveling time. The purpose is to find the minimum 
total traveling time with least budget consumed. The key 
assumptions of the TSPMT are: 
 Node 1 is required to be the basic observing city; 
 They make sure that every city visited belongs to a 

tour connected to the base city, thereby eliminating 
subtours; 

 All nodes should be visited only once; 
 Different transporting vehicles are assumed to travel 

between nodes; 
 Transportation costs between nodes are dependent on  

vehicles type and are known; 
 Total budget to travel between each node by each 

vehicle is known. 
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From the graph theory point of view, the TSPMTcan be 
defined on a graph G= (V, A), where V={v1,…, vn} is a set 
of n vertices (nodes) and A={(vi , vj)r | vi, vj∊V , i ≠ j } is a 
set of arcs, together with a non-negative time matrix T = 
(tijr) which means that the traveling time from node I to 
node j by transporting vehicle r, and non-negative cost 
matrix W = (wij

r) that indicates the traveling cost from 
node i to node j by transporter vehicle r is associated with 
A. The common definition of the set of decision variables 
is X={xij

r: i, j, r∊N, i ≠ j }, where xij
r= 1 if the salesman 

travels from node i to nodej by transporting vehicle ( node 
i is visited immediately before node j), and 0 otherwise. 
Our problem is considered to be symmetric TSP (STSP) 
which tijr=tji

r for all (vi,vj)r∊A. Elements of A are often 
called edges (rather than arcs) in this case. The STSP 
consists in determining the Hamiltonian cycle (circuit), 
often simply called a tour of minimum cost. In this model, 
index w indicates the traveling cost, and index Q indicates 
the total available budget. The objective function and 
constraints of TSPMT are presented below: 
Model 2: 
 
Minimize  

෍෍෍ݔ௜௝௥
௡

௥ୀଵ

௡

௝ୀଵ

௡

௜ୀଵ

௥																																													௜௝ݐ 																																				(7) 

 

෍෍ݔ௜௝௥
௡

௥ୀଵ

௡

௜ୀଵ

= 1																						∀݆ ∈ ܰ																																			(8) 

 

෍෍ݔ௜௝௥
௡

௥ୀଵ

௡

௝ୀଵ

= 1																						∀݅ ∈ ܰ																																			(9) 

 

෍෍෍ݔ௜௝௥ ௜௝ݓ
௥

௡

௥ୀଵ

௡

௝ୀଵ

௡

௜ୀଵ

≤ ܳ																																																								(10) 

 
௜ݑ − ௝ݑ + 1 ≤ (݊ − 1)(1− ௜௝௥ݔ )		∀(݅, ݆, ,ݎ ݇) ∈ ,ܣ ∶ ݅, ݆ = 1		(11) 
 
௜௝௥ݔ ∈ {0,1}						∀݅, ݆, ,ݎ ݇ ∈ ܰ																																														(12) 
The objective function of this model (7) is to minimize 
total transporting time along all the arcs used to complete 
the tour with different vehicles. Constraints 8 and 9 are 
the standard assignment constraints assuming different 
transporting vehicles. Constraint 10 ensures that total 
transporting cost should not be greater that total available 
budget. Constraint 11 prevents to make subtours in model. 
As we mentioned before, since the classical TSP (mode1) 
belongs to the class of NP-hard problems (Lawler et al., 
1985), the TSPMT (model 2)is also such an NP-hard one. 
Therefore, the large-sized problems cannot be solved with 
exact algorithms in a reasonable time, so we should use 
heuristic or metaheuristic algorithms. 
 

3. Solution Algorithms 

In this section, we provide a novel solution algorithm for 
TSPMT problem. To this aim, the hybrid parallel 
simulated annealing with a new coding scheme is 
developed. First, we present simulated annealing 
algorithm, then parallel version of our simulated 
annealing algorithm such as direct parallel simulated 
annealing algorithm (PSA1) and hybrid parallel simulated 
annealing algorithm (PSA2) are specially explained.  

