
A New Fuzzy Stabilizer Based on Online Learning Algorithm for 
Damping of Low-Frequency Oscillations  

Ali Ghasemia,*, Mohammad Javad Golkarb, Mohammad Eslamic 

  a Instructor , Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran 
b MSc, Department of Control, Imam Mohammad Bagher University, Sari, Iran 

C MSc, Department of Electrical and Computer, College of Engineering, Khash branch, Islamic Azad University, Khash, Iran 
Received 11 March, 2014; Revised 20 August, 2014; Accepted 14 October, 2014 

Abstract 

A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize 
the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. 
The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the 
proposed multi objective optimization process. A multilayer adaptive network is employed to design the fuzzy logic controller with self-
learning capability that does not require another controller to tune the fuzzy inference rules and membership functions. In the proposed 
online learning algorithm, two artificial neural networks are employed which this system makes the FLL stabilizer adaptive to changes in 
the operating conditions. Therefore, variation in the power system response, under a wide range of operating conditions, is less compared to 
the system response with a fixed-parameter conventional controller. The effectiveness of the proposed stabilizer has been employed by 
simulation studies. The effectiveness of the proposed stabilizer is demonstrated on Two-Area Four-Machine (TAFM) power system under 
different loading conditions. 
Keywords: Online learning algorithm, Multi objective optimization, Multi machine, Small signal stability, HBMO, Fuzzy stabilizer. 

1. Introduction 

Power System Stabilizer (PSS) as accompanying 
controllers are used to damp the electromechanical 
oscillations of the generators in the power systems. The 
Conventional PSS (CPSS) based on a transfer function 
and a linear form of the plant for a particular operating 
point has been widely used (Gonzalez et al., 2008). On the 
other hand, naturally power systems are known as a 
dynamic and highly nonlinear structure. Therefore, CPSS 
performance may deteriorate under variations that result 
from nonlinear and time-variant characteristics of the 
controlled plant (Ghasemi et al., 2013). In other words, to 
reduce the small signal instabilities caused by the 
Automatic Voltage Regulator (AVR) and other factors, 
the PSS was introduced to stabilize the system and 
increase the system’s security. On the other hand, the use 
of PSS is the most widespread strategy used today. Power 
system stability may be broadly defined as that property 
of a power system that enables it to remain in a state of 
operating equilibrium under normal operating conditions 
and to regain an acceptable state of equilibrium after 
being subjected to a disturbance (Shayeghi et al., 2012). 
In the recent research, several techniques of tuning PSS  

 
 
 
 
have been developed and many optimization techniques 
such as Gradual Self-Tuning Hybrid Differential 
Evolution (GSTHDE) (Wang, 2013), Fuzzy Gravitational 
Search Algorithm, improved Time Variant Particle 
Swarm Optimization (TV-PSO) (Shayeghi et al., 2011), 
Improved Honey Bee Mating Optimization (Shayeghi et 
al., 2011), PSO-IIW (Ghasemi et al., 2012) etc. have been 
used to find the optimum set of parameters to effectively 
tune the PSS. However, Classical PSS (CPSS) cannot 
have optimal performance for many different operating 
conditions (Mishra et al., 2012). Thus, a lot of intelligent 
algorithms have been introduced for optimal parameter-
tuning of the CPSSs (Shayeghi et al., 2014; Mostafa et al. 
2012; Abd-Elazim et al., 2013).  
To expand a high-performance PSS for a wide range of 
working conditions, fuzzy logic controller (FLC) and 
Neural Nets (NNs) techniques have been introduced in 
(Baek et al., 2008; Park et al., 2005). A controller using a 
high level of concept without requiring a mathematical 
model of the system to be controlled can be designed 
using FLC. This controller applies a feasible option to 
arrest the qualitative and approximate aspects of human 
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reasoning and decision-making process to control a power 
system. Also, Artificial NNs (ANNs) have the ability of 
learning and adaptation. This attribute is required when 
the complexity of a problem or the uncertainty thereof 
prevents a priori specification of a satisfactory solution. 
Furthermore, to tackle the drawback of CPSSs in 
capturing the nonlinearities in power systems, Fuzzy 
Logic Controller (FLC) is proposed in the literature 
(Noshyar et al., 2013; Shayanfar et al., 2011). Shabib 
(2012) explains the design and tracking performance of a 
fuzzy PID stabilizer. It is expanded by first relating 
discrete-time based on PID scheme, and then increasingly 
deriving the stages needed to integrate a FLC scheme into 
the PID-type stabilizer. In (Dounis et al., 2013) a new 
fuzzy-PID stabilizer is presented via incorporating an 
optimal fuzzy reasoning into a PID stabilizer. 
Nevertheless, dealing with a complex nonlinear system, 
the adaptation and self-tuning of PID stabilizers is still a 
difficult task. Moreover, when a large fault happens, the 
power system operating points may vary considerably in a 
nonlinear way, affecting the power system performance. 
To overcome these issues, a new stabilizer needs to be 
designed which is capable of capturing the nonlinearities 
occurring in the power system.  

