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Abstract 
Copula is a favored method used to measure dependency for financial data due to its flexibility. Yet, studies about dependence structure 

between bivariate data especially by using time-varying copula approach is very limited. Hence, this paper will examine the dependency 

between KLCI-FBMHS pair by considering static and time-varying copula. Traditionally, ARCH model is used to measure the volatility. 

However, it failed to capture stylized facts that usually exist in financial data such as the volatility clustering and leverage effect. Thus, the study 

also investigates the effect of different marginal models (GARCH and EGARCH) towards dependence structure and parameter estimations. 

Generally, the findings reveal that KCLI-FBMHS pair have strong dependency. In addition, this study highlight that ARMA(1,0)-GARCH(1,1) 

and ARMA(1,0)-EGARCH(1,1) with student t distribution are well-fitted to both (KLCI and FBMHS) series, the KLCI-FBMHS pair have 

similar dependence structure for both static and dynamic copula models.  

Keywords: Time-Varying Copula, GARCH, EGARCH, KLCI-FBMHS  

1.Introduction 

There are several methods for estimating copula such as 

exact maximum likelihood (EML), inference functions of 

margins (IFM), and canonical maximum likelihood (CML). 

To estimate copula parameters, the IFM and the CML 

approach involving two main steps; identifying the best 

marginal distribution (input model) and estimate the 

dependence parameter. The CML method was introduced by 

Genest, Ghoudi, and Rivest (1995) and is categorized as 

semi-parametric procedure because it uses empirical 

cumulative distribution function to model the margins. By 

using the EML approach, marginals and copula parameters 

can be estimated simultaneously. However, Joe (1997) 

recommend that the IFM is more efficient as compared to 

the EML method due to its flexibility especially when 

dealing with complex marginal distribution. Therefore, this 

paper will use the IFM method to measure the dependency 

between Islamic (FBMHS) and conventional (KLCI) index. 

ARCH model is proposed by Engle (1982) and is used to 

measure the volatility of time series financial data. However, 

ARCH model is unable to deal with volatility clustering. 

Due to that issue, the standard GARCH model is presented 

in 1986. For the following years, the extended GARCH 

model such as Exponential GARCH (EGARCH), Threshold 

GARCH (TGARCH), Integrated GARCH (IGARCH), and 

Glosten, Jagannathan and Runkle GARCH (GJR-GARCH) 

have been introduced since the standard GARCH model is 

unable to capture some stylized facts such as asymmetric 

distributions and effects leverage. Thus, this study will 

employ GARCH and extended GARCH (EGARCH) models 

with normal and non-normal distributions for modelling the 

volatility of univariate data.  

Past researchers usually used the Pearson linear correlation 

for measuring the dependency of bivariate data. However, 

this method is inappropriate for non-normal distribution 

including financial data. This problem has been proven by 

some authors in their articles including Embrechts, McNeil, 

and Straumann (2002), McNeil, Frey, and Embrechts 

(2005), and Rachev, Stein, and Sun (2009). Furthermore, an 

alternative approach which is known as the cointegration 

analysis has some limitation, i.e the method is not robust 

enough (Liew and Wu, 2013). Hence, researchers started to 

use copula models to measure the dependency due to its 

flexibility and its ability to deal with any kind of 

distributions. Therefore, this study will apply static copulas 

and time-varying copulas approach for measuring the co-

movements between KLCI-FBMHS data.   

There are several motivations that trigger this study. Firstly, 

as mentioned by Ning (2010), the inaccurate marginal model 

will lead to incorrect specification of copula model. Hence 

this study will examine the results of dependence structure 

and its parameter estimations by using different marginal 

model. Secondly, Hammoudeh et al. (2014) claims that 

financial disaster and changing of business cycle causes the 
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dynamic dependence to be more appropriate compared to its 

constant version. Therefore, we will investigate either 

Malaysia stock markets will experience the same 

phenomena or not. Thirdly, this study utilized the recent data 

of KLCI and FBMHS index covering the period of 2007 

until 2018. Thus, the current trend of Malaysia indices will 

be discussed as well. Lastly, by choosing KLCI and FBMHS 

as the sample data, the dependency among Islamic and 

conventional indices for Malaysia cases can be examined as 

well. 

