

A New Hybrid Parallel Simulated Annealing Algorithm for
Travelling Salesman Problem with Multiple Transporters

Parham Azimia,*,Ramtin Rooeinfarb, Hani Pourvazirib

a Assistant Professor, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
bMsc, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Received 8 September, 2013; Revised 20 November, 2013; Accepted 13 March, 2014

Abstract

In today’s competitive transportation systems, passengers search to find traveling agencies that are able to serve them efficiently
considering both traveling time and transportation costs. In this paper, we present a new model for the traveling salesman problem with
multiple transporters (TSPMT). In the proposed model, which is more applicable than the traditional versions, each city has different
transporting vehicles and the cost of travel through each city is dependent on the transporting vehicles type. The aim is to determine an
optimal sequence of visited cities with minimum traveling times by available transporting vehicles within a limited budget. First, the
mathematical model of TSPMT is presented. Next, since the problem is NP-hard, a new hybrid parallel simulated annealing algorithm with
a new coding scheme is proposed. To analyze the performance of the proposed algorithm, 50 numerical examples with different budget
types are examined and solved using the algorithm. The computational results of these comparisons show that the algorithm is an excellent
approach in speed and solution quality.
Keywords: Traveling salesman problem; Transporter vehicles; Budget constraint; Mathematical programming;Simulated annealing
algorithm.

1. Introduction

The travelling salesman problem (TSP) is one of the most
important problems in combinatorial optimization. The
inputs are a collection of cities and the travel cost between
each pair of cities. The purpose of the TSP is to find out
the cheapest way of visiting all the cities only once and
returning to the first city. Practical applications of the TSP
consist of many problems in science, technology and
engineering, such as vehicle routing, wiring, scheduling
operations, flexible manufacturing, VLSI layout and etc
(Lawler et al., 1985; Rego et al., 2011).
The travelling salesman problem with multiple
transporters (TSPMT) is a new type of the classical TSP
in which the salesman must visit all cities considering the
available transporting vehicles in each city using given
transportation cost. The TSPMT involves determining a
tour starting and ending at the depot, and visiting each
node exactly once. The total cost of traveling by each
vehicle (such as: train, bus, airplane, and etc.) should not
be greater than the total available budget. The objective of
this problem is to minimize the total travelling time
assuming limited budget.

The TSPMT is more intractable than the classical TSP
versions; so, it is a NP-hard problem. Therefore, there is
no exact algorithm capable of solving all instances of the
problem in a reasonable time, especially in large-sized
problems. There are various approaches and numerous
approximate methods which have been developed so far
to solve TSP with various conditions. Many researches
have been presented under both exact and heuristic
methods to solve TSP. Exact methods include cutting
plane, liner programming (LP) relaxation techniques
(Dantzig et al., 1954), branch and bound algorithm (B&B)
(Padberg and Rinaldi, 1980), B&B based on assignment
problem relaxation (Held and Karp, 1971; Balas and
Christofids, 1981), and dynamic programming (Crowder
and Padberg, 1980; Grötschel and Holland, 1991; Ergan
and Orlin, 2006). However, small-sized problems can be
solved by exact methods. On the other hand, large-sized
problems have been solved using heuristic and
probabilistic method such as 2-opt, 3-opt (Lin and
Kernighan, 1973), Markov chain(Martin et al., 1991) and

* Corresponding author E-mail: p.azimi@yahoo.com

Journal of Optimization in Industrial Engineering 15 (2014) 1-13

1

metaheuristic algorithms such as Tabu search (Knox,
1989; Glover, 1990; Pedro et al., 2013), genetic algorithm
(Goldberg and Lingle, 1985; Grefenstette et al., 1985;
Hopfield and Tank, 1985; Goldberg, 1989; Jog et al.,
1989; Whitley and Starkweather, 1989; Braun, 1991;
Xing et al., 2008;Kuroda et al., 2010; Albayrak and
Allahverdi, 2011; Majumdar and Bhunia, 2011; Nagata
and Soler, 2012) and ,neural networks (Zhang et al.,
2012), particle swam optimization, simulated annealing
algorithm (Kirkpatrick et al., 1983; Bonomi and Lutton,
1984; Kirkpatrick and Toulouse, 1985; Lam, 1988;
Marinakis and Marinaki, 2010) , ant colony optimization
(Branke and Guntsch, 2004; Bianchi, 2006; Bontoux and
Feillet, 2008; Jun-man and Yi, 2012; Mavrovouniotis and
Yang, 2013), memetic algorithm (Bontoux et al., 2010),
scatter search (Liu, 2008) and etc.To the best of our
knowledge the TSPMT has never been previously studied.
Our main contribution is to present the TSPMT model
and solve it using a new hybrid parallel simulated
annealing algorithm. The rest of the paper is organized as
follows: In section 2, the mathematical model of the
classical TSP and TSPMT are presented. In section 3, the
solution methodologies such as direct parallel simulated
annealing (PSA1) and parallel simulated annealing
algorithm (PSA2) are specially explained. In section 4,
the computational results have been presented for small,
medium, and large sized problems in which we have
compared the results of PSA1with PSA2 for 50 numerical
examples with three different budget types. Also, the
computational results of PSA1 and PSA2 are compared to
LINGO software results for small-sized problems.
Finally, conclusions and future researches are presented in
section 5.

2. Mathematical Formulations

There are a wide range of formulations of TSP in the
literature with different assumptions, constraints and
properties. In this section, we present two model
formulations, the first model is a classical form of the
symmetric TSP and the second one is about TSPMT
model which has been developed in this research.

2.1. The classical TSP problem

In the classical symmetric TSP, the distance/cost between
each pair of cities is the same in each direction. The
classical closed tour TSP can be formulated as follows
(Rego et al., 2011):

Model 1:

Minimize

෍෍ܿ௜௝ݔ௜௝

௡

௝ୀଵ

௡

௜ୀଵ

																																																																												(1)

෍ݔ௜௝

௡

௜ୀଵ

= 1												∀	݆ ∈ ܰ																																																					(2)

෍ݔ௜௝

௡

௝ୀଵ

= 1												∀	݅ ∈ ܰ																																																					(3)

	௜௝ݔ ∈ {0,1}						∀݅, ݆ ∈ ܰ																																																								(4)
In this formulation, the objective function is to minimize
the total traveling costs all over the arcs used to complete
the tour. Constraints (2) and (3) are the standard
assignment constraints. In addition, subtours elimination
constraints (SECs) are needed.