3.1. Simulated annealing algorithm in general 

Simulated Annealing (SA) is a stochastic optimization 
method that is based on iterative strategy and surely one 
of the first algorithms that has an explicit strategy to avoid 
local minimal. The origin of the algorithm is in statistical 
mechanism (Metropolis algorithm) and it was first 
presented by Kirkpatrick et al. (1985). The fundamental 
idea is to allow moves to be resulted in the worse solution 
than the current solution (uphill moves) in order to escape 
from local minimal solution. The probability of doing 
such a move is decreased during the search process. The 
algorithm is started by generating an initial solution and 
by initializing the so-called temperature parameter T. 
Then, the following is repeated until the termination 
condition is satisfied: 
A solution j' from the neighborhoods of the current 
solution (N(j))is randomly sampled and it is accepted as 
new current solution based on f(j), f(j') and T. j' replaces j 
iff(j') < f(j) or, in case f(j') ≥ f(j), with a probability which 
is a function of T and f(j') – f(j). The probability is 
generally computed by the Boltzmann function: exp(-(f(j') 
– f(j))/T). The temperature T is decreased during the 
search process, thus, at the beginning of the search, the 
probability of accepting uphill moves is high and then it 
gradually decreases to converge to near optimum solution. 
This means that the algorithm is capable to utilize two 
main strategies: random walk and iterative improvement. 
In the first phase of the search, the move toward 
improvements is low and it permits the exploration of the 
search space; this erratic component is slowly decreased. 
Therefore, it results in the search to converge to a local 
minimum. The probability of accepting uphill moves is 
controlled by two factors: the difference of the objective 
functions and the temperature. In other words, at fixed 
temperature, a higher difference f(j')- f(j), leads to 
decrease the accepting probability of a move from j to j'. 
The SA algorithm is divided in four basic components as 
below: 
a) Initial configuration: a model of what a legal placement 
(configuration) is. This represents the possible problem 
solutions over which we will search for a good answer. 
b) Move generation function: a set of allowable moves to 
reach all feasible configurations. These moves are the 
computations that must perform to move from 
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configuration to configuration during the annealing 
process. 
c) Cost function: to measure how well any given 
placement configuration is. 
d) Cooling schedule: to anneal the problem from a 
random solution to a good, frozen, placement. This 
process is started with hot temperature and rules to 
determine when the current temperature should be 
decreased, by how much the temperature should be 
lowered and when annealing should be terminated. 
e) Stopping criterion: to when the algorithm must be 
stopped and define when the current temperature reaches 
to predefined temperature. 

3.2. Hybrid Parallel simulated annealing algorithms for 
TSPMT mt 

The SA performance convergence is usually affected by 
the quality of the  initial solution. Sometimes SA 
algorithm is combined with a new coding scheme of other 
metaheuristics in order to reduce some deficiencies to find 
near optimum solution in a reasonable time. Because of 
the variety of search space of each SA metaheuristics, 
every SA algorithm searches in a different ways. This 
approach can be implemented on parallel processors in a 
completely asynchronous way. The essential components 
of our direct parallel simulated annealing algorithm 
(PSA1) and hybrid parallel simulated annealing (PSA2) 
are similar except in generating initial solutions as 
described below (Onbasoglu et al., 2001): 

3.2.1. Initial solution of parallel simulated annealing 
algorithm (PSA1) 

The initial solution is randomly generated by allocating a 
value to each dimension i, i = 1, ...,N, in interval [Lb, Ub], 
where Lb and Ub are the lower and upper bounds for 
variable i, respectively. 

3.2.2. Initial solution of  hybrid parallel simulated 
annealing algorithm (PSA2) 

First, we solve the problem using mathematical 
programming method to find primal inputs of initial 
solutions for SA algorithm. Since we cannot solve the 
general TSPMT problem, we consider TSPMT with 
relaxed conditions situation. In the literature, there are 
two possible ways to relax: to allow each vertex to visits 
many times and to relax the binary constraints. We 
consider the second way to change the model to a linear 
one which relaxes the binary constraints. Next, the 
relaxed model was solved by LINGO software. Then, we 
used the optimum solutions of linear model as a 
probability distribution. As the results show, we find good 
tours without considering budget constraint. Therefore, 
the initial solutions found in this way would not satisfy 
the budget constraint.  

To make the solutions feasible, a heuristic algorithm has 
been developed as follows: 
Step 1) Define K⊂N as a subset of vectors which 
participate in tour and set K={current solution}. Denote C 
as the set of correspondent transportation cost of the 
elements in K.  
Step 2) Define T⊂K as a subset of vectors which move by 
the expensive vehicle type.  
Step 3) From the T set select a path randomly. Assume 
that vector is moved by a cheaper vehicle type and delete 
the relevant vector from T. 
Step 4) Consider a cheaper vehicle type for the first 
element in T. Then, calculate diminution in usable upon 
new fitness function and defined it as discount rate. 
Step 5) Calculate the traveling cost of a new vector. If the 
whole traveling cost satisfies the budget constraint, stop, 
otherwise go to step 3. 
The other components of our direct parallel simulated 
annealing algorithm (PSA1) and hybrid parallel simulated 
annealing algorithm (PSA2) are the same and described as 
follows: 

3.2.3. Neighborhood generation 

The current solution xj are changing to the neighbourhood 
solution xj+1in iteration jby selecting a random dimension 
i* and calculating the variable values of the neighbour by 
the following equations: 
 
If i=i* 
௜ݔ
௝ାଵ ௜ݔ	=

௝ + ൫ݕ ௜ܾ ௜ݔ	−
௝൯,				ݕ)݊݃ݏ − 0.5) < 0,										(13) 

 
Or 
 
௜ݔ
௝ାଵ ௜ݔ	=

௝ + ൫ݔ௜
௝ − ݈ܾ௜൯,				ݕ)݊݃ݏ − 0.5) ≥ 0,												(14) 

 
Else 
 
௜ݔ
௝ାଵ ௜ݔ	=

௝ , 	ݕ	݁ݎℎ݁ݓ ∈ ܷ[0,1]																																(15) 
Where y is a random variable uniformly distributed 
between [0,1]. In this approach, variable i* is randomly 
selected and a decision is made conventionally if the 
value of the variable in the selected dimension is to be 
decreased or increased. Then, a random amount is added 
or subtracted from the current variable value without 
violating the corresponding upper and lower bound while 
the remaining values of the variable remain constant. 

