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Abstract 

This paper proposes a modified particle swarm optimization (MPSO) algorithm for discrete sizing optimization of truss structures. The 

original particle swarm optimization (PSO) is a population-based metaheuristic that fluctuates the search agents about the best solution based 

on Eberhart functions. The efficiency of the PSO in solving standard optimization problems of well-known problems of truss structures has 

been demonstrated in The literature. However, its performance in tackling the discrete optimization problems of truss structures is not 

competitive compared with the recent existing metaheuristic algorithms. In the framework of the proposed MPSO a number of worst solutions 

of the current population is replaced by some variants of the global best solution found so far. Moreover, an efficient mutation operator is 

added to the algorithm that reduces the probability of getting stuck in local optima. The efficiency of the proposed MPSO is illustrated through 

two benchmark optimization problems of truss structures.   
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1. Introduction 

Saving in energy and material consumption is an important 

factor in the field of green engineering and usually from an 

economical viewpoint, the structure with minimum weight 

is defined as the best structure. In order to find such 

designs, structural optimization techniques can be 

effectively used. In the last decade, many optimization 

techniques have been developed and successfully applied 

to a wide range of structural optimization problems 

including sizing, layout and topology optimization 

problems (Kaveh & Talatahari, 2009),(Gholizadeh, 2013 ), 

(Zhu et al., 2018) . Metaheuristics are the most general 

kinds of stochastic optimization algorithms and they are 

now recognized as one of the most practical approaches for 

solving a wide range of optimization problems. The main 

idea behind designing these metaheuristic algorithms is to 

solve complex optimization problems where other 

optimization methods have failed to be effective. The 

practical advantage of metaheuristics lies in both their 

effectiveness and general applicability. In recent years, 

metaheuristic algorithms are emerged as the global search 

approaches, which are responsible to tackle the complex 

optimization problems. 

Most of the metaheuristic algorithms are developed based 

on natural phenomena. Every metaheuristic method 

consists of a group of search agents that explore the design 

space based on randomization and some specified rules 

inspired the laws of natural phenomena. For example, 

Genetic Algorithms (GA) (Holland & Reitman, 1997), 

Biogeography-Based Optimization (BBO) (Simon, 2008), 

and Differential Evolution (DE) (Storn & Price , 1997) are 

developed based on the Darwin’s principle of survival of 

the fittest. Gravitational Search Algorithm (GSA) (Rashedi 

et al, 2009), Colliding Bodies Optimization (CBO) (Kaveh 

& Mahdavi , 2014) and Center of Mass Optimization 

(CMO) (Gholizadeh & Ebadijalal, 2018) are Physics-based 

metaheuristic algorithms. Particle Swarm Optimization 

(Eberhart & Kennedy, 1995) (PSO), Ant Colony 

Optimization (Dorigo & Birattari, 2010) (ACO), Bat 

algorithm (Yang, 2010) (BA) and Dolphin Echolocation 

Algorithm (DEA) (Kaveh & Farhoudi, 2016)  are 

recognized as popular Swarm intelligence metaheuristics.  

One of the newly developed metaheuristic algorithms is the 

Sine Cosine Algorithm (SCA), which is proposed by 

Mirjalili (Mirjalili, 2016). The SCA requires that the 

generated solutions fluctuate outwards or towards the best 

solution found so far using sine and cosine functions. It was 

demonstrated in (Mirjalili, 2016) that the SCA is able to 

solve the continuous optimization problems effectively. 

Optimization of truss structures is very popular in the area 

of structural optimization and over the last decades, various 

algorithms have been proposed for solving these problems. 

There is a significant number of metaheuristics employed 

for truss optimization with discrete variables in the 

literature such as: Discrete Heuristic Particle Swarm Ant 

Colony Optimization (DHPSACO) (Kaveh & Talatahari, 

2009b) Improved Dolphin Echolocation Algorithm (IDEA) 

(Gholizadeh, 2016 ), Improved Mine Blast Algorithm 

(IMBA) (Sadollah & Eskandar, 2015), Adaptive Elitist 

Differential Evolution (AEDE) (Gholizadeh & Milany , 

2016), and Improved Fireworks Algorithm (IFWA) (Ho-
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Huu, 2016). In the present study, PSO is focused and a 

modified particle swarm optimization (MPSO) is proposed 

to handle the truss structures optimization with discrete 

design variables. In the MPSO two main strategies are 

followed for the exploration and exploitation of the design 

space. In the first strategy; which is obtained exactly from 

lion behavior in wild life toward its deeply ill new born lion 

cub; some of worst solutions in each iteration are removed 

and the same number of variants of the best solution is 

added to the population. In the second strategy, a mutation 

operator is added to the algorithm. Four benchmark 

optimization problems of truss structures with discrete 

variables are presented and the results of MPSO are 

compared with literature. 