The rest of this article is arranged as follows; Section 2 

describes past studies, Section 3 briefly discuss the 

methodology for marginal modelling and dependence 

estimation, findings for this study are reported in Section 4, 

and our conclusions are provided in final part of this paper. 

2. Literature Review 

This article will investigate the specification of the input 

model, also known as the marginal model, which is the 

underlying factor in estimating the parameters of copula. 

According to Ning (2010), the wrong specification of the 

marginal model will lead to the inaccurate estimation of 

copula model. However, there is no consensus of which 

marginal model can provide accurate estimation. Therefore, 

the aim of this study is to investigate how various 

specifications of the marginal models represented by 

GARCH and EGARCH models would affect the copula 

model selection and parameter estimations. Past studies 

commonly used GARCH model to fit the marginal 

distribution such as Shams and K. Haghighi (2013), Razak 

and Ismail (2014), Shams and Zarshenas (2014), Chen and 

Khashanah (2016), and Aminuddin, Razak, and Ismail 

(2018). In addition, Rahman, Omar, and Kassim (2015) 

modelled the volatility of Malaysian bond by using 

TGARCH and EGARCH models. Sukcharoen et al. (2014) 

used the GJR-GARCH model and claim that it is more 

appropriate than the standard GARCH model due to the 

negative skewness characteristics for most of the return 

series. Dajcman (2013) found that the APGARCH (1,1) is 

chosen as the best model for France, U.K., and Italy returns 

series, the GARCH (1,2) for Croatia and Germany stock 

market, and the EGARCH (1,1) for FTSE-MIB pair. This 

prove that different GARCH family will be chosen as the 

best marginal model for different series of data.  

Recently, the copula approach become more popular and is 

widely used especially in financial studies for analyzing 

dependency. Several studies that used copula approach were 

actively carried out by researchers and lead to the creation of 

dynamic copula methods. Aussenegg and Cech (2008), for 

example, has examined the ability of time-varying Gaussan 

and time-varying Student t copula to anticipate the co-

movements between Eurostoxx Index and Dow Jones 

Industrial Index by using daily closing price data. Manner 

and Reznikova (2011) used Monte Carlo approach and 

compared several dynamic copula models. In another study, 

Kara and Kemaloglu (2016) found that the tDCC copula is 

selected for USD-EUR currency data when they used 

dynamic copula approach. Nevertheless, when static copula 

technique is used on the same data, the Gaussan copula is 

selected as the best model. Consequently, this study will be 

focusing on both static and time-varying copula to model the 

dependency between sample data.  

Lately, Islamic investment started to be an alternative 

platform for investors especially during the period of 

financial disaster. According to Hakim and Rashidian 

(2002), the Dow Jones Islamic Market Index (DJIM) started 

to get an attention of Muslims investors worldwide since it is 

being introduced in the United States in 1999. Based on past 

articles (Hammoudeh et al. 2014; Razak, Ismail, and Aridi 

2016), the Islamic index is said to behave similarly with 

their conventional counterpart. However, studies conducted 

by Jawadi, Jawadi, and Louhichi (2014) proved that the 

Islamic portfolio index showed good achievement as 

compared to the conventional portfolio index during the 

period of economic crisis occurrence. In another study, 

Mensi et al. (2016) claimed that the Islamic index is able to 

minimize risk since it can provide better diversifications. 

Hence, this study will use the Islamic (FBMHS) and the 

conventional (KLCI) stock markets for Malaysia indices as a 

case study.  

This article will investigate the impact of different marginal 

models (GARCH and EGARCH) on the parameter 

estimation of both marginal and copula models for KLCI-

FBMHS pair. Instead of static copula model, this study also 

considers time-varying copula approach. There are three 

important things that will be determined throughout this 

study: either GARCH model will outperform EGARCH 

model or vice versa, different input model will result in 

different or similar dependency outcomes, and either 

diversification between Malaysia indices represented by 

KLCI (conventional) and FBMHS (Islamic) is necessary or 

not. 