To use the advantages of FLC into CPSS stabilizer, 
this paper presents a Fuzzy-Lead-Lag (FLL) stabilizer to 
damp low-frequency oscillations in a multi-machine 
power system. In the introduced control pattern, an FLC is 
designed to adaptively adjust the parameters of Fuzzy-
Lead-Lag (FLL) controllers at each control time step. The 
advantage of the FLL stabilizer is confirmed via 
comparison with other controllers in recent scientific 
researches. 

Also, the perviously-reviewed heuristic algorithms 
have many disadvantages associated with them such as 
insecure convergence, the piecewise quadratic cost 
approximation and may even fail to converge due to 
inappropriate initial conditions when the system has a 
highly epistatic objective function (i.e. where parameters 
being optimized are highly correlated), and the number of 
variables to be optimized is large. HBMO is a relatively 
new heuristic algorithm that has been empirically shown 
to perform well on many of these optimization problems 
(Ghasemi, 2013; Javidan et al., 2012). Unfortunately, the 
standard HBMO algorithm often converges to local 
optima, especially while the problem has high local 
optima and constraints. In fact, standard HBMO greatly 
depends on its parameters adjustments, and it often 
converges to the local optima so as to be premature 
convergence. Therefore, some modification has been 
required for the standard HBMO algorithm to improve its 
performance. Thus, in this paper, some investigations are 
presented which indicate that the performance of the 
HBMO algorithm would be improved efficiently. 
Therefore, the flow of the proposed controller to damp 

electromechanical oscillations can be defined with this 
structure. The control structure consists of an adaptive 
FLL stabilizer to track the dynamic characteristics of the 
plant, and a multi objective online learning HBMO 
algorithm employed for tuning of controller’s parameters 
to damp the oscillations of the power system. 

The rest of the paper is organized as follows; Section 2 
provides mathematical formulation of the non-linear multi 
machine and FLL structure. Section 3 introduces the 
original HBMO and proposed algorithms. To demonstrate 
the advantages of the proposed algorithm in the design 
robust FLL problem, the proposed algorithm is applied to 
4-machine 2-Area standard power system; results and 
comparison with reported results are brought in section 4. 
Finally, the paper is concluded in Section 5. 

2. Dynamic Modeling 

2.1. Generator Modeling 
The nonlinear dynamics of the synchronous generator 

can be expressed as a set of five first-order linear 
differential equations given by Eqs. (1)–(5) (Ghasemi et 
al., 2013). 

( 1)b                                                                     (1) 
( ( 1))m eP P D M                                            (2) 

( ( ) )q fd d d d q doE E x x i E T                                     (3) 

( ( ) )fd A ref fd AE K v v u E T                                   (4) 
( )e q q q d d qT E i x x i i                                                (5) 

where, id and iq are d-q components of armature 
current, Efd, E'

d and E'
q the voltage proportional to field 

voltage, the damper winding flux and field flux, 
respectively. T'

d0, T'
q0, and u are d-axis and q-axis 

transient time constants, and the regulator of the 
excitation system, respectively. In this study, the 4-
generator 11-bus New England/New York interconnected 
system with, as shown in Fig 1, is used for simulation.   

 
Fig. 1. One-line diagram of the test system 

 
In this test system, each area contains of two 

generators with 900 MVA and 20 kV. Each of the units is 
connected through transformers to the 230 kV 
transmission line. There is a power transfer of 400MW 
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from area 1 to area 2. The detailed bus data, line data, and 
the dynamic characteristics for all machines, exciters and 
loads are pointed out in (Shayeghi et al., 2012). 

2.2. Power System Stabilizer (CPSS) 
The PSS usually uses shaft speed, active power output 

or bus frequency as input. The PSS mainly consists of two 
lead-lag filters as shown in Fig. 2. 