2. Truss Optimization Problem 

For the optimization problem of trusses, objective function 

is the structural weight and some limitations are usually 

considered on nodal displacements and element stress as 

the design constraints. The formulation of truss structures 

optimization problem is as follows: 

 

(1) 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊 = ∑ 𝛾𝑖 

𝑛

𝑖=1

𝐿𝑖  𝑋𝑖 

(2) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 

𝑔𝑗
𝑑 =

𝑑𝑗

𝑑�̅�

− 1 < 0 , 𝑗 = 1,2, . . , 𝑚 

𝑔𝑘
𝑠 =

𝜎𝑘

𝜎𝑘̅̅ ̅
− 1 < 0 , 𝑘 = 1,2, . . , 𝑛 

(3)  
 

𝑋𝑖
𝐿 ≤  𝑋𝑖 ≤ 𝑋𝑖

𝑈 
 

where W is structural weight; γi, li and Xi are the density of 

material, element length and cross-sectional area of ith 

element, respectively; displacement and stress constraints 

are represented by gd and gs , respectively; dj and σk are jth 

node displacement and kth element stress, respectively;   

and   are their allowable values; n and m are numbers of 

elements and nodes, respectively. The following exterior 

penalty function (EPF) is employed to handle the 

constraints of the above-constrained optimization problem. 

 

(4) 

φ = 𝑊 × [1 + 𝑟𝑝 ∑(max{0, 𝑔𝑗
𝑑})

2
𝑚

𝑗=1

+ 𝑟𝑝 ∑(max{0, 𝑔𝑘
𝑠})2

𝑛

𝑘=1

] 

 

Where Φ  is pseudo unconstrained objective function; and 

pr  is a penalty parameter. In this study, pr is linearly 

increased from 1.0 at the first iteration to 106 at the last one 

during the optimization process. 

3. Particle Swarm Optimization Algorithm 

In essence, all population-based metaheuristic algorithms 

explore the design space using a number of search agents, 

which follow a set of updating rules. These updating rules 

play an important role in performance of the metaheuristic 

algorithms. In the particle swarm optimization Algorithm 

(PSO) [10] the following equation is used as the updating 

rule of position of population in the design space: 

 

𝑋𝑖
𝑡 = 𝑋𝑖

𝑡−1 + 𝑉𝑖
𝑡 (5) 

𝑉𝑖
𝑡 = 𝜃 × 𝑉𝑖

𝑡−1 + 𝐶1𝑟1[𝑃𝑖
𝑏𝑒𝑠𝑡 − 𝑋𝑖

𝑡−1] + 𝐶2𝑟2[𝐺𝑖
𝑏𝑒𝑠𝑡

− 𝑋𝑖
𝑡−1] 

(6) 

𝜃 =  𝜃𝑚𝑎𝑥 −
𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛

𝑡𝑚𝑎𝑥

 × 𝑡 (7) 

Where Xi
t and Xi

t−1 are the ith design variable at iterations t 

and t-1, respectively. Pi
best is the best solution in the  ith 

iteration; Gi
best is the best solution encountered in all the 

previous iterations ; C1 and C2 which are individual and 

social learning rates, respectively, usually are assumed to 

be 2 . r1 and r2 are uniformly distributed random numbers 

in the range 0 and 1; tmax is the maximum number of 

iterations. θ which balances between global and local 

exploration is obtained  The values of  θmax = 0.9 and 

θmin = 0.4 are used in this study. 

It was demonstrated that the original PSO performs 

properly in solving standard optimization problems of 

well-known optimization problems. The computational 

experience of the present study however reveals that its 

efficiency as metaheuristic algorithm can be improved for 

discrete sizing optimization of truss structures.  

4. Modified Particle Swarm Optimization Algorithm 

In order to improve the performance of the PSO in dealing 

with the discrete sizing optimization problems of truss 

structures two computational strategies are implemented 

and the improved metaheuristic is named as modified 

particle swarm optimization algorithm (MPSO). The 

proposed strategies, termed here as Regeneration and 

Mutation, are described below. 