2.2. Sub tours eliminating constraints (SECs)

A key part of a TSP is to make sure that the tour is
continuous. Without such constraints we often will get
solutions containing degenerate tours between
intermediate nodes and not connected to the starting city.
The originally SECs were firstly presented by Dantzing et
al. (1954):

෍෍ݔ௜௝

௝∈ௌ௜∈ௌ

≤ |ܵ| − 1											∀ܵ ⊆ ܰ/{1}, ܵ ≠ Ø													(5)

Unfortunately this formulation creates an exponential
number of constraints and becomes impractical even for
small problems. A different SCE proposed by Miller et
al.(1960) which has only a maximum of (n-2)2
constraints, at the disadvantage of a weak LP relaxation:

௜ݑ − ௝ݑ + 1 ≤ (݊ − 1)(1− ,݅)∀			 (௜௝ݔ ݆) ∈ ,ܣ ∶ ݅, ݆ ≠ 1									(6)	
In (6) a new set of variables U={ui:i∊N, i≠1}is required.
The ui are arbitrary real numbers, but it can be ranked to
non-negative integers representing the sequence in which
the nodes are being visited.

2.3. The TSP problem with multiple transporters
(TSPMT)

The TSP with multiple transporters (TSPMT) is an
extension of the classical TSP in which a salesman can
visit all cities by different transporting vehicles with given
cost. Each type of transporting vehicles has special cost
and traveling time. The purpose is to find the minimum
total traveling time with least budget consumed. The key
assumptions of the TSPMT are:
 Node 1 is required to be the basic observing city;
 They make sure that every city visited belongs to a

tour connected to the base city, thereby eliminating
subtours;

 All nodes should be visited only once;
 Different transporting vehicles are assumed to travel

between nodes;
 Transportation costs between nodes are dependent on

vehicles type and are known;
 Total budget to travel between each node by each

vehicle is known.

Parham Azimi et al./ A New Hubrid Parallel Simulated Annealing ...

2

From the graph theory point of view, the TSPMTcan be
defined on a graph G= (V, A), where V={v1,…, vn} is a set
of n vertices (nodes) and A={(vi , vj)r | vi, vj∊V , i ≠ j } is a
set of arcs, together with a non-negative time matrix T =
(tijr) which means that the traveling time from node I to
node j by transporting vehicle r, and non-negative cost
matrix W = (wij

r) that indicates the traveling cost from
node i to node j by transporter vehicle r is associated with
A. The common definition of the set of decision variables
is X={xij

r: i, j, r∊N, i ≠ j }, where xij
r= 1 if the salesman

travels from node i to nodej by transporting vehicle (node
i is visited immediately before node j), and 0 otherwise.
Our problem is considered to be symmetric TSP (STSP)
which tijr=tji

r for all (vi,vj)r∊A. Elements of A are often
called edges (rather than arcs) in this case. The STSP
consists in determining the Hamiltonian cycle (circuit),
often simply called a tour of minimum cost. In this model,
index w indicates the traveling cost, and index Q indicates
the total available budget. The objective function and
constraints of TSPMT are presented below:
Model 2:

Minimize

෍෍෍ݔ௜௝௥
௡

௥ୀଵ

௡

௝ୀଵ

௡

௜ୀଵ

௥																																													௜௝ݐ 																																				(7)

෍෍ݔ௜௝௥
௡

௥ୀଵ

௡

௜ୀଵ

= 1																						∀݆ ∈ ܰ																																			(8)

෍෍ݔ௜௝௥
௡

௥ୀଵ

௡

௝ୀଵ

= 1																						∀݅ ∈ ܰ																																			(9)

෍෍෍ݔ௜௝௥ ௜௝ݓ
௥

௡

௥ୀଵ

௡

௝ୀଵ

௡

௜ୀଵ

≤ ܳ																																																								(10)

௜ݑ − ௝ݑ + 1 ≤ (݊ − 1)(1− ௜௝௥ݔ)		∀(݅, ݆, ,ݎ ݇) ∈ ,ܣ ∶ ݅, ݆ = 1		(11)

௜௝௥ݔ ∈ {0,1}						∀݅, ݆, ,ݎ ݇ ∈ ܰ																																														(12)
The objective function of this model (7) is to minimize
total transporting time along all the arcs used to complete
the tour with different vehicles. Constraints 8 and 9 are
the standard assignment constraints assuming different
transporting vehicles. Constraint 10 ensures that total
transporting cost should not be greater that total available
budget. Constraint 11 prevents to make subtours in model.
As we mentioned before, since the classical TSP (mode1)
belongs to the class of NP-hard problems (Lawler et al.,
1985), the TSPMT (model 2)is also such an NP-hard one.
Therefore, the large-sized problems cannot be solved with
exact algorithms in a reasonable time, so we should use
heuristic or metaheuristic algorithms.

3. Solution Algorithms

In this section, we provide a novel solution algorithm for
TSPMT problem. To this aim, the hybrid parallel
simulated annealing with a new coding scheme is
developed. First, we present simulated annealing
algorithm, then parallel version of our simulated
annealing algorithm such as direct parallel simulated
annealing algorithm (PSA1) and hybrid parallel simulated
annealing algorithm (PSA2) are specially explained.

3.1. Simulated annealing algorithm in general

Simulated Annealing (SA) is a stochastic optimization
method that is based on iterative strategy and surely one
of the first algorithms that has an explicit strategy to avoid
local minimal. The origin of the algorithm is in statistical
mechanism (Metropolis algorithm) and it was first
presented by Kirkpatrick et al. (1985). The fundamental
idea is to allow moves to be resulted in the worse solution
than the current solution (uphill moves) in order to escape
from local minimal solution. The probability of doing
such a move is decreased during the search process. The
algorithm is started by generating an initial solution and
by initializing the so-called temperature parameter T.
Then, the following is repeated until the termination
condition is satisfied:
A solution j' from the neighborhoods of the current
solution (N(j))is randomly sampled and it is accepted as
new current solution based on f(j), f(j') and T. j' replaces j
iff(j') < f(j) or, in case f(j') ≥ f(j), with a probability which
is a function of T and f(j') – f(j). The probability is
generally computed by the Boltzmann function: exp(-(f(j')
– f(j))/T). The temperature T is decreased during the
search process, thus, at the beginning of the search, the
probability of accepting uphill moves is high and then it
gradually decreases to converge to near optimum solution.
This means that the algorithm is capable to utilize two
main strategies: random walk and iterative improvement.
In the first phase of the search, the move toward
improvements is low and it permits the exploration of the
search space; this erratic component is slowly decreased.
Therefore, it results in the search to converge to a local
minimum. The probability of accepting uphill moves is
controlled by two factors: the difference of the objective
functions and the temperature. In other words, at fixed
temperature, a higher difference f(j')- f(j), leads to
decrease the accepting probability of a move from j to j'.
The SA algorithm is divided in four basic components as
below:
a) Initial configuration: a model of what a legal placement
(configuration) is. This represents the possible problem
solutions over which we will search for a good answer.
b) Move generation function: a set of allowable moves to
reach all feasible configurations. These moves are the
computations that must perform to move from