 

 
Fig. 2. Structure of PSS 

 
The PSS parameters to be optimized in this paper are 

the time constants T1,..., T4 and gain KPSS. In this paper, Tw 
= 10 s is chosen for all controllers. This choice ensures 
that the phase-lead and gain contributed by the washout 
block, for the range of oscillation frequencies normally 
encountered, is negligible (Ghasemi et al., 2013). 

2.3. Fuzzy-Lead-Lag (FLL) Stabilizer 
The main aim for wide area control in power system is 

selection of control inputs. According to the best of the 
authors’ knowledge of the pervious works, they used 
linearized time-invariant system form around a given 
operating condition to select stabilizing signals for PSSs, 
but we considered nonlinear system model with sample 
input signal, speed divisions (Lu et al, 2013). This paper 
applies FLL stabilizer to offer suitable control signals to 
the PSS, as shown in Fig. 3.  

 

 
Fig. 3. FLL control configuration. 

This FLL stabilizer is described by the following 
transfer functions: 
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                       (6) 

where, uoutput is the output signal control. KFLL denote 
the gain of input signal. Typical ranges of the optimized 
parameters are [0.01-20] for KFLL and [0.01-3] for T1,…, 
T4. Also, Tw = 5 s is chosen for all controllers. This choice 
ensures that the phase-lead and gain contributed by the 

washout block, for the range of oscillation frequencies 
normally encountered, is negligible. 

3. The Proposed Algorithm 

3.1. Standard HBMO 
In this section, the standard (single-objective) HBMO 

is briefly reviewed. Interested readers are referred to 
(Shayeghi et al., 2012 for more details. The mating flight 
between queen and best drone can be described using an 
annealing function as: 

( ) ( )( , ) f S tprob Q D e                                                 (7) 
where Prob (Q, D) is the probability of adding the 

sperm of drone D to the spermatheca of queen Q 
(successful mating), ∆(f) the absolute difference between 
the fitness of D (i.e. f (D)) and the fitness of Q (i.e. f (Q)) 
and S(t) the speed of the queen at time t. After each 
mating in space, the queen’s speed S(t) and energy E(t) 
decay using the following equations: 
     S t 1   S t , 0,1                                        (8) 

     t 1  E t , 0,1γE                                         (9) 

The main steps of the HBMO algorithm are given 
below: 

Step 1: Initial: this step consists of some sub-routines 
namely; set parameters for HBMO algorithm, generate 
random population according to optimization problem and 
select best answer to the queen. The algorithm starts with 
the mating–flight, where a queen (best solution) selects 
drones stochastically to form the spermatheca (list of 
drones). A drone is then randomly selected from this list 
for the creation of broods. 

Step 2: Mating flight: The algorithm starts with the 
mating flight by Eq. (7). The necessary conditions for the 
end of mating are when the spermatheca (the queen’s 
spermatheca size representing the maximum number of 
mating per queen) is full, or when the energy and speed of 
the queen (or their thresholds) is (nearly) zero. 

Step 3: Generation of Children (global search): In this 
step children are born based on the Eq (10). This step 
transfers the genes of drones and the queen to the jth 
individual based on: 

( )Brood Drone Queen Drone                             (10) 

where, β is the decreasing factor (  0,1  ). 
Step 4: Adaptation of Broods: The population of 

broods is improved by applying the mutation operators as 
follows: 

( ) , [0,1], 0 1k k k
i i iBrood Brood Brood               (11) 

Step 5: Checking the termination criteria: If the 
termination criteria are satisfied, then stop the algorithm, 
otherwise when new queen from next iteration is better 
than the previous queen, replace them and go to stage 2. 

maxu
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Otherwise select the current queen and go to stage 2. 

3.2. Improved HBMO base Local search and mating 
factor 

In the standard HBMO, a suitable set of the queen's 
speed reduction coefficient provides a balance between 
global and local exploration and exploitation, and the 
results in less iteration on average to find a properly 
optimal solution. Hence, a new parameter adjustment 
system for the HBMO concept called improved HBMO 
with time varying vital parameter i.e.: queen's speed 
reduction coefficient is developed in this paper. The 
motivation for using this technique is improving the 
global search in the early stage of the optimization stages 
and cheering the particles to converge toward the global 
optima at the end of it. In the IHBMO algorithm the speed 
reduction factor (α) is updated for calculation of queen’s 
speed in Eq. (7) at each generation as follows: 