Regeneration: in each iteration of the optimization 

process, the population, including np particles, is sorted in 

an ascending order based on the objective function values 

of particles as represented below:  
 

𝑠𝑜𝑟𝑡 (𝑋𝑡) =  [ 𝑋1
𝑡  … 𝑋𝑘

𝑡 … 𝑋𝑛𝑝−1
𝑡 … 𝑋𝑛𝑝

𝑡  ] (8) 
 

Where sort (Xt) is the sorted current population; and t

kX  to 

t

npX are the worst solutions at iteration t that should be 

regenerated. Then, a number of λ×np worst particles (i.e. 
t

kX  to t

npX ) are removed from the population and instead, 

the best solution found so far,
 

T

21 ] ...  ...  [ *

n

*

j

*** XXXXX 

, is copied λ×np times in the population. In these solutions, 

except the last one, one randomly selected design variable 

is regenerated in the design space on a random basis as 

follows: 

    𝑋𝑙
𝑘  → [𝑋1

∗ , 𝑋2
∗ , … , 𝑋𝑗 

∗ , 𝑋𝑛
∗]       𝑇              ,   𝑙 =

𝑘 , … , 𝑛𝑝 − 1   
 

(9) 
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𝑋𝑗
∗ = 𝑟𝑜𝑢𝑛𝑑 (𝑋𝑗

𝐿 + 𝑟 × (𝑋𝑗
𝑈 −  𝑋𝑗

𝐿))    , 𝑗 ∈

[ 1,2, … , 𝑛]  
 

(10) 

Where L

jX and U

jX are lower and upper bounds of the jth 

design variable; and r is a random number in [0,1]. 

The regenerated design variables of particles t

kX  to t

npX 1
 

are substituted in the last particle ( t

npX ). This strategy will 

increase the probability of finding the promising regions of 

the design space. 

Mutation: in the framework of MPSO, a mutation 

operation is implemented to reduce the probability of 

trapping into local optima. In this way, a mutation rate of 

mr is considered and for each particle (Xi , i=1,2,…,np) a 

random number in [0 ,1] is selected in each iteration. If for 

the ith particle, the selected random number is less than mr, 

Xi will be regenerated in the design space as follows: 

 

(11) 𝑋𝑖
𝑡+1 = 𝑟𝑜𝑢𝑛𝑑 [𝑋𝑖

𝑡 + (
𝑡

𝑡𝑀𝑎𝑥 
) × 𝑅 × (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑟
𝑡 )] 

 

Where in iteration t, Rt is a vector of random numbers in [0, 

1]; 𝑋𝑏𝑒𝑠𝑡 
𝑡 is the best particle of the current population; and 

𝑋𝑟
𝑡  is a randomly selected particle from the current 

population. 

In the framework of MPSO, a simple mechanism is 

employed to return into the feasible region the agents that 

violate side constraints. During the optimization process, if 

a design variable violates the side constraints, it will be 

replaced by the lower/upper bound as follows: 

 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝐿     𝑖𝑓 𝑋𝑖,𝑗

𝑡+1 <  𝑋𝑖,𝑗
𝐿

 
𝑋𝑖,𝑗

𝑈   𝑖𝑓 𝑋𝑖,𝑗
𝑡+1 >  𝑋𝑖,𝑗

𝑈
 (12) 

  

Where L

jiX ,
and U

jiX ,
 are respectively the lower and upper 

bounds of the jth design variable of the ith solution. 

The best combination of internal parameters λ and mr, is 

determined by performing sensitivity analysis. In this way, 

λ{0.1, 0.2, 0.3} and mr{0.01, 0.05, 0.10} are 

considered and for each combination of these two 

parameters, 20 independent optimization runs are 

conducted. The results of this study demonstrate that the 

best combination is λ=0.2 and mr=0.05. The flowchart of 

MPSO is depicted in Fig. 1.  

 

Fig. 1. Flowchart of MPSO 

5. Numerical results 

In order to illustrate the merit of the proposed MPSO, two 

popular discrete benchmark truss optimization problems 

are presented and the obtained results are compared with 

those of literature. For the presented examples, 10 

independent optimization runs are performed and the best 

Updating the population using Eq. (7) 

Regenerating of worst particles using  

Eqs. (9) and (10) 

Mutating the selected particles using  

Eq. (11) 

 

Updating the best particle found so far (X*) 

Are stopping conditions met? 