Journal of Optimization in Industrial Engineering 15 (2014) 1-13

3

configuration to configuration during the annealing
process.
c) Cost function: to measure how well any given
placement configuration is.
d) Cooling schedule: to anneal the problem from a
random solution to a good, frozen, placement. This
process is started with hot temperature and rules to
determine when the current temperature should be
decreased, by how much the temperature should be
lowered and when annealing should be terminated.
e) Stopping criterion: to when the algorithm must be
stopped and define when the current temperature reaches
to predefined temperature.

3.2. Hybrid Parallel simulated annealing algorithms for
TSPMT mt

The SA performance convergence is usually affected by
the quality of the initial solution. Sometimes SA
algorithm is combined with a new coding scheme of other
metaheuristics in order to reduce some deficiencies to find
near optimum solution in a reasonable time. Because of
the variety of search space of each SA metaheuristics,
every SA algorithm searches in a different ways. This
approach can be implemented on parallel processors in a
completely asynchronous way. The essential components
of our direct parallel simulated annealing algorithm
(PSA1) and hybrid parallel simulated annealing (PSA2)
are similar except in generating initial solutions as
described below (Onbasoglu et al., 2001):

3.2.1. Initial solution of parallel simulated annealing
algorithm (PSA1)

The initial solution is randomly generated by allocating a
value to each dimension i, i = 1, ...,N, in interval [Lb, Ub],
where Lb and Ub are the lower and upper bounds for
variable i, respectively.

3.2.2. Initial solution of hybrid parallel simulated
annealing algorithm (PSA2)

First, we solve the problem using mathematical
programming method to find primal inputs of initial
solutions for SA algorithm. Since we cannot solve the
general TSPMT problem, we consider TSPMT with
relaxed conditions situation. In the literature, there are
two possible ways to relax: to allow each vertex to visits
many times and to relax the binary constraints. We
consider the second way to change the model to a linear
one which relaxes the binary constraints. Next, the
relaxed model was solved by LINGO software. Then, we
used the optimum solutions of linear model as a
probability distribution. As the results show, we find good
tours without considering budget constraint. Therefore,
the initial solutions found in this way would not satisfy
the budget constraint.

To make the solutions feasible, a heuristic algorithm has
been developed as follows:
Step 1) Define K⊂N as a subset of vectors which
participate in tour and set K={current solution}. Denote C
as the set of correspondent transportation cost of the
elements in K.
Step 2) Define T⊂K as a subset of vectors which move by
the expensive vehicle type.
Step 3) From the T set select a path randomly. Assume
that vector is moved by a cheaper vehicle type and delete
the relevant vector from T.
Step 4) Consider a cheaper vehicle type for the first
element in T. Then, calculate diminution in usable upon
new fitness function and defined it as discount rate.
Step 5) Calculate the traveling cost of a new vector. If the
whole traveling cost satisfies the budget constraint, stop,
otherwise go to step 3.
The other components of our direct parallel simulated
annealing algorithm (PSA1) and hybrid parallel simulated
annealing algorithm (PSA2) are the same and described as
follows:

3.2.3. Neighborhood generation

The current solution xj are changing to the neighbourhood
solution xj+1in iteration jby selecting a random dimension
i* and calculating the variable values of the neighbour by
the following equations:

If i=i*
௜ݔ
௝ାଵ ௜ݔ	=

௝ + ൫ݕ ௜ܾ ௜ݔ	−
௝൯,				ݕ)݊݃ݏ − 0.5) < 0,										(13)

Or

௜ݔ
௝ାଵ ௜ݔ	=

௝ + ൫ݔ௜
௝ − ݈ܾ௜൯,				ݕ)݊݃ݏ − 0.5) ≥ 0,												(14)

Else

௜ݔ
௝ାଵ ௜ݔ	=

௝ , 	ݕ	݁ݎℎ݁ݓ ∈ ܷ[0,1]																																(15)
Where y is a random variable uniformly distributed
between [0,1]. In this approach, variable i* is randomly
selected and a decision is made conventionally if the
value of the variable in the selected dimension is to be
decreased or increased. Then, a random amount is added
or subtracted from the current variable value without
violating the corresponding upper and lower bound while
the remaining values of the variable remain constant.

3.2.4. Cooling rate

We reduce the temperature using a factor of 0.95. We
found in the preliminary tests that this cooling rate leads
into good solutions by tuning this initial value which is
presented in subsection 4.1.

Parham Azimi et al./ A New Hubrid Parallel Simulated Annealing ...

4

3.2.5. Acceptance of neighbor solution

If the new observing solution is better than the current
solution, the new solution is accepted. Else, a non-
improving move is accepted according to geometric
cooling scheme (Ingber, 1995) used with success
previously in the global optimization context (Özdamar
and Demirhan, 2000):

,∆)ܤܣ (௝ݐ = exp	(−(∆/ݐ௝)	 (16)
Where, AB is the probability of acceptance, Δ is the
difference between f(xj+1) and f(xj), and tj is the
temperature in iteration j.
If a randomly generated number between zero and one be
less than AB, the deteriorating move is implemented. Tj is
depending on the number of times that deteriorated
solution has been accepted. It is decreased as follows:

௝ାଵݐ 	← 		 ௝ݐ 	× 0.999 (17)

3.2.6. Initial temperature

A suitable initial temperature is the one that results in an
average increase of acceptance probability near to one.
The value of initial temperature will clearly depend on the
scaling of fitness and, hence, it should be problem-
specific. Therefore, we first generate a large set of
random solutions, then a standard division of them are
calculated and is used to determine the initial temperature
in the way that the acceptances probability of primary
generations reach to 0.999.Consequently, the initial tj is
set to 1000based on some preliminary examinations.

3.2.7. Iteration limit at each temperature level

We define the set of m iterations as a ‘‘round’’. If the rate
of change between mean fitness of two successive
‘‘round’’ of iterations remains constant within a pre-
defined confidence interval, we conclude that the system
has reached thermal equilibrium and reduce the
temperature. Otherwise, we keep perturbing the solutions
by creating neighbouring solutions until reaching
equilibrium.