( ) ( ( )) /t Cap cap t Cap                                       (12) 
where, Cap is the spermatheca size; cap(t) is the total 

number of drones selected for mating during the first t 
transitions. Also, HMO method has gained much attention 
and widespread applications in different optimization 
fields. However, it often converges to local optima. In 
order to overcome this shortcoming, we combined HBMO 
with chaotic local search (CLS). Therefore, we propose a 
novel chaos theory, which is given by: 

1 1

1 1

g g
2 (1 + ) os(2 ),0.5 1

g g
g

0.1 (1 cos((1 + ))),0 0.5
g

k k
j jbest best

i ik k
best bestj

i k
j jbest

i ik
best

c c c
c

c c


 

 


   

 
    

             (13) 

where, gk
best is the best optimal value for kit iteration 

and 1g gk k
best best
  represents the fine tuning necessary to 

achieve the desired sequence of gyrations. The chaotic 
local search on the HBMO algorithm can be summarized 
as follows: 

Step 1: Generate an initial chaos population randomly 
for CLS. 

0 1 2
,0 ,0 ,0 1

1 2
0 0 0 0

,0 ,min
0

,max ,min

[ , ,..., ]

[ , ,..., ]

, 1, 2,...,

g

Ng
cls cls cls cls N

Ng

j
cls jj

j j

X X X X

cx cx cx cx
X P

cx j Ng
P P






 



                           (14) 

where, the chaos variable can be generating as follows: 
1 2

, , , 1

, 1 ,max ,min ,min

[ , ,..., ] , 1,2,...,

( ) , 1,2,...,
g

i Ng
cls cls i cls i cls i N chaos

j j
cls i i j j j g

X X X X i N

x cx P P P j N




 

    
      (15) 

Step 2: Determine the chaotic variables 
1 2

1

0

[ , ,..., ], 0,1,2,...,
1, 2,...,

(0)

Ng
i i i i choas

j
i

j

cx cx cx cx i N
cx base CLS j Ng

cx rand


 

 



               (16) 

where, Nchaos is the number of individuals for CLS. 
Cxi

Ng is the ith chaotic variable. Rand() generate a random 

number between 0 and 1.  
Step 3: Mapping the decision variables 
Step 4: Convert the chaotic variables to the decision 

variables 
Step 5: Evaluate the new solution with decision 

variables. 

3.3. Learning Method 
The main part for all algorithms is diversity so that 

drawback of some of them is due to the lack of diversity 
which may not be able to efficiently exploit and explore 
the search space. In other words, standard HBMO greatly 
depends on its parameters adjustments, and it often suffers 
from the difficulty of being trapped in the local optima so 
as to be premature convergence. To develop the overall 
effectiveness and performance of the HBMO algorithm, a 
learning mechanism for brood mutation (escape from 
local optima) is proposed to tune the grow factors. The 
control procedure can be employed in local or global 
diversity performance. Thus, we can consider four aspects 
in controlled diversity, namely, (i) global, (ii) local, (iii) 
global random and (iv) local random. The proposed 
algorithm for optimization problem can be summarized 
as: 

Step 1: Calculate the objective functions based on the 
current drones.   

Step 2: The proposed networks are trained following 
the generation point by using the drones in the previous 
and current drones and their cost objective functions 
values. Firstly, εHBMO and δHBMO estimated with first 
training network and the second network is trained for 
βHBMO estimation. For this learning mechanism, drones in 
the colony are used as the input data and the output data is 
their cost function values. The proposed mutation based 
on Eq (17) is employed to the best drone and sequential 
neural network colony including Ts drones is created. 

,
11( ) ( )[1 ( ) ]
02

1, 2,..., 1, 2,..., 1,2,...

e
i j j

if t n fr
D t D t rand

if t n fr

i q j d n


  

      
  

  (17) 

where, µ denotes a user-defined amplitude coefficient, 
fr shows the performance frequency, the base vector De is 
the global best called best drone of the colony, and q is 
the maximum number of new drones locally produced.   