Evaluating the fitness values of particles 

Generation of initial population 

Final solution of the algorithm is X*   

Yes  

No  
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weight (Best), average weight (Average) and the standard 

deviation (SD) of optimal weights are reported.  
 

Example 1: 72-bar spatial truss 

The 72-bar spatial truss is shown in Fig. 2. In this example, 

there are 16 groups of elements as follows:  

(1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) 

A19–A22, (6) A23–A30 (7) A31–A34, (8) A35– A36, (9)A37–A40, 

(10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55– A58, (14) 

A59–A66 (15) A67–A70, (16) A71–A72. 

 The modulus of elasticity and material density are 104 ksi 

and 0.1 lb/in3, respectively. During the optimization 

process, the design variables are selected from the data base 

of Table 1. The allowable stress in elements is ±25 ksi and 

the allowable horizontal displacement is ±0.25 in. In 

addition, there are two loading conditions given in Table 2.  

 

Fig. 2. 72-bar truss 

Table 1 

Available cross-sectional areas of the AISC 

 
No. mm2 in2  No. mm2 in2  No. mm2 in2  No. mm2 in2 

1 71.613 0.111  17 1008.385 1.563  33 2477.414 3.84  49 7419.340 11.5 

2 90.968 0.141  18 1045.159 1.62  34 2496.769 3.87  50 8709.660 13.5 

3 126.451 0.196  19 1161.288 1.80  35 2503.221 3.88  51 8967.724 13.9 

4 161.290 0.250  20 1283.868 1.99  36 2696.769 4.18  52 9161.272 14.2 

5 198.064 0.307  21 1374.191 2.13  37 2722.575 4.22  53 9999.980 15.5 

6 252.258 0.391  22 1535.481 2.38  38 2896.768 4.49  54 10322.560 16.0 

7 285.161 0.442  23 1690.319 2.62  39 2961.284 4.59  55 10903.204 16.9 

8 363.225 0.563  24 1696.771 2.63  40 3096.768 4.80  56 12129.008 18.8 

9 388.386 0.602  25 1858.061 2.88  41 3206.445 4.97  57 12838.684 19.9 

10 494.193 0.766  26 1890.319 2.93  42 3303.219 5.12  58 14193.520 22.0 

11 506.451 0.785  27 1993.544 3.09  43 3703.218 5.74  59 14774.164 22.9 

12 641.289 0.994  28 2019.351 3.13  44 4658.055 7.22  60 15806.420 24.5 

13 645.160 1.0  29 2180.641 3.38  45 5141.925 7.97  61 17096.740 26.5 

14 792.256 1.228  30 2238.705 3.47  46 5503.215 8.53  62 18064.480 28.0 

15 816.773 1.266  31 2290.318 3.55  47 5999.988 9.30  63 19354.800 30.0 

16 939.998 1.457  32 2341.931 3.63  48 6999.986 10.85  64 21612.860 33.5 
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Table 2 

 Loading conditions for the 72-bar truss 

Node 
Loading condition 1  (kips) 

 
Loading condition 2  (kips) 

Fx Fy Fz Fx Fy Fz 

17 5.0 5.0 –5.0  0.0 0.0 –5.0 

18 0.0 0.0 0.0  0.0 0.0 –5.0 

19 0.0 0.0 0.0  0.0 0.0 –5.0 

20 0.0 0.0 0.0  0.0 0.0 –5.0 

 

In the optimization process the population size and 

maximum number of iterations are considered to be 50 and 

200, respectively. The results obtained in the present study 

are compared with those of HPSO (Gholizadeh& Milany, 

IMBA (Sadollah et al.2016) and AEDE (Ho-Huu et 

al.,2015) in Table 3. Furthermore, convergence curves of 

PSO and MPSO are compared in Fig. 2.These results reveal 

that, MPSO is competitive in comparison with other 

algorithms of literature. The statistical results of IMBA are 

slightly better than those of MPSO however at very high 

computational effort. In addition, it is demonstrated that the 

performance of MPSO is better than that of PSO. 
 