3.2.4. Cooling rate 

We reduce the temperature using a factor of 0.95. We 
found in the preliminary tests that this cooling rate leads 
into good solutions by tuning this initial value which is 
presented in subsection 4.1.  
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3.2.5. Acceptance of neighbor solution 

If the new observing solution is better than the current 
solution, the new solution is accepted. Else, a non-
improving move is accepted according to geometric 
cooling scheme (Ingber, 1995) used with success 
previously in the global optimization context (Özdamar 
and Demirhan, 2000): 
 
,∆)ܤܣ (௝ݐ = exp	(−(∆/ݐ௝)	                                           (16) 
Where, AB is the probability of acceptance, Δ is the 
difference between f(xj+1) and f(xj), and tj is the 
temperature in iteration j.  
If a randomly generated number between zero and one be 
less than AB, the deteriorating move is implemented. Tj is 
depending on the number of times that deteriorated 
solution has been accepted. It is decreased as follows: 
 
௝ାଵݐ 	← 		 ௝ݐ 	× 0.999                                                     (17) 
 
3.2.6. Initial temperature 
 
A suitable initial temperature is the one that results in an 
average increase of acceptance probability near to one. 
The value of initial temperature will clearly depend on the 
scaling of fitness and, hence, it should be problem-
specific. Therefore, we first generate a large set of 
random solutions, then a standard division of them are 
calculated and is used to determine the initial temperature 
in the way that the acceptances probability of primary 
generations reach to 0.999.Consequently, the initial tj is 
set to 1000based on some preliminary examinations. 
 
3.2.7. Iteration limit at each temperature level 
 
We define the set of m iterations as a ‘‘round’’. If the rate 
of change between mean fitness of two successive 
‘‘round’’ of iterations remains constant within a pre-
defined confidence interval, we conclude that the system 
has reached thermal equilibrium and reduce the 
temperature. Otherwise, we keep perturbing the solutions 
by creating neighbouring solutions until reaching 
equilibrium. 
 
3.2.8. Solution representation 

Each solution of our proposed algorithm is a super-matrix 
including two matrixes which the first one shows the 
sequence of cities and the second one illustrate the 
transporter types. Fig 1shows an example of our solution 
representation in which the first matrix is a 1 × ܰmatrix 
and second one is a ܰ ×ܰ matrix presented the selected 
transporting vehicle types. For instance, the salesman 
travels from city 6 to 2by transporter vehicle type 3, from 
city 2 to 4 by transporter vehicle type 5, from city 4 to 10 
by transporter vehicle type 9, from city 10 to 5 by 
transporter vehicle type 5, from city 5 to 7 by transporter 
vehicle type 1, from city 3 to 8 by transporter vehicle 

type8, from city 8 to 1 by transporter vehicle type 6, and 
finally from city 1 to 9 by transporter vehicle type 7. 

 
Fig. 1.An example of solution representation 

 
3.2.9. Movement mechanism 
 
We obtain a neighbour solutions by pairwise exchange 
heuristic called 2-opt exchange. It works by changing the 
position of two cities in tour at a same time. 
The steps of our PSA algorithms (including PSA1, PSA2) 
are given in Figure2. These steps are similar to the steps 
of the algorithm given by Sahin et al. (2010) except that 
we are assuming different parameters and initial solutions 
for our PSAs algorithms; also we are incorporating 
different transporting vehicles and budget constraint. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.The steps of our PSA algorithms 