3.2.8. Solution representation

Each solution of our proposed algorithm is a super-matrix
including two matrixes which the first one shows the
sequence of cities and the second one illustrate the
transporter types. Fig 1shows an example of our solution
representation in which the first matrix is a 1 × ܰmatrix
and second one is a ܰ ×ܰ matrix presented the selected
transporting vehicle types. For instance, the salesman
travels from city 6 to 2by transporter vehicle type 3, from
city 2 to 4 by transporter vehicle type 5, from city 4 to 10
by transporter vehicle type 9, from city 10 to 5 by
transporter vehicle type 5, from city 5 to 7 by transporter
vehicle type 1, from city 3 to 8 by transporter vehicle

type8, from city 8 to 1 by transporter vehicle type 6, and
finally from city 1 to 9 by transporter vehicle type 7.

Fig. 1.An example of solution representation

3.2.9. Movement mechanism

We obtain a neighbour solutions by pairwise exchange
heuristic called 2-opt exchange. It works by changing the
position of two cities in tour at a same time.
The steps of our PSA algorithms (including PSA1, PSA2)
are given in Figure2. These steps are similar to the steps
of the algorithm given by Sahin et al. (2010) except that
we are assuming different parameters and initial solutions
for our PSAs algorithms; also we are incorporating
different transporting vehicles and budget constraint.

Fig. 2.The steps of our PSA algorithms

The steps of PSA algorithms
Step 1: The distance, time, cost matrices and available budget for
traveling are given as input data. The definitions of parameters for
the parallel simulated annealing heuristic are as follows:
Tin= initial temperature, a = cooling rate, m= number of iteration
which exhibit a round, NIET = the number of trials to be performed
at the same temperature value,elmax= maximum iteration number.
Step 2: Determine initial solution using mathematical techniques.
Step 3: Actualize the solution gained in step 2.
Step 4: Set temperature counter el = 1 (el: outer circle counter). Read
initial solution (Sin) from file and calculate the total cost for the initial
solution (Cin)
Step 5: Set Sbest (best solution) = Sc (current solution) = Sin, and also
set Cbest(best cost) = Cc(current cost) = Cin ,Cr(mean costs of the
solutions in current round), Cr-1 (mean costs of the solution in
previous round). Make the iteration counter 1 at each temperature
level: il = 1.
Step 6: Generate a neighbour solution (Sn) from the current solution
as defined above. Then calculate the total cost of the neighbour
solution (Cn).
Step 7: Check the cost of neighbour solution and. If the budget
constraints are not satisfied, actualize it as defined above, then go to
the next step.
 Step 8: Calculate the change in objective function value:D = Cn- Cc.
Step 9: If (D< 0) go to Step 11; otherwise go to the next step.
Step 10: Generate a uniform random number (x) between [0, 1]. If
x< (݁ି஽	/்) go to the next step; otherwise go to step 13.
Step 11: Set to Sc = Sn and Cc = Cn.
Step 12: If Cc<Cbest, set Sbest = Sc and Cbest = Cc.
Step 13:If (il<m), set il = il + 1, and go Step 6 otherwise go to the
next step.
Step 14:Calculate“Cr”,if Cr-Cr-1dropsinto the confidence interval
goto the next step otherwise set Cr-1 =Cr and go to Step 6.
Step 15: Set el = el + 1, Tel + 1 = aTel and il = 1. (Tel:
temperature atthe elst iterations)
Step 16: If (el 6 elmax) go to Step 4; otherwise go to the next step.
Step 17: Stop algorithm and report the results.

Journal of Optimization in Industrial Engineering 15 (2014) 1-13

5

To be able to compare the proposed algorithms fairly, all
test problems with both algorithms were solved by the
stopping criterion Tmin=0.001, as defined previously.

4. Computational Results

All computational experiments were executed on an
ASUS laptop with Pentium V PC, 2.4 GHz processors,
Core i5, and 4 GByte of RAM. Also MATLAB software
(Version 7.10.0.499, R2010a) was used to code the PSA,
and the Minitab 16 software was used to tune the
parameters. The LP’s was solved by usingLINGO11.0
software. The proposed PSA algorithms (including PSA1,
PSA2) are applied to ten test problems with 50, 100, 500
and 2000nodes. We assume 10 different transporter types
and three types of total budget in hand. The allocation of
total budget is carried out in this way: first, the average
cost of traveling by each vehicle is calculated. Then,
budget type 1 is found so that the salesman can travel
35% of path by the lowest-cost vehicles, 50% of path by
the normal-cost vehicles, and 15% of path by the highest-
cost vehicles. Budget type 2is found which salesman
could travel 30% of path by the lowest-cost vehicles, 45%
of path by the normal-cost vehicles, and 25% of path by
the highest-cost vehicles. These percentages are 25%,
40%, and 35% for budget type 3. The distances between
each city are integer number uniformly distributed from
[0,1000]. The travel times are depended on the distances
between each city and transporter types, and are
calculated so that the higher-cost vehicles have the lower
travel times, and reversely. The transporter costs are
dependent on the transporter types and are computed so
that the lower time consuming vehicles are more
expensive, and reversely.

4.1. Parameter stuning

The initial parameters of our proposed PSA algorithms
(including PSA1, PSA2) are the population size (Npop) and
the temperature decreasing rate (α). We used the Taguchi
method of design of experiments (DOE) (Montgomery,
2005).In the Taguchi method, the results are transferred
into a measure called signal to noise (S/N) ratio. The
formulation of this ratio is difference for each
objective(maximization or minimization). Eq (21)
represent the (S/N) ratio for minimization objectives.

ܵൗܰ = −10 log(1ൗ݊ ෍ݕ௜ଶ
௡

௜ୀଵ

)																																												(18)

Which, n and yi indicate number of replication and
process response value at i’th replication.
The initial parameters including Npop and α examined in
three different levels and repeats for nine times, and we
choose the orthogonal array L9. After testing the different
initial parameter levels and analysis of the gained results,
the better initial parameter levels are determined. These

values are depicted in Table 1. Also, the averaged S/N
ratio for each factor level is shown in Fig 3.
According to the Fig 3, the best level of the population
size (Npop) is 200, and the best level of the temperature
decreasing rate (α) is 0.95.