Their objective functions values (ObjNN) are estimated 
by using neural nets (NNObj(Ts)). The drones are sorted 
based on Non-Dominated Sort (NDS) (Shayeghi et al., 
2012 in rising order depending on the objective functions 
values. The best d drones of Threshold (Ts) are randomly 
located into the new drone to be used as candidates at the 
next step of the method as follows: 
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( )

[ ] ( )
( ) ( ( )), [1 ]
1,2,...,

NN
Obj s

NN NN

k s

Obj NN T

Obj order NDS Obj
D t T order i k rand s
i d




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

                    (18) 

3.4. Fuzzy decision  
For practical applications, it is important to select one 

solution, which will satisfy the different goals to some 
extent. Fuzzy set theory has been implemented to derive 
efficiently a candidate Pareto optimal solution for the 
decision makers [19]. Upon having the Pareto optimal set, 
the proposed approach presents a fuzzy-based mechanism 
to extract a Pareto optimal solution as the best 
compromise solution. Usually, a membership function for 
each of the objective functions is defined by the 
experiences and intuitive knowledge of the decision 
maker. In this work, a simple linear membership function 
was considered for each of the objective functions. The 
membership function is defined as: 

max

max min
i i

i
i i

f f
f f







                               (19) 

0 0
0 1

1 1

i

i i i

i

FDM


 



  
 

                  (20) 

where,  fimin and fimax are the maximum and minimum 
values of the ith objective function, respectively. For each 
non-dominated solution k, the normalized membership 
function FDMk is calculated as: 

obj

obj

N

1
N

1 1

k
i

k i
M

j
i

j i

FDM
FDM

FDM



 

 
 
 
 
 
 




                   (21) 

where M is the number of non-dominated solutions, 
and Nobj is the number of objective functions.  

4. Optimal Tuning of Proposed Control Strategy 

The proposed fuzzy stabilizer design is formulated as a 
multi objective problem to optimize a conflict set of 
objective functions comprising the damping factor, and 
the damping ratio of the lightly damped electromechanical 
modes, and the effectiveness of the suggested technique is 
confirmed through eigenvalue analysis and nonlinear 
simulation results. Two additional objective functions that 
allowed some eigenvalues to be shifted to the left-hand 
side of the vertical line in the complex plane or to a 
wedge-shape sector in the complex plane were further 
investigated in (Ghasemi et al., 2012). The objective 
functions for optimization defined by, 

4 4
2 2 2 2 2

1 34 341 1
1 2 20

0.01 ( ) max( )
simtNP

j j
i j j

J t dt OS OS    
  

      
 (22) 

2 , ,,
1 1

max[Re( ) min{ | Im( ) | }]
p gN N

i j i ji j
j i

J    
 

     

     (23) 
where, NP, Ng, tsim, λ and ζ are number of operating 

condition, number of generators, the time of simulation¸ 
the ith eigenvalue of the system at an operating point and 
the desired minimum damping, respectively. α and β are 
0.56 and 0.085, respectively. The optimal proposed 
controller tuning parameters problem can be formulated 
as the following constrained optimization problem, where 
the constraints of the FLL stabilizer can be expressed as: 

1 2

min max

maxmin

 [ , ] 
 :

ii i

Minimize J J
Subject to

K K K
T T T

 
 

                                                     (24) 

Also, in the proposed optimization process based on 
Eqs (22) and (23), each agent is shaped to exhibit the 
Membership Functions (MFs) of the fuzzy logic 
controller’s inputs and outputs. For this tuning of MFs, 
multi scheme with n input is considered which is denoted 
by m1, m2,.., mn. For this tuning some assumptions are 
considered that can be scheduled as follow: 

i) All MFs are defined as guassin partitions with seven 
segments from -1 to 1. Zero is the center membership 
function which is centered at zero. 

ii) Scaling factors of input/output are optimized using 
the proposed algorithm. 

The above assumptions are shown in Fig. 4. 

 
Fig. 4. (a) Symmetrical membership functions, and (b) String 

architecture for tuning membership functions and scaling factors 
 

W1     W2    W3   W4    

NB     NM  NS     ZO   PS     PM   PB 

NB:  Negative Big                   NM:  Negative Medium  
NS :  Negative Small               PS  :  positive Small 
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P1        P2    P3        0    (a) 

1 11 19 11 112 11 12 13
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1 9 1 12 1 2 3
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 


 

n    :  Population size                      SFij: Scaling factor   
Pij    :  Center of the MFs                 *    :  Operator code 
Wij :  Width of the MFs        

(b) 

Journal of Optimization in Industrial Engineering 17 (2015) 1-10

5



The combination between optimization FLC is as 
follow: 

i) The variables are the standard deviation and mean 
value of each fuzzy MFs. 

ii) These variables act as solutions and search for the 
global best fitness. 

iii) It starts with an initial set of variables. 
iv) After the variables had been tuned by the proposed 

algorithm, these variables will be used to check the 

performance of the FLC. 
v) This process is repeated until the goal is achieved. 
Figure 5 shows the flowchart of the multi objective 

online learning HBMO algorithm for optimization. Also, 
in order to acquire better performance, number of queens, 
drones, broods, workers, the queen’s spermatheca size are 
chosen as number of dimension, 40, 25, 15 and 35, 
respectively. 