The steps of PSA algorithms 
Step 1: The distance, time, cost matrices and available budget for 
traveling are given as input data. The definitions of parameters for 
the parallel simulated annealing heuristic are as follows: 
Tin= initial temperature, a = cooling rate, m= number of iteration 
which exhibit a round, NIET = the number of trials to be performed 
at the same temperature value,elmax= maximum iteration number. 
Step 2: Determine initial solution using mathematical techniques. 
Step 3: Actualize the solution gained in step 2. 
Step 4: Set temperature counter el = 1 (el: outer circle counter). Read 
initial solution (Sin) from file and calculate the total cost for the initial 
solution (Cin) 
Step 5: Set Sbest (best solution) = Sc (current solution) = Sin, and also 
set Cbest(best cost) = Cc(current cost) = Cin ,Cr(mean costs of the 
solutions in current round), Cr-1 (mean costs of the solution in 
previous round). Make the iteration counter 1 at each temperature 
level: il = 1. 
Step 6: Generate a neighbour solution (Sn) from the current solution 
as defined above. Then calculate the total cost of the neighbour 
solution (Cn). 
Step 7: Check the cost of neighbour solution and. If the budget 
constraints are not satisfied, actualize it as defined above, then go to 
the next step. 
 Step 8: Calculate the change in objective function value:D = Cn- Cc. 
Step 9: If (D< 0) go to Step 11; otherwise go to the next step. 
Step 10: Generate a uniform random number (x) between    [0, 1]. If 
x< (݁ି஽	/்) go to the next step; otherwise go to step 13. 
Step 11: Set to Sc = Sn and Cc = Cn. 
Step 12: If Cc<Cbest, set Sbest = Sc and Cbest = Cc. 
Step 13:If (il<m), set il = il + 1, and go Step 6 otherwise go to the 
next step. 
Step 14:Calculate“Cr”,if Cr-Cr-1dropsinto the confidence interval 
goto the next step otherwise set Cr-1 =Cr and go to Step 6.  
Step 15: Set el = el + 1, Tel + 1 = aTel and il = 1.                 (Tel: 
temperature atthe elst iterations) 
Step 16: If (el 6 elmax) go to Step 4; otherwise go to the next step. 
Step 17: Stop algorithm and report the results. 
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To be able to compare the proposed algorithms fairly, all 
test problems with both algorithms were solved by the 
stopping criterion Tmin=0.001, as defined previously. 

4. Computational Results 

All computational experiments were executed on an 
ASUS laptop with Pentium V PC, 2.4 GHz processors, 
Core i5, and 4 GByte of RAM. Also MATLAB software 
(Version 7.10.0.499, R2010a) was used to code the PSA, 
and the Minitab 16 software was used to tune the 
parameters. The LP’s was solved by usingLINGO11.0 
software. The proposed PSA algorithms (including PSA1, 
PSA2) are applied to ten test problems with 50, 100, 500 
and 2000nodes. We assume 10 different transporter types 
and three types of total budget in hand. The allocation of 
total budget is carried out in this way: first, the average 
cost of traveling by each vehicle is calculated. Then, 
budget type 1 is found so that the salesman can travel 
35% of path by the lowest-cost vehicles, 50% of path by 
the normal-cost vehicles, and 15% of path by the highest-
cost vehicles. Budget type 2is found which salesman 
could travel 30% of path by the lowest-cost vehicles, 45% 
of path by the normal-cost vehicles, and 25% of path by 
the highest-cost vehicles. These percentages are 25%, 
40%, and 35% for budget type 3. The distances between 
each city are integer number uniformly distributed from 
[0,1000]. The travel times are depended on the distances 
between each city and transporter types, and are 
calculated so that the higher-cost vehicles have the lower 
travel times, and reversely. The transporter costs are 
dependent on the transporter types and are computed so 
that the lower time consuming vehicles are more 
expensive, and reversely. 
 
4.1.  Parameter stuning 
 
The initial parameters of our proposed PSA algorithms 
(including PSA1, PSA2) are the population size (Npop) and 
the temperature decreasing rate (α). We used the Taguchi 
method of design of experiments (DOE) (Montgomery, 
2005).In the Taguchi method, the results are transferred 
into a measure called signal to noise (S/N) ratio. The 
formulation of this ratio is difference for each 
objective(maximization or minimization). Eq (21) 
represent the (S/N) ratio for minimization objectives. 

ܵൗܰ = −10 log(1ൗ݊ ෍ݕ௜ଶ
௡

௜ୀଵ

)																																												(18) 

Which, n and yi indicate number of replication and 
process response value at i’th replication. 
The initial parameters including Npop and α examined in 
three different levels and repeats for nine times, and we 
choose the orthogonal array L9. After testing the different 
initial parameter levels and analysis of the gained results, 
the better initial parameter levels are determined. These 

values are depicted in Table 1. Also, the averaged S/N 
ratio for each factor level is shown in Fig 3. 
According to the Fig 3, the best level of the population 
size (Npop) is 200, and the best level of the temperature 
decreasing rate (α) is 0.95. 
 