3. Methodology / Materials 

This paper employs the daily returns data of Malaysia indices 

which is represented by the FTSE Bursa Malaysia Kuala 

Lumpur Composite Index (KLCI) and the FTSE Bursa 

Malaysia Hijrah Syariah Index (FBMHS) covering the period 

of 21 May 2007 until 28 September 2018. The closing price 

data is sourced from Bloomberg terminal and consists of 2796 

observations. The price series of conventional (KLCI) and 

Islamic (FBMHS) stock markets are converted into returns 

series due to the stationary issue by using equation 

1log logt t tR P P  . The financial crisis which marked 

over the study period is the 2008 Global Financial Crisis 

(GFC). 

As proposed by Joe (1997), this study imposed the inference 

function of margins (IFM) approach to measure the 

dependency between KLCI-FBMHS pair which involve 

several steps. Firstly, various marginal models are fitted to 
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each time series and the best marginal model will be chosen. 

Next, the standardized residuals for the best volatility model of 

each GARCH category (ARMA-GARCH and ARMA-

EGARCH) are converted into pseudo observations [0,1]. 

Finally, the static and time-varying copula approaches are 

employed to measure the dependency between bivariate 

financial data.   

3.1.Marginal model 

Financial data have some stylized facts including fat tails, 

volatility clustering, leverage effects, long memory and     

co-movements in volatility. However, this paper will only 

discuss a few stylized facts mentioned above. Frequently, 

financial time series data experience fatter tails due to the 

value of kurtosis which is greater than three. Therefore, we 

consider four type of error distributions in this study namely 

normal distribution, skewed normal distribution, t 

distribution, and skewed t distribution to capture the stylized 

facts of fatter tails. Equations for each error distribution can 

be found in Jiang (2012), Ashour and Abdel-hameed (2010) 

and Hu and Kercheval (2006). 

The marginal model consists of two components which are 

conditional mean and conditional variance. For estimating 

the first component, we use ARMA (p, q) model with 

equation  

 
 

 
p

i

t

q

j

jtjitit YY
1 1

0  .  

The Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) are referred in order to 

choose the appropriate value for lag p and lag q. Meanwhile, 

GARCH (p, q) and EGARCH (p, q) models with different 

type of error distributions are employed while estimating the 

conditional variance part. 

3.1.1.GARCH Model 

Bollerslev (1986) introduces GARCH model to overcome 

the weaknesses of ARCH model which is unable to capture 

the volatility clustering. The model specifications for 

GARCH (p, q) is:  

  
    ∑       

  
    ∑   

 
       

                   b         (1) 

where   
  is the conditional variance at time t,       

  is the 

ARCH components, and       
  is the GARCH 

components. For an accurate model,         and all 

parameters in the variance equation must be positive. Due to 

the failure of Generalized ARCH (GARCH) model to deal 

with negativity, some scholars started to create other 

GARCH family model. 

3.1.2 . EGARCH model 

There are some advantages of EGARCH model as compared 

to GARCH model. Firstly, EGARCH model is able to 

capture the leverage effects which allow different response 

on conditional variance between negative and positive 

shocks. In addition, EGARCH model can tackle non-

negative constraint issue on the coefficient since the 

conditional variance will always be positive. The 

mathematical equation for EGARCH (p, q) model as 

proposed by Nelson (1991) is:  
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The conditional variance parameter is represented by 2

t . It 

is always positive due to the existence of logarithm even if 

any right-hand side parameter is negative.  ,  and   

indicate the constant parameter, persistence in conditional 

volatility and symmetric effect respectively. In addition,   

determine the asymmetric or leverage effect. The model is 

symmetric if 0   whereas 0 and 0 signify 

asymmetric model.  

3.2.Copula model 

In the second stage of IFM approach, the standardized 

residuals of selected GARCH and EGARCH model are 

extracted. Subsequently, the standardized residuals are 

transformed into pseudo observations by using the equation

)]1/Rank (),1/Rank [(),( 2211  iiiiii nOnOvu . Finally, the 

MATLAB software is used to estimate the dependency 

between bivariate data by considering four copula models. 