Table 1
The initial parameter levels

Parameters Factor levels
1 2 3

Npop 100 200 300
α 0.9 0.95 0.97

Fig. 3. Factor level trend of PSA algorithm

4.2. Analysis of results and comparisons

The computational results which are based on objective
function and CPU time for TSPMT with 50, 100, 500 and
2000nodesand three assumed budget types for 10
different test problems are shown in Tables 2-5.
We used “Gap” as a percentage of deviation from the best
quality solution of algorithm as below:

݌ܽܩ =
∗௓ܥ − ∗∗௓ܥ

∗௓ܥ
∗ 100																																																				(19)

Where ܥ௓∗is the solution obtained by PSA1 for a given
instance, and ܥ௓∗∗is that obtained by PSA2 for the same
instance.
In the columns 7 and 8 of Tables 2-5, Gap 1 means the
percentage of deviation from the best quality solution of
PSA1 and the value of the best quality solution obtained
with PSA2. Gap 2 shows the percentage of deviation from
the best quality CPU time of PSA1 and the value of the
best quality CPU time obtained with PSA2. The optimal
solutions of LINGO for small-sized problems with n=50
are depictedin column 9 of Table 1. In addition, we utilize
the relative percentage deviation (RPD) to analyse the
performance of our PSA2 algorithm as following formula:

௜ܦܴܲ =
(݅)௠݈݃ܣ −݉݅݊௠(݅)

݉݅݊௠(݅)
∗ 100							݅ = 1,… , ݊௦ 			(20)

Where, Algmis objective function’s value for a given
algorithm, minmis the best value of the objective function
between both algorithms and ns is number of small-sized
or large-sized problems. Also, the results of each problem
sizes by proposed PSA algorithms (including PSA1,
PSA2)for all three budget types are shown in Figures 4-7.

Parham Azimi et al./ A New Hubrid Parallel Simulated Annealing ...

6

Table 2
Detailed results of heuristic algorithms for problem sizen=50
Test problems Budget type PSA1 PSA2 Gap 1 (%) Gap 2 (%) LINGO

Solution CPU time(s) Solution CPU time(s)
1 1

2
3

4738.294
4452.871
4054.841

26.28
26.14
26.16

4675.304
4301.258
3976.152

25.57
26.04
26.75

1.33
3.40
1.94

2.70
0.38
-2.21

4636.212
4247.832
3921.901

2 1
2
3

4752.743
4482.347
4157.849

26.19
26.08
26.00

4481.725
4286.142
4099.541

25.59
26.13
25.52

5.70
4.38
1.40

2.29
-0.19
1.88

4437.732
4240.441
3927.934

3 1
2
3

5015.574
4528.284
4219.879

26.21
26.02
26.07

4645.639
4168.806
4065.321

26.54
25.79
25.68

7.38
7.94
3.66

-1.24
0.88
1.50

4602.579
4004.501
4019.021

4 1
2
3

4862.574
4305.874
4157.594

26.11
26.28
26.44

4784.174
4237.382
4036.817

26.05
26.42
25.33

1.61
1.59
2.90

0.23
-0.53
4.20

4722.530
4176.267
3978.834

5 1
2
3

4824.748
4352.574
4235.741

26.03
25.97
26.09

4544.507
4288.054
4121.093

25.73
25.14
26.42

5.81
1.48
2.71

1.15
3.20
-1.25

4505.763
4225.604
4066.452

6 1
2
3

4700.547
4528.872
4158.247

26.07
26.06
26.09

4679.620
4479.255
4012.004

25.93
25.85
26.21

0.45
1.10
3.52

0.54
0.81
-0.46

4592.201
4423.505
3956.625

7 1
2
3

4998.174
4952.784
4784.541

25.96
26.13
26.51

4669.445
4565.092
4333.351

25.45
25.65
25.07

6.58
7.83
9.43

1.96
1.84
5.43

4583.022
4507.490
4288.534

8 1
2
3

4862.429
4457.189
4325.281

26.18
26.02
26.13

4655.727
4228.762
4126.737

26.16
25.55
26.11

4.25
5.12
4.59

0.08
1.81
0.08

4607.804
4169.522
4064.540

9 1
2
3

4862.478
4497.682
4008.254

26.16
26.36
26.05

4442.481
4393.405
3864.898

26.26
25.45
25.79

8.64
2.32
3.58

-0.38
3.45
0.10

4405.672
4321.307
3824.480

10 1
2
3

4896.438
4532.128
4212.849

26.03
26.22
26.17

4614.662
4295.521
4091.833

25.90
26.14
25.79

5.75
5.22
2.87

0.50
0.30
1.45

4567.957
4254.146
4037.194

Average 1
2
3

4851.400
4509.061
4231.508

26.122
26.128
26.171

4619.328
4324.368
4072.775

25.918
25.816
25.867

4.78
4.10
3.75

0.78
1.19
1.16

4566.147
4257.062
4008.552

Table 3
Detailed results of heuristic algorithms for problem size n=100

Test problems Budget types PSA1 PSA2 Gap 1 (%) Gap 2 (%)
Solution Time(s) Solution Time(s)