Table 1 
The initial parameter levels 

Parameters Factor levels 
1 2 3 

Npop 100 200 300 
α 0.9 0.95 0.97 

 

 
 

Fig. 3. Factor level trend of PSA algorithm 
 

4.2. Analysis of results and comparisons 
 
The computational results which are based on objective 
function and CPU time for TSPMT with 50, 100, 500 and 
2000nodesand three assumed budget types for 10 
different test problems are shown in Tables 2-5.  
We used “Gap” as a percentage of deviation from the best 
quality solution of algorithm as below: 
 

݌ܽܩ =
∗௓ܥ − ∗∗௓ܥ

∗௓ܥ
∗ 100																																																				(19) 

Where ܥ௓∗is the solution obtained by PSA1 for a given 
instance, and ܥ௓∗∗is that obtained by PSA2 for the same 
instance. 
In the columns 7 and 8 of Tables 2-5, Gap 1 means the 
percentage of deviation from the best quality solution of 
PSA1 and the value of the best quality solution obtained 
with PSA2. Gap 2 shows the percentage of deviation from 
the best quality CPU time of PSA1 and the value of the 
best quality CPU time obtained with PSA2. The optimal 
solutions of LINGO for small-sized problems with n=50 
are depictedin column 9 of Table 1. In addition, we utilize 
the relative percentage deviation (RPD) to analyse the 
performance of our PSA2 algorithm as following formula: 
 

௜ܦܴܲ =
(݅)௠݈݃ܣ −݉݅݊௠(݅)

݉݅݊௠(݅)
∗ 100							݅ = 1,… , ݊௦ 			(20) 

Where, Algmis objective function’s value for a given 
algorithm, minmis the best value of the objective function 
between both algorithms and ns is number of small-sized 
or large-sized problems. Also, the results of each problem 
sizes by proposed PSA algorithms (including PSA1, 
PSA2)for all three budget types are shown in Figures 4-7.

 

Parham Azimi et al./ A New Hubrid Parallel Simulated Annealing ...

6



 

 

Table 2 
Detailed results of heuristic algorithms for problem sizen=50 
Test problems Budget  type PSA1 PSA2 Gap 1 (%) Gap 2 (%) LINGO 

Solution CPU time(s) Solution CPU time(s) 
1 1 

2 
3 

4738.294 
4452.871 
4054.841 

26.28 
26.14 
26.16 

4675.304 
4301.258 
3976.152 

25.57 
26.04 
26.75 

1.33 
3.40 
1.94 

2.70 
0.38 
-2.21 

4636.212 
4247.832 
3921.901 

2 1 
2 
3 

4752.743 
4482.347 
4157.849 

26.19 
26.08 
26.00 

4481.725 
4286.142 
4099.541 

25.59 
26.13 
25.52 

5.70 
4.38 
1.40 

2.29 
-0.19 
1.88 

4437.732 
4240.441 
3927.934 

3 1 
2 
3 

5015.574 
4528.284 
4219.879 

26.21 
26.02 
26.07 

4645.639 
4168.806 
4065.321 

26.54 
25.79 
25.68 

7.38 
7.94 
3.66 

-1.24 
0.88 
1.50 

4602.579 
4004.501 
4019.021 

4 1 
2 
3 

4862.574 
4305.874 
4157.594 

26.11 
26.28 
26.44 

4784.174 
4237.382 
4036.817 

26.05 
26.42 
25.33 

1.61 
1.59 
2.90 

0.23 
-0.53 
4.20 

4722.530 
4176.267 
3978.834 

5 1 
2 
3 

4824.748 
4352.574 
4235.741 

26.03 
25.97 
26.09 

4544.507 
4288.054 
4121.093 

25.73 
25.14 
26.42 

5.81 
1.48 
2.71 

1.15 
3.20 
-1.25 

4505.763 
4225.604 
4066.452 

6 1 
2 
3 

4700.547 
4528.872 
4158.247 

26.07 
26.06 
26.09 

4679.620 
4479.255 
4012.004 

25.93 
25.85 
26.21 

0.45 
1.10 
3.52 

0.54 
0.81 
-0.46 

4592.201 
4423.505 
3956.625 

7 1 
2 
3 

4998.174 
4952.784 
4784.541 

25.96 
26.13 
26.51 

4669.445 
4565.092 
4333.351 

25.45 
25.65 
25.07 

6.58 
7.83 
9.43 

1.96 
1.84 
5.43 

4583.022 
4507.490 
4288.534 

8 1 
2 
3 

4862.429 
4457.189 
4325.281 

26.18 
26.02 
26.13 

4655.727 
4228.762 
4126.737 

26.16 
25.55 
26.11 

4.25 
5.12 
4.59 

0.08 
1.81 
0.08 

4607.804 
4169.522 
4064.540 

9 1 
2 
3 

4862.478 
4497.682 
4008.254 

26.16 
26.36 
26.05 

4442.481 
4393.405 
3864.898 

26.26 
25.45 
25.79 

8.64 
2.32 
3.58 

-0.38 
3.45 
0.10 

4405.672 
4321.307 
3824.480 

10 1 
2 
3 

4896.438 
4532.128 
4212.849 

26.03 
26.22 
26.17 

4614.662 
4295.521 
4091.833 

25.90 
26.14 
25.79 

5.75 
5.22 
2.87 

0.50 
0.30 
1.45 

4567.957 
4254.146 
4037.194 

Average 1 
2 
3 

4851.400 
4509.061 
4231.508 

26.122 
26.128 
26.171 

4619.328 
4324.368 
4072.775 

25.918 
25.816 
25.867 

4.78 
4.10 
3.75 

0.78 
1.19 
1.16 

4566.147 
4257.062 
4008.552 

 
Table 3 
Detailed results of heuristic algorithms for problem size n=100 

Test problems Budget  types PSA1 PSA2 Gap 1 (%) Gap 2 (%) 
Solution Time(s) Solution Time(s) 