 

 
Fig. 5. Flowchart of the proposed algorithm 

 
Table 1 
 Operating conditions (TAFM) 
Conditions 

NO 
G1 G2 G3 G4 

P Q P Q P Q P Q 
1 0.7778 0.1021 0.7777 0.1308 0.7879 0.0913 0.7778 0.0918 
2 1.084 0.3310 0.7778 0.4492 0.7879 0.1561 0.7778 0.2501 
3 0.7778 0.0502 0.2333 0.0371 0.7989 0.0794 0.7778 0.0704 
4 0.7778 0.1021 0.7777 0.1308 0.7989 0.0903 0.7778 0.0981 

Other Characteristics 
5 20% increase load 
6 20% decrease load 
7 2 line tripe: 7-8, 8,9 

 
The performance of power systems equipped with FLL 

stabilizer is validated for four-machine two-area study 
system as given in Fig. 1. Different operating conditions 
are analyzed for the TAFM power system, as given in 
Table 1. Figure 6 shows MFs shape of FLL controller 

tuned by the proposed algorithm. Figure 7 shows the 
minimum fitness functions evaluating process. The 
optimum FLL parameters are given in Table 2 for TAFM 
power system. Table 2 shows optimum value for FLL 
controller. 

No 
Yes 

Yes 

No 

The procedures of 
CLS  

START 

Set Algorithm Parameters and Data of test 
system 

Generate the initial population based on state 
variable and chaos initialization 

Determine new positions for colony 

J1 J2 

Calculate nectar amounts Based on the 
objective function values 

Yes 

Determine new positions based 
on generation Equation 

All Drones 
Distributed? 

Is the new 
best solution 

better than the 
previous one? 

Keep the previous 
best solution 

Substitute the new best solution 
with the previous solution 

Memorize the position of best 
Queen 

Is termination 
Criteria 

satisfied? 

End 

No 

Select best answer by fuzzy decision 
and done NDS sorting for all data 

Ali Ghasemi et al./ A New Fuzzy Stabilizer Based on Online Learning...

6



 
Fig. 6. Optimized output MFs for proposed algorithm based FLL controller 

 

 
 

Fig. 7. Pareto-optimal fronts with proposed algorithm 
 

Table 2 
Optimal parameters for TAFM test system 

Gen Parameters 
 KFLL       T1         T2         T3       T4 

G2 19.63    12.72    0.122    0.291  0.627 
G3 19.62    8.534    0.287    0.732  0.194 

 
To demonstrate performance robustness of the 

proposed algorithm, two performance indices: the ITAE 
and FD based on the system performance characteristics 
are defined as: 

1 0

.(| |).
simG tN

i
i

ITAE t dt
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                                            (25) 

2 2 2
,

1

((600 ) (8000 ) 0.01 )
GN

i i s i
i

G

OS US T

FD
N



    
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

    (26) 

 
where, overshoot (OS), undershoot (US) and settling 

time (Ts) of rotor angle deviation of machine is considered 
for evaluation of the FD index. Note that the lower value 
of these indexes shows that the system responds better in 
terms of time domain characteristics. 

5. Simulation and Discussion  

For arrangement of the introduced design scheme, 
nonlinear time domain structures of the considered power 

system were performed using Matlab® and Simulink® 
software. To assess the robustness and effectiveness of the 
proposed controller, simulation studies are carried out for 
various fault disturbances and fault clearing sequences for 
two scenarios through the nonlinear time simulation and 
some performance indices using the following stabilizer 
designing techniques: 

1. Classical PSS stabilizer (Shayeghi et al., 2012). 
2. PSS stabilizer tuned by Strength Pareto algorithm 

tuned (Yassami et al., 2010). 
3. Proposed Strategy. 

5.1.  Scenario I 
In this scenario, the performance of the proposed 

stabilizer under transient conditions is verified by 
applying a 6-cycle three-phase fault at bus 7 at the end of 
line 7#8. The fault is cleared by permanent tripping of the 
faulted line. Figure 8 shows oscillations response for G1, 
G2, G3 and G4 in the introduced fault, under normal 
operating condition. Assessment of these figures reveals 
that by using the proposed algorithm the speed deviations 
of all machines are greatly reduced, have small overshoot, 
undershoot and settling time.  