1 1
2
3

8854.254
8120.542
7994.769

90.33
89.26
91.11

8542.704
8032.409
7285.002

88.25
87.06
89.34

3.52
1.09
8.88

2.30
2.46
1.94

2 1
2
3

9234.984
7999.175
7587.863

89.60
89.22
91.21

8300.946
7553.128
6978.414

90.32
88.45
90.51

10.11
5.58
8.03

-0.80
0.86
0.77

3 1
2
3

9672.263
8969.821
7854.222

89.28
90.05
91.87

9115.156
8147.821
7743.594

88.05
87.78
89.69

5.76
9.16
1.41

1.38
2.52
2.37

4 1
2
3

8984.730
8463.818
7951.004

89.42
90.99
91.43

8319.401
8198.627
7950.165

89.05
88.40
87.32

7.40
3.13
0.01

0.41
2.85
4.50

5 1
2
3

9348.261
8360.679
7508.705

89.52
91.73
90.84

8503.745
8038.297
7213.896

87.92
90.34
88.37

9.03
3.86
3.93

1.79
1.52
2.72

6 1
2
3

8552.777
7441.408
7267.651

89.44
91.58
95.85

7700.083
7280.998
7192.328

89.04
88.63
89.51

9.97
2.16
1.04

0.45
3.22
6.61

7 1
2
3

8472.267
7818.410
7394.579

89.70
92.09
96.24

7809.362
7564.429
7047.321

89.73
90.34
89.67

7.82
3.25
4.70

-0.26
1.90
6.83

8 1
2
3

8564.057
7815.675
7481.610

89.55
91.22
97.86

8196.377
6990.574
6839.151

89.79
89.46
90.31

4.29
10.56
8.59

-0.27
1.93
7.71

9 1
2
3

9021.420
8456.124
7913.856

89.76
91.53
95.23

8125.251
7585.321
7243.681

89.56
89.19
90.37

9.93
10.30
8.47

0.22
2.56
5.10

10 1
2
3

8240.684
8005.743
7607.217

89.70
91.44
94.99

8004.254
7784.265
6952.251

90.34
91.22
91.80

2.87
2.77
8.61

-0.71
0.24
3.36

Average 1
2
3

8894.570
8145.140
7656.148

89.630
90.911
93.663

8261.728
7717.587
7244.580

89.205
89.087
89.689

7.11
5.25
5.38

0.47
2.01
4.24

Journal of Optimization in Industrial Engineering 15 (2014) 1-13

7

Table 4
Detailed results of heuristic algorithms for problem size n=500

Table 5
Detailed results of heuristic algorithms for problem sizen=2000

Test
problems

Budget types PSA1 PSA2 Gap 1 (%) Gap 2 (%)
Solution Time(s) Solution Time(s)

1 1
2
3

409254.254
391002.916
368525.254

1012.34
1013.63
1008.49

386457.287
361577.403
349463.622

981.47
980.67
984.36

5.57
7.53
5.17

3.05
3.25
2.39

2 1
2
3

375424.254
354302.265
345698.254

1018.85
1015.71
1022.04

363842.924
332851.600
327596.928

984.59
980.74
987.07

3.08
6.05
5.24

3.36
3.44
3.42

3 1
2
3

412324.254
389989.166
363254.254

1020.07
1016.87
1010.05

385143.538
361546.647
339546.647

985.85
983.38
991.27

6.59
7.29
6.53

3.35
3.29
1.86

4 1
2
3

375258.574
359472.477
339245.254

1009.11
1014.74
1020.58

359527.816
340321.422
324627.999

989.33
983.64
985.16

4.19
5.33
4.31

1.96
3.06
3.47

5 1
2
3

391251.221
377094.136
347258.265

1010.47
1016.67
1022.85

378245.284
352285.432
328862.401

988.38
991.62
984.43

3.32
6.58
5.30

2.19
2.46
3.76

6 1
2
3

368784.448
359640.674
348825.368

1009.82
1025.53
1013.21

354596.892
349527.826
330498.095

988.39
985.70
991.96

3.85
4.18
5.25

2.12
3.88
2.10

7 1
2
3

364173.846
353224.093
349872.849

1008.58
1011.65
1018.63

350507.977
335887.321
322141.029

989.47
985.31
992.44

3.75
4.91
5.07

1.89
2.60
2.57

8 1
2
3

381283.942
364130.176
349571.927

1009.31
1017.52
1022.83

368573.514
341028.742
329434.337

981.07
984.65
990.06

3.33
6.34
5.76

2.80
3.23
3.20

9 1
2
3

399541.973
375159.266
354581.854

1012.81
1018.27
1020.34

382498.551
356358.254
332883.913

983.31
985.75
990.38

4.27
5.01
6.12

2.91
3.19
2.94

10 1
2
3

370058.489
358541.592
341573.534

1009.80
1021.98
1014.33

349854.286
334570.325
329899.496

981.76
992.27
985.29

5.46
5.21
3.42

2.78
2.91
2.86

Average 1
2
3

384735.5
368255.7
350840.7

1012.116
1017.257
1017.335

367924.8
346595.5
331495.4

985.362
985.373
988.242

4.37
5.88
5.51

2.64
3.13
2.86

Test problems Budget types PSA1 PSA2 Gap 1 (%) Gap 2 (%)
Solution Time(s) Solution Time(s)

1 1
2
3

58996.639
57330.802
55821.389

418.05
413.76
414.52

56956.555
55383.779
52382.183

401.56
408.38
403.53

3.46
3.40
6.16

3.94
1.30
2.65

2 1
2
3

58013.351
56957.230
54538.999

415.34
413.40
417.16

56228.680
55184.962
51693.657

398.30
405.77
401.76

3.08
3.11
5.22

4.10
1.85
3.69

3 1
2
3

59754.061
56150.643
52125.111

413.52
419.50
414.71

57438.586
55346.940
51190.466

402.94
410.25
408.83

3.88
1.43
1.79

2.56
2.21
1.42

4 1
2
3

62574.293
61574.352
57514.529

418.70
411.69
416.73

58529.637
56964.267
54844.911

409.05
401.52
407.69

6.46
7.49
4.64

2.30
2.47
2.17

5 1
2
3

61824.617
60579.253
58642.867

419.60
413.70
415.67

59785.636
58257.889
55552.123

401.16
399.24
404.31

3.30
3.83
5.27

4.39
3.50
2.73

6 1
2
3

65984.279
63583.418
60745.513

420.60
414.70
411.88

61278.957
60513.453
57915.796

408.84
407.36
399.83

7.13
4.83
4.66

2.80
1.67
2.93

7 1
2
3

61826.739
59543.848
56857.219

418.31
423.09
420.97

58537.871
55340.669
54506.916

410.45
407.78
401.73

5.32
7.06
4.13

1.88
3.70
4.57

8 1
2
3

66531.349
57720.603
54321.201

421.22
415.13
419.23

59432.375
56746.706
51257.414

407.37
403.31
405.40

10.67
1.69
5.64

3.29
2.85
3.30

9 1
2
3

62184.365
56279.415
53841.569

422.34
418.11
415.42

58009.065
53283.216
50957.414

407.74
406.07
409.39

6.71
5.32
5.36

3.46
2.88
1.45

10 1
2
3

68318.946
66843.509
64851.397

420.95
419.15
423.27

64669.425
63843.890
62557.414

408.83
403.16
409.77

5.34
4.49
3.54

2.88
3.81
3.19

Average 1
2
3

62600.86
59656.31
56925.98

418.863
416.223
416.956

59086.68
57086.58
54285.83

405.624
405.284
405.224

5.61
4.31
4.64

3.16
2.63
2.81

Parham Azimi et al./ A New Hubrid Parallel Simulated Annealing ...