1 1 
2 
3 

8854.254 
8120.542 
7994.769 

90.33 
89.26 
91.11 

8542.704 
8032.409 
7285.002 

88.25 
87.06 
89.34 

3.52 
1.09 
8.88 

2.30 
2.46 
1.94 

2 1 
2 
3 

9234.984 
7999.175 
7587.863 

89.60 
89.22 
91.21 

8300.946 
7553.128 
6978.414 

90.32 
88.45 
90.51 

10.11 
5.58 
8.03 

-0.80 
0.86 
0.77 

3 1 
2 
3 

9672.263 
8969.821 
7854.222 

89.28 
90.05 
91.87 

9115.156 
8147.821 
7743.594 

88.05 
87.78 
89.69 

5.76 
9.16 
1.41 

1.38 
2.52 
2.37 

4 1 
2 
3 

8984.730 
8463.818 
7951.004 

89.42 
90.99 
91.43 

8319.401 
8198.627 
7950.165 

89.05 
88.40 
87.32 

7.40 
3.13 
0.01 

0.41 
2.85 
4.50 

5 1 
2 
3 

9348.261 
8360.679 
7508.705 

89.52 
91.73 
90.84 

8503.745 
8038.297 
7213.896 

87.92 
90.34 
88.37 

9.03 
3.86 
3.93 

1.79 
1.52 
2.72 

6 1 
2 
3 

8552.777 
7441.408 
7267.651 

89.44 
91.58 
95.85 

7700.083 
7280.998 
7192.328 

89.04 
88.63 
89.51 

9.97 
2.16 
1.04 

0.45 
3.22 
6.61 

7 1 
2 
3 

8472.267 
7818.410 
7394.579 

89.70 
92.09 
96.24 

7809.362 
7564.429 
7047.321 

89.73 
90.34 
89.67 

7.82 
3.25 
4.70 

-0.26 
1.90 
6.83 

8 1 
2 
3 

8564.057 
7815.675 
7481.610 

89.55 
91.22 
97.86 

8196.377 
6990.574 
6839.151 

89.79 
89.46 
90.31 

4.29 
10.56 
8.59 

-0.27 
1.93 
7.71 

9 1 
2 
3 

9021.420 
8456.124 
7913.856 

89.76 
91.53 
95.23 

8125.251 
7585.321 
7243.681 

89.56 
89.19 
90.37 

9.93 
10.30 
8.47 

0.22 
2.56 
5.10 

10 1 
2 
3 

8240.684 
8005.743 
7607.217 

89.70 
91.44 
94.99 

8004.254 
7784.265 
6952.251 

90.34 
91.22 
91.80 

2.87 
2.77 
8.61 

-0.71 
0.24 
3.36 

Average 1 
2 
3 

8894.570 
8145.140 
7656.148 

89.630 
90.911 
93.663 

8261.728 
7717.587 
7244.580 

89.205 
89.087 
89.689 

7.11 
5.25 
5.38 

0.47 
2.01 
4.24 
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Table 4 
Detailed results of heuristic algorithms for problem size n=500 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 5 
Detailed results of heuristic algorithms for problem sizen=2000 

Test 
problems 

Budget  types PSA1 PSA2 Gap 1 (%) Gap 2 (%) 
Solution Time(s) Solution Time(s) 