 

5.2. Scenario II 
In this scenario, the performance of the proposed 

controller tuning under transient conditions is verified by 
applying a 6-cycle three-phase fault at bus 7 at the end of 
line 7#8 without line tripping and the original system is 
restored upon the clearance of the fault. Also, A 20% 
pulse disturbance in the reference voltage of G1 for 100 
ms has been applied. Also, as a large signal disturbance, 
both the 20% pulse disturbance in the reference voltage of 
G1 for 100 ms and single phase earth fault on Area 2 bus 
bar has been applied for 6 cycles. The system response is 
shown in Fig. 9 for different cases. It can be seen that the 
proposed technique has good performance in damping of 
the low frequency oscillations and stabilizes the system 
quickly.  
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Fig. 8. TAFM system response under nominal condition in scenario I 

 
Fig. 9. TAFM system response for scenario II 

5.3. Eigenvalues analyze 
To reveal the performance of the proposed design 

control for small signal stability, consider Scenario II as a 
large signal disturbance. The dominant eigenvalues are 
shown in Fig. 10. A slant black line area and a slant blue 
line area in this figure shows that the eigenvalues in these 
areas have a peculiar oscillation between 2.5 and 4.4 
(rad/s) (inter-area mode oscillations) and 4.4 and 12.5 
(rad/s) (local mode oscillations) respectively. The result 
of the eigenvalues analysis represented that the proposed 
method has two inter-area modes and four local modes. 
When these modes are stabilized, the power system 
stability is improved. In other words, the results of the 
proposed controller shows that, the minimum damping 
ratio and the maximum damping factor, under all cases 
are better than other methods. Also, the mentioned figure 
not only depicts that the proposed strategy can shift the 
unstable or lightly damped oscillation modes but also can 
shift other oscillation modes more to the left in the s-
plane. 

 

 
Fig. 10. System dominant eigenvalues for Scenario II in TAFM test 

system 
Also, to have a better comparison between these 

stabilizers, defined some different operating conditions as 
shown in Table 3. The electromechanical modes without 
PSSs for the four cases are tabulated in Table III. It can be 
seen that these modes are poorly damped, and some of 
them are unstable (can find with bold format in Table III). 
The electromechanical modes with the proposed stabilizer 
are given in Table III, too. It can be found that the 
electromechanical modes of the base case with the 
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proposed PSSs have been shifted to the left-hand side of 
s-plane. It is obvious that the system damping greatly 
improved. 

 
Table 3 
Eigenvalues Without and with The Proposed FLL stabilizer 

M
et

ho
d 

Proposed Controller CPSS Without Controller 

Tr
ip

 L
in

e 

-3.424 ±  2.901i  1.758 ±  4.995i -1.877 ±  2.640i 
-2.416 ±  1.840i -2.241 ±  2.552i -1.456 ±  1.686i 
-3.256 ±  1.140i -2.547 ±  2.269i  2.878 ±  1.239i 
-2.609 ±  1.881i -1.054 ±  1.911i  2.832 ±  1.209i 
-2.626 ±  1.063i -0.813 ±  1.253i -0.397 ±  1.091i 
-0.695 ±  1.103i   0.055  ±  1.119i -0.815 ±  1.098i 
-0.401 ±  1.029i -0.184 ±  1.172i -0.772 ±  1.127i 

+2
0%

 L
oa

d -3.393 ±  3.066i -2.126 ±  3.154i -2.173 ±  37.19i 
-3.490 ±  2.874i -2.948 ±  0.973i -2.871 ±  0.960i 
-2.493 ±  2.867i  0.011 ±  0.163i  0.010 ±  0.159i 

 0.013 ±  0.156i -0.003 ±  0.050i -0.007 ±  0.010i 

-2
0%

 L
oa

d 

-2.467 ±  2.897i -0.398 ±  5.382i -2.993 ±  2.172i 
-2.733 ±  1.379i -2.250 ±  2.820i -2.021 ±  1.025i 
-1.334 ±  1.319i -1.834 ±  2.848i -1.004 ±  1.174i 
-1.793 ±  1.022i -1.233 ±  1.311i -2.886 ±  1.578i 
-0.537 ±  1.134i -0.448 ±  1.575i  0.916  ±  1.592i 
-0.939 ±  1.113i -0.719 ±  1.236i -0.759 ±  1.088i 
-0.478 ±  1.014i -0.030 ±  1.109i -0.591 ±  1.033i 