8

Fig. 4.Objective function of 30 test problems for n=50

Fig. 5.Objective function of 30 test problems for n=100

Fig. 6.Objective function of 30 test problems for n=500

Journal of Optimization in Industrial Engineering 15 (2014) 1-13

9

Fig. 7.Objective function of 30 test problems for n=2000

Table 2 shows the results for small-sized problems.
According to the computational results of PSA
algorithms(including PSA1, PSA2), in Table 2 with n=50,
PSA2has achieved better quality in solutions with 4.210%
average deviation of the gap factor in comparison to
PSA1. Table 3 gives the results for medium-sized
problems. In Table 3 with n=100, PSA2 has obtained
better results of solutions with 5.913% average deviation
of gap factor than PSA1. Table 4 and 5 show the results
for large-sized problems. In Table 4 with n=500, PSA2
reaches to better quality solutions with 4.853% of average
gap factor deviation than PSA1, and finally in Table 5
with n=2000, PSA2 has better quality solutions with
5.253% average deviation of gap factor rather than
PSA1.Another important factor regarding the proposed
algorithm is the “CPU time” comparisons. As the results
of average CPU time, in Table 2 with n=50 show, PSA2
has found better times with 1.043% average deviation of
gap factor against PSA1. In Table 3 with n=100, PSA2
has reached to better times with 2.240% average deviation
of gap factor than PSA1. In Table 4 with n=500, PSA2
has achieved better times with 2.867% average deviation
of gap factor than PSA1, and, finally, in Table 5 with
n=2000, PSA2 has obtained better times with 2.876%
average deviation of gap factor against PSA1.
Also, according to the average RPD (ARPD) comparisons
of two proposed algorithms, PSA2 has better quality with
4.964, 7.174, 5.707, 5.982 deviations against PSA1 for
n=50, 100, 500, and 2000, respectively. Also in terms of
CPU time, PSA2 has better solutions quality considering
ARPD with 1.09, 2.383, 3.005, 2.982 deviations against
PSA1 for n=50, 100, 500, and 2000, respectively. Figures
8 and 9 show the ARPD of objective function and CPU
time of proposed PSA algorithms, respectively. It should
be noted that the newly-developed TSPMT model is more
complicated than the traditional versions due to the ability
of selecting different transporting vehicles. Just on each
route, we have a large increase in the number of variables
because of variety in transporting vehicle types.

Therefore, the CPU time of around 1000 seconds for such
a large-sized problem is rational.

Fig. 8.ARPD of objective function of PSA heuristics

Fig. 9.ARPD of CPU time of PSA heuristics

In addition, we use the 95% confidence intervals T-test to
compare the near optimal best solutions of objective
function and CPU time. The results of these comparisons
are depicted in Figures 10 and 11. We can infer from
these statistical tests, because of the p-value (0.000) is
smaller than α (0.05), there is a significant difference
between PSA1 and PSA2 in terms of objective function
and CPU time.

Parham Azimi et al./ A New Hubrid Parallel Simulated Annealing ...

10

Fig. 10.Statistical results of T-test of objective function

Fig. 11.Statistical results of T-test of CPU time

Figures 12 and 13 show the 95% confidence intervals of
RPD for objective functionand CPU time indexes,
respectively.For each problem sizes, we can see that
PSA2 gives better results than PSA1 in terms of both
objective function and CPU time, especially in large-sized
problems.

Fig. 12.The 95% confidence intervals of RPD of objective function

Fig. 13.The 95% confidence intervals of RPD of CPU time

5. Conclusions and suggestions for future research

In this study, a new version of the well-known traveling
salesman problem was developed in which the salesman
has some options to select the best vehicle type in each
city considering a predefined budget. This new version of
TSP which is the main contribution of the research named
TSPMT which is more compatible to the real world
problems than the traditional versions. First, the
mathematical programming model of TSPMT was
presented, and then the PSA2 with a new coding scheme
was built to solve the different size of problems and
compared it with PSA1. So, 50 numerical examples with
three budget types were developed to test the performance
of the proposed algorithm. According to the obtained
results, PSA2 yields better solutions in comparison to
PSA1 in terms of objective function and time
consumption, especially in large-sized problems. For
future researches, developing a new solution methodology
such as a new hybrid algorithm or a new population-based
algorithm in which the initial solutions are obtained in a
heuristic manner can be investigated.The budget
constraint that we used in our test problems restricts the
budget for a whole traveling path. One attempt is to solve
problems with different budget constraints. For example,
separate budget constraints can be applied for each city.
Another aspect deserving future efforts is to consider that
the salesman should travel only by the existing
transporting vehicles that are available in each city with
limited budget.

6. References

[1] Albayrak, M., Allahverdi, N. (2011).Development a new

mutation operator to solve the Traveling Salesman
Problem by aid of Genetic Algorithms, Expert Systems
with Applications, 38, 1313-1320.

[2] Balas,E., Christofids,N. (1981).A restricted lagrangian
approach to the traveling salesman problem, Mathematical
Programming, 21, 19–46.

[3] Bianchi, L. (2006). Ant colony optimization and local
search for the probabilistic traveling salesman problem: a
case study in stochastic combinatorial optimization, Ph.D.
Thesis, University of Libre de Bruxelles, Brussels,
Belgium.

[4] Bonomi, E., Lutton, J. L. (1984).The N-city traveling
salesman problem: statistical mechanics and the
metropolis algorithm, SIAM Review, 26, 551-568.

[5] Bontoux, B., Feillet, D. (2008). Ant colony optimization
for the traveling purchaser problem, Computers and
Operational Research, 35: 628-637.

[6] Bontoux, B., Artigues, C., Feillet, D. (2010).A memetic
algorithm with a large neighbourhood crossover operator
for the generalized traveling salesman problem,
Computers and Operations Research, 37, 1844-1852.

Journal of Optimization in Industrial Engineering 15 (2014) 1-13

11

[7] Branke, J., Guntsch, M. (2004). Solving the probabilistic
TSP with ant colony optimization, Journal of
Mathematical Model, Algorithms 3.

[8] Braun, H. C. (1991).On solving traveling salesman
problem by genetic algorithm, in: H. P Schwefel, R.
Manner (Eds.), Parallel problem solving from nature, in:
Lecture notes in Computer Science, 496, 129-133.

[9] Crowder, H., Padberg, M. W. (1980). Solving large-scale
symmetric traveling salesman problems to optimality.
Management Science, 26, 495-509.

[10] Dantzig, G. B., Fulkerson, D. R., Johnson,S. M. (1954).
Solution of a large-scale traveling salesman. Operations
Research, 2, 393–410.

[11] Ergan,Ö.,Orlin,L. B. (2006).A dynamic programming
methodology in very large scale neighbourhood search
applied to the traveling salesman problem, Discrete
Optimization, 3, 78-85.