Table 3 

 Results of optimization for the 72-bar truss 

Design variables HPSO IMBA AEDE 
This Study                  

PSO MPSO 

A1–A4 4.97 1.990 1.990 1.990 1.990 

A5–A12 1.228 0.442 0.563 0.563 0.563 

A13–A16 0.111 0.111 0.111 0.111 0.111 

A17–A18 0.111 0.111 0.111 0.111 0.111 

A19–A22 2.88 1.228 1.228 1.228 1.228 

A23–A30 1.457 0.563 0.442 0.442 0.442 

A31–A34 0.141 0.111 0.111 0.111 0.111 

A35–A36 0.111 0.111 0.111 0.111 0.111 

A37–A40 1.563 0.563 0.563 0.563 0.563 

A41–A48 1.228 0.563 0.563 0.563 0.563 

A49–A52 0.111 0.111 0.111 0.111 0.111 

A53–A54 0.196 0.111 0.111 0.111 0.111 

A55–A58 0.391 0.196 0.196 0.196 0.196 

A59–A66 1.457 0.563 0.563 0.563 0.563 

A67–A70 0.766 0.391 0.391 0.391 0.391 

A71–A72 1.563 0.563 0.563 0.563 0.563 

Best (lb) 933.09 389.33 389.33 389.33 389.33 

Average (lb) N/A 389.82 390.91 406.62 389.75 

SD (lb) N/A 0.84 1.161 12.21 0.928 

Analyses 50000 50000 4160 10000 5000 
 

 
Fig. 2. Convergence histories of PSO and MPSO for 72-bar truss 
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Example 2: 200-bar planar truss 

An 11-level planar truss structure consisting of 200 bars, 

shown in Fig. 3, was optimized in the above-mentioned 

papers. The material density is 0.283 lb/in3 whereas the 

modulus of elasticity is 30,000 psi. The stress limit was 

±10,000 psi. The structure is subjected to the two load 

cases:  

(1) One kip is applied in positive X direction at nodes 

group N1; 

N1 = {1, 6, 15, 20, 29, 34, 43, 48, 57, 62, 71} 

(2) 10 kips is applied in negative Y direction at nodes 

group N2; 

N2 ={1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 

22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 

45, 46, 47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 

68, 70, 71, 72, 73, 74, 75 } 
(3) Cases 1 and 2 are combined together.  

The 200 structural members of this spatial truss are 

categorized into 29 groups described in Table 4. Discrete 

values of cross-sectional areas were selected from the 

following set: 

S={0.100, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.333, 

1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 

4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 

14.290, 17.170, 19.180, 23.680, 28.080, 33.700}in.2 

 
Fig. 4. Convergence histories of PSO and MPSO for 200-bar 

truss  
Table 4 compares the results obtained by the MPSO 

algorithm and other optimization methods. Fig. 4 compares 

the corresponding convergence rates. It reveals that the 

convergence rate of the MPSO is very better than that of 

the original PSO. From table 4 it can be seen that IGA, DE, 

AEDE, PSO and MPSO converge to the different best 

solutions and the MPSO is not competitive with the other 

algorithms. In this example, MSPO is the best algorithm in 

terms of Average and SD and the second best algorithm is 

PSO.  

 
 

  
Fig. 3. 200-bar planar truss 
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Table 4 

Results of optimization for the 200-bar truss 

 
 

6. Concluding Remarks 
 

The present study focuses on a firstly developed PSO 

algorithm and proposes a modified PSO (MPSO). As the 

original version of this metaheuristic seriously suffers from 

the slow convergence rate when dealing with the discrete 

truss optimization problems. The proposed MPSO 

integrates two computational strategies during its search 

process. In the first strategy, named as Regeneration, a kind 

of elitism is utilized by substituting a number of worst 

solutions of the current population with some variants of 

the global best solution. In the second strategy, named as 

Mutation, a mutation operation is performed to increase the 

probability of finding the global optimum or near global 

optima.  

In order to illustrate the efficiency of the MPSO, two well-

known discrete benchmark truss optimization problems, 

including 72 and 200-bar trusses, are presented and the 

results of MPSO are compared with those of HPSO, HHS, 

AEDE, ECBO, IMBA and PSO. The numerical results 

demonstrate that the original PSO is not competitive with 

the mentioned algorithms and consequently some 

modifications are needed. In contrast, in the both cases, the 

proposed MPSO outperforms other algorithms and 

presents an appropriate performance. 
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