B
as

e 
C

as
e 

-2.424 ±  2.901i -1.758 ±  4.995i -1.877 ±  2.649i 
-2.416 ±  1.801i -2.241 ±  2.552i -1.452 ±  1.689i 
-1.256 ±  1.140i -0.547 ±  2.269i -2.872 ±  1.239i 
-3.609 ±  1.881i -3.054 ±  1.911i  2.833 ±  1.202i 
-2.626 ±  1.063i -0.813 ±  1.253i  0.397 ±  1.092i 
-0.695 ±  1.103i -0.055 ±  1.119i  0.815 ±  1.098i 
-0.401 ±  1.029i -0.184 ±  1.172i -0.772 ±  1.127i 

5.4. Robustness and performance index 
Numerical results of performance robustness for all 

methods based on operating condition of Table 3 are 
shown in Fig 11. It is worth mentioning that the lower the 
value of these indexes is, the better the system answer in 
terms of time domain characteristics. Therefore, it is clear 
that the values of these power system performances with 
the proposed controller are smaller compared to those of 
classical CPSS stabilizer and ref (Yassami et al., 2010). 
This shows that the OS, US, settling time and speed 
deviations of all generators are greatly reduced by 
applying the proposed algorithm based designed 
controllers.  

To improve the performance of the FLL stabilizer 
under fault conditions, some larger disturbances have 
been applied to the power systems. We considered 9-cycle 
three phase ground fault at bus 1 cleared without 
equipment. Variations of active power of a selected line 
of a generator located close to the fault position are 
plotted against time as shown in Fig. 12. This figure 
presents large signal stability of the test systems. Also it 
seems that, in online learning algorithm HBMO based 
proposed theory has a better performance in most of the 
cases. However, more tests are required to show the 
differences of the Pareto fronts’ members clearly in future 

work. 
 

 
Fig. 11. Values of performance index 

 

 
Fig. 12. Transmitting power from area 1 to area 2. Solid (Proposed 

Method), Dashed (CPSS) 
The proposed fuzzy logic PSS consists of two 

conventional linear stabilizers and a fuzzy logic-based 
signal synthesizer. These two stabilizers are designed for 
extreme (heavy and light) loading conditions; therefore, 
they generate stabilizing signals working best under those 
extreme conditions. It is intuitive to assume that a proper 
combination of them would work best for the conditions 
between these extreme ones. How far away the current 
condition is from each extreme case determines how 
much the respective stabilizing signal is weighed in the 
output of the synthesizer. The synthesizer combines the 
two individual signals in such a way that the signal fits the 
loading condition optimally. The linear stabilizers could 
be typical second or higher order filters, depending on the 
characteristics of the system. Second-order filters are 
usually adequate, since the signal synthesizer may act as a 
refiner to fine-tune the control signal. The fuzzy logic 
synthesizer accepts one variable indicating the generator 
loading condition, and generates one output. For that 
input variable two linguistic terms are used to represent 
the two extreme cases, and, accordingly, there are two 
membership curves. A mathematical model of the optimal 
fuzzy reasoning has been derived and then compared with 
other reasoning methods. Based on this quantitative 
model, both theoretical analysis and numerical 
simulations have been carried out to study the FLL 
control with different reasoning methods. The integration 
of the proposed optimal fuzzy reasoning method and 
some good control structures seems to have great 
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potential in achieving both local optimal performance and 
global tracking robustness. 

6. Conclusion 

This paper presents a multi objective online learning 
Honey Bee Mating Optimization (HBMO) as a novel 
multi objective approach for optimal design of Fuzzy-
Lead-Lag (FLL) controller of multi-machine power 
system. To overcome the shortage of CPSS in low-
frequency oscillations developed via FLC and 
optimization method, the designed problem is formulated 
as multi objectives optimization problem with two 
conflicted and non-commensurable functions. The 
objectives considered in this paper are the Integral Square 
Time of Square Error (ISTSE) with time-domain and 
Eigenvalues-plane based on comprising the damping 
ratio. The robustness of the proposed model is 
demonstrated on 4-machine two-area power system under 
different loading conditions. The results of the proposed 
model show a robust and excellent performance in 
damping power system low frequency oscillations. 
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