1 1 
2 
3 

409254.254 
391002.916 
368525.254 

1012.34 
1013.63 
1008.49 

386457.287 
361577.403 
349463.622 

981.47 
980.67 
984.36 

5.57 
7.53 
5.17 

3.05 
3.25 
2.39 

2 1 
2 
3 

375424.254 
354302.265 
345698.254 

1018.85 
1015.71 
1022.04 

363842.924 
332851.600 
327596.928 

984.59 
980.74 
987.07 

3.08 
6.05 
5.24 

3.36 
3.44 
3.42 

3 1 
2 
3 

412324.254 
389989.166 
363254.254 

1020.07 
1016.87 
1010.05 

385143.538 
361546.647 
339546.647 

985.85 
983.38 
991.27 

6.59 
7.29 
6.53 

3.35 
3.29 
1.86 

4 1 
2 
3 

375258.574 
359472.477 
339245.254 

1009.11 
1014.74 
1020.58 

359527.816 
340321.422 
324627.999 

989.33 
983.64 
985.16 

4.19 
5.33 
4.31 

1.96 
3.06 
3.47 

5 1 
2 
3 

391251.221 
377094.136 
347258.265 

1010.47 
1016.67 
1022.85 

378245.284 
352285.432 
328862.401 

988.38 
991.62 
984.43 

3.32 
6.58 
5.30 

2.19 
2.46 
3.76 

6 1 
2 
3 

368784.448 
359640.674 
348825.368 

1009.82 
1025.53 
1013.21 

354596.892 
349527.826 
330498.095 

988.39 
985.70 
991.96 

3.85 
4.18 
5.25 

2.12 
3.88 
2.10 

7 1 
2 
3 

364173.846 
353224.093 
349872.849 

1008.58 
1011.65 
1018.63 

350507.977 
335887.321 
322141.029 

989.47 
985.31 
992.44 

3.75 
4.91 
5.07 

1.89 
2.60 
2.57 

8 1 
2 
3 

381283.942 
364130.176 
349571.927 

1009.31 
1017.52 
1022.83 

368573.514 
341028.742 
329434.337 

981.07 
984.65 
990.06 

3.33 
6.34 
5.76 

2.80 
3.23 
3.20 

9 1 
2 
3 

399541.973 
375159.266 
354581.854 

1012.81 
1018.27 
1020.34 

382498.551 
356358.254 
332883.913 

983.31 
985.75 
990.38 

4.27 
5.01 
6.12 

2.91 
3.19 
2.94 

10 1 
2 
3 

370058.489 
358541.592 
341573.534 

1009.80 
1021.98 
1014.33 

349854.286 
334570.325 
329899.496 

981.76 
992.27 
985.29 

5.46 
5.21 
3.42 

2.78 
2.91 
2.86 

Average 1 
2 
3 

384735.5 
368255.7 
350840.7 

1012.116 
1017.257 
1017.335 

367924.8 
346595.5 
331495.4 

985.362 
985.373 
988.242 

4.37 
5.88 
5.51 

2.64 
3.13 
2.86 

 
 

 
 

Test problems Budget  types PSA1 PSA2 Gap 1 (%) Gap 2 (%) 
Solution Time(s) Solution Time(s) 

1 1 
2 
3 

58996.639 
57330.802 
55821.389 

418.05 
413.76 
414.52 

56956.555 
55383.779 
52382.183 

401.56 
408.38 
403.53 

3.46 
3.40 
6.16 

3.94 
1.30 
2.65 

2 1 
2 
3 

58013.351 
56957.230 
54538.999 

415.34 
413.40 
417.16 

56228.680 
55184.962 
51693.657 

398.30 
405.77 
401.76 

3.08 
3.11 
5.22 

4.10 
1.85 
3.69 

3 1 
2 
3 

59754.061 
56150.643 
52125.111 

413.52 
419.50 
414.71 

57438.586 
55346.940 
51190.466 

402.94 
410.25 
408.83 

3.88 
1.43 
1.79 

2.56 
2.21 
1.42 

4 1 
2 
3 

62574.293 
61574.352 
57514.529 

418.70 
411.69 
416.73 

58529.637 
56964.267 
54844.911 

409.05 
401.52 
407.69 

6.46 
7.49 
4.64 

2.30 
2.47 
2.17 

5 1 
2 
3 

61824.617 
60579.253 
58642.867 

419.60 
413.70 
415.67 

59785.636 
58257.889 
55552.123 

401.16 
399.24 
404.31 

3.30 
3.83 
5.27 

4.39 
3.50 
2.73 

6 1 
2 
3 

65984.279 
63583.418 
60745.513 

420.60 
414.70 
411.88 

61278.957 
60513.453 
57915.796 

408.84 
407.36 
399.83 

7.13 
4.83 
4.66 

2.80 
1.67 
2.93 

7 1 
2 
3 

61826.739 
59543.848 
56857.219 

418.31 
423.09 
420.97 

58537.871 
55340.669 
54506.916 

410.45 
407.78 
401.73 

5.32 
7.06 
4.13 

1.88 
3.70 
4.57 

8 1 
2 
3 

66531.349 
57720.603 
54321.201 

421.22 
415.13 
419.23 

59432.375 
56746.706 
51257.414 

407.37 
403.31 
405.40 

10.67 
1.69 
5.64 

3.29 
2.85 
3.30 

9 1 
2 
3 

62184.365 
56279.415 
53841.569 

422.34 
418.11 
415.42 

58009.065 
53283.216 
50957.414 

407.74 
406.07 
409.39 

6.71 
5.32 
5.36 

3.46 
2.88 
1.45 

10 1 
2 
3 

68318.946 
66843.509 
64851.397 

420.95 
419.15 
423.27 

64669.425 
63843.890 
62557.414 

408.83 
403.16 
409.77 

5.34 
4.49 
3.54 

2.88 
3.81 
3.19 

Average 1 
2 
3 

62600.86 
59656.31 
56925.98 

418.863 
416.223 
416.956 

59086.68 
57086.58 
54285.83 

405.624 
405.284 
405.224 

5.61 
4.31 
4.64 

3.16 
2.63 
2.81 
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Fig. 4.Objective function of 30 test problems for n=50
 