[12] Goldberg, D. E., Lingle, R. (1985).Thetraveling salesman
problem. Proceedings of the International Conference on
Genetic Algorithms and their Applications, Carnegie-
Mellon University, 154-159.

[13] Goldberg, D. E. (1989). Genetic algorithms in search,
optimization and machine learning, Addison-Wesley, New
York.

[14] Grötschel, M., Holland,O.(1991).Solution of large-scale
symmetric traveling salesman problems. Mathematical
Programming, 51, 141-202.

[15] Glover, F. (1990). Artificial intelligence, heuristic
frameworks and tabu search. Managerial and Decision
Economics, 11, 365-375.

[16] Grefenstette, J. J., Gopal,R., Rosimaita, B., Van Gucht,
D.(1985). Genetic algorithms for the traveling salesman
problem, in: Proceedings of the International Conference
on Genetic Algorithms and their Applications, 160-168.

[17] Held, M., Karp, R. M. (1971).The traveling salesman
problem and minimum spanning trees. Mathematical
Programming, 1, 6–25.

[18] Hopfeild, J. J., Tank, D. W. (1985).Neural computation of
decision in optimization problems.Biological cybernetic,
52-60.

[19] Ingber, L.(1995). Adaptive simulated annealing (ASA):
Lessons Learned. To appear in control and cybernetics,
(Polish Journal).

[20] Jog, P., Suh, J. Y., Van Gucht, D. (1989).The effect of
population size, heuristic crossover and local improvement
on a genetic algorithm for the traveling salesman problem,
in: Proceeding of the Third International Conference on
Genetic Algorithms and their Applications, 110-115.

[21] Jun-man, K., Yi, Z. (2012). Application of an improved
ant colony optimization on generalized traveling salesman
problem, Energy Procedia, 17, 319-325.

[22] Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.(1983).
Optimization by simulated annealing. Science, 220, 671-
680.

[23] Kirkpatrick, S., Toulouse, G. (1985). Configuration space
analysis of traveling salesman problem. Journal of
Physique, 46, 1277-1292.

[24] Knox, J. (1989).The application of tabu search to the
symmetric traveling problem. Ph.D Dissertation,
University of Colorado.

[25] Kuroda, M., Yamamori,K., Munetomo, M., Yasunaga, M.,
Yoshihara, I. (2010).Development of a novel crossover of
hybrid genetic algorithms for large-scale traveling
salesman problems. Artificial Life Robotics, Springer, 15,
547-550.

[26] Lam, J. (1988).An efficient simulated annealing schedule.
Ph.D Dissertation, Department of computer and science,
Yale University.

[27] Lawler, E. L., Lenstra,J. K., RinnooyKan, A. H. G.,
Shmoys, D. B.(1985). The traveling salesman problem. A
guided tour of combinatorial optimization Wiely and Sons,
New York.

[28] Lin, S., Kernighan, B. W. (1973).An effective heuristic
algorithm for the traveling salesman problem. Operations
Research 21, 498-516.

[29] Liu, Y-H. (2008). Diversified local search strategy under
scatter search framework for the probabilistic traveling
salesman problem, European Journal of Operational
Research, 191, 332-346.

[30] Marinakis, Y., Marinaki, M. (2010) A hybrid multi-swarm
particle optimization algorithm for the probabilistic
traveling salesman problem, Computers and Operations
Research, 37, 432-442.

[31] Martin, O., Otto, S. W., Felten, E. W.(1991) Large scale
markov chains for the traveling salesman problem,
Complex system 2, 299-326.

[32] Majumdar, J., Bhunia, A. K. (2011).Genetic algorithm for
asymmetric traveling salesman problem withimprecise
travel times, Journal of Computational and Applied
Mathematics, 235, 3063-3078.

[33] Mavrovouniotis, M., Yang, S. (2013).Ant colony
optimization with immigrants schemes for the dynamic
travelling salesman problem with traffic factors, Applied
Soft Computing, 13, 4023-4037.

[34] Miller, C. E., Tucker, A. W., Zemlin, R. A. (1960).Integer
programming formulation of traveling salesman
problems.Journal of ACM, 7, 326–9.

[35] Montgomery, D. C. (2005). Design and analysis of
experiments. Arizona, John Wiley and Sons.

[36] Nagata, Y., Soler, D. (2012).A new genetic algorithm for
the asymmetric traveling salesman problem, Expert
Systems with Applications, 39, 8947-8953.

[37] Onbasoglu, E., Özdamar, L. (2001). Parallel simulated
annealing in global optimization. Journal of Global
Optimization, 19, 27-50.

[38] Özdamar, L., Demirhan, M. (2000). Experiments with new
stochastic global optimization search techniques.
Computer and OR27: 841-865.

[39] Padberg, M., Rinaldi, G. (1980).Optimization of a 532 city
symmetric traveling salesman problem by branch and cut.
Operations Research, 6, 1-7.

[40] Pedro, O., Saldanha, R., Camargo, R. (2013).A tabu
search approach for the prize collecting traveling salesman
problem, Electronic Notes in Discrete Mathematics, 41,
261-268.

[41] Rego, C., Gamboa, D., Glover, F., Osterman, C. (2011).
Traveling salesman problem heuristics: Leading methods,
implementations and latest advance. European Journal of
Operation Research, 211, 427–441.

[42] Sahin, R., Ertoĝral, K., Türkbey, O. (2010). A simulated
annealing heuristic for the dynamic layout problem with
budget constraint. Computers and Industrial engineering,
59, 308-313.

[43] Whitley, D., Starkweather,T.(1989). Scheduling problems
and traveling salesman: the genetic edge recombination
operator, in: Proceedings of the Third International
Conference on Genetic Algorithms and their Applications,
133-140.

[44] Xing L. N., Chen, Y. W., Yang, K. W., How, F., Shen, X.
S., Cai, H. P.(2008). A hybrid approach combining an

Parham Azimi et al./ A New Hubrid Parallel Simulated Annealing ...

12

improved genetic algorithm and optimization strategies for
the asymmetric traveling salesman problem. Engineering
Applications of Artificial Intelligence, 21, 1370-1380.

[45] Zhang, J., Feng, X., Zhou, B., Ren, D. (2012).An overall-
regional competitive self-organizing map neural network
for the Euclidean traveling salesman problem,
Neurocomputing, 89, 1-11.

Journal of Optimization in Industrial Engineering 15 (2014) 1-13

13