 

 

Fig. 5.Objective function of 30 test problems for n=100

 
Fig. 6.Objective function of 30 test problems for n=500 
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Fig. 7.Objective function of 30 test problems for n=2000

 
Table 2 shows the results for small-sized problems. 
According to the computational results of PSA 
algorithms(including PSA1, PSA2), in Table 2 with n=50, 
PSA2has achieved better quality in solutions with 4.210% 
average deviation of the gap factor in comparison to 
PSA1. Table 3 gives the results for medium-sized 
problems. In Table 3 with n=100, PSA2 has obtained 
better results of solutions with 5.913% average deviation 
of gap factor than PSA1. Table 4 and 5 show the results 
for large-sized problems. In Table 4 with n=500, PSA2 
reaches to better quality solutions with 4.853% of average 
gap factor deviation than PSA1, and finally in Table 5 
with n=2000, PSA2 has better quality solutions with 
5.253% average deviation of gap factor rather than 
PSA1.Another important factor regarding the proposed 
algorithm is the “CPU time” comparisons. As the results 
of average CPU time, in Table 2 with n=50 show, PSA2 
has found better times with 1.043% average deviation of 
gap factor against PSA1. In Table 3 with n=100, PSA2 
has reached to better times with 2.240% average deviation 
of gap factor than PSA1. In Table 4 with n=500, PSA2 
has achieved better times with 2.867% average deviation 
of gap factor than PSA1, and, finally, in Table 5 with 
n=2000, PSA2 has obtained better times with 2.876% 
average deviation of gap factor against PSA1. 
Also, according to the average RPD (ARPD) comparisons 
of two proposed algorithms, PSA2 has better quality with 
4.964, 7.174, 5.707, 5.982 deviations against PSA1 for 
n=50, 100, 500, and 2000, respectively. Also in terms of 
CPU time, PSA2 has better solutions quality considering 
ARPD with 1.09, 2.383, 3.005, 2.982 deviations against 
PSA1 for n=50, 100, 500, and 2000, respectively. Figures 
8 and 9 show the ARPD of objective function and CPU 
time of proposed PSA algorithms, respectively. It should 
be noted that the newly-developed TSPMT model is more 
complicated than the traditional versions due to the ability 
of selecting different transporting vehicles. Just on each 
route, we have a large increase in the number of variables 
because of variety in transporting vehicle types. 

Therefore, the CPU time of around 1000 seconds for such 
a large-sized problem is rational. 

 
Fig. 8.ARPD of objective function of PSA heuristics 

 

 
Fig. 9.ARPD of CPU time of PSA heuristics 

 
In addition, we use the 95% confidence intervals T-test to 
compare the near optimal best solutions of objective 
function and CPU time. The results of these comparisons 
are depicted in Figures 10 and 11. We can infer from 
these statistical tests, because of the p-value (0.000) is 
smaller than α (0.05), there is a significant difference 
between PSA1 and PSA2 in terms of objective function 
and CPU time. 
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Fig. 10.Statistical results of T-test of objective function 

 

 
Fig. 11.Statistical results of T-test of CPU time 

Figures 12 and 13 show the 95% confidence intervals of 
RPD for objective functionand CPU time indexes, 
respectively.For each problem sizes, we can see that 
PSA2 gives better results than PSA1 in terms of both 
objective function and CPU time, especially in large-sized 
problems. 
 

 
 

Fig. 12.The 95% confidence intervals of RPD of objective function 
 
 

 
 

Fig. 13.The 95% confidence intervals of RPD of CPU time 

5. Conclusions and suggestions for future research 

In this study, a new version of the well-known traveling 
salesman problem was developed in which the salesman 
has some options to select the best vehicle type in each 
city considering a predefined budget. This new version of 
TSP which is the main contribution of the research named 
TSPMT which is more compatible to the real world 
problems than the traditional versions. First, the 
mathematical programming model of TSPMT was 
presented, and then the PSA2 with a new coding scheme 
was built to solve the different size of problems and 
compared it with PSA1. So, 50 numerical examples with 
three budget types were developed to test the performance 
of the proposed algorithm. According to the obtained 
results, PSA2 yields better solutions in comparison to 
PSA1 in terms of objective function and time 
consumption, especially in large-sized problems. For 
future researches, developing a new solution methodology 
such as a new hybrid algorithm or a new population-based 
algorithm in which the initial solutions are obtained in a 
heuristic manner can be investigated.The budget 
constraint that we used in our test problems restricts the 
budget for a whole traveling path. One attempt is to solve 
problems with different budget constraints. For example, 
separate budget constraints can be applied for each city. 
Another aspect deserving future efforts is to consider that 
the salesman should travel only by the existing 
transporting vehicles that are available in each city with 
limited budget. 
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