In contrast to past studies, this paper will employ static and 

time-varying copula approach. Generally, Copula model can 

be written as the following expression (Nelson, 2006): 

)](),([),( 21 yGxGCyxH   (3) 

H represents the bivariate distribution function of copula 

model, while x  and y  illustrate the marginal distributions 

of univariate series. From the above equation we can 

conclude that both copula and marginal models can be 

estimated separately. Thus, this make copula approach as a 

flexible tool for modelling the dependency.  

3.2.1.  Gaussian copula 

The Gaussian copula is categorized under elliptical copula 

families. It has no tail dependence ( 0 LU  ) and the 

distribution is symmetric. It can be defined as the 

mathematical equation below:  
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Parameter   represents the linear correlation for the 
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bivariate data.  and (.)1  illustrate the bivariate 

cumulative density function and the inverse function for 

univariate standard normal distribution respectively.   

According to Patton (2006), the dynamic Gaussian copula 

can be written as: 



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The modified logistic transformation is represented by 

parameter  , where 1)1)(1(   xx ee  . It is 

assumed that equation (6) follows ARMA (1,10) type 

process. The persistence effects are captured by coefficient 

1t .  

3.2.2 Symmetric joe-clayton copula 

Unlike Gaussian copula model, Symmetric Joe-Clayton 

(SJC) copula is used for asymmetric dependence and both 

upper and lower tail dependences. The SJC copula is an 

alteration version of the BB7 copula or Joe-Clayton copula. 

The mathematical expression for BB7 copula is: 
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The SJC Copula is introduced by Patton (2006) and can be 

defined as: 
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where U  and L  respectively represent the upper and 

lower tails. 

The mathematical expression for both tails of SJC Copula 

when it evolves over time can be written as:  
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The coefficient 
~

 represents the logistic transformation and 

can be expressed as   1~

1
 xe  .  

3.2.3.Information criterion 

In order to choose the best marginal and copula model, we 

refer to the estimated parameter and the value of information 

criterion namely Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC). Akaike (1974) 

defined the AIC equation as: 

kLAIC 2)log(2   (12) 

The number of parameters used in the statistical model is 

represent by k, whereas L indicates the likelihood function.  

The Schwarz's Bayesian SBC or well known as the BIC is 

proposed by Schwarz (1978) and can be written as:  

))(log()log(2 nkLBIC   (13) 

where k illustrates number of parameters, whereas n signify 

number of observations. L denotes the maximum likelihood 

function and can be mathematically defined by: 

]/)[ln()(
1

2

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T

i
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where ih  and 
2

i signify the value of conditional variance 

and squared residuals respectively. 

4. Results and Findings 

This section will discuss thoroughly on the empirical 

findings of the study. The sub section of this paper contains 

the descriptive statistic for the series of Islamic (FBMHS) 

and conventional (KLCI), the best marginal distribution for 

univariate data, and the dependence estimated for KLCI-

FBMHS pair.  

4.1. Preliminary analysis 

In order to know the characteristics of sample data, we 

calculate the summary statistics, stationary test, and 

normality test for each series. The summary statistics for 

price series is not stated here but it is available upon request. 

In brief, the result shows that the Augmented Dickey Fuller 

(ADF) test have insignificant value for both closing price 

series. Therefore, the closing prices are converted into 

returns series due to non-stationary issues. Table 1 presents 

the findings of summary statistics for the return series of 

KLCI and FBMHS index.  
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Table 1 

Summary statistics for KLCI and FBMHS series. 

Stock KLCI FBMHS 

Mean -0.00010 -0.00015 

Median -0.00032 -0.00031 

SD 0.00731 0.00785 

CV -7141.824 19.81684 

Minimum value -0.04259 -0.04537 

Maximum value 0.09979 0.11090 

Skewness 1.12324 1.17344 

Kurtosis 18.82007 21.68352 

ADF Test (p-value) 0.01 0.01 

JB Test 29734.00** 41294.00** 

**The values are significant at 1% level 

The negative mean and median for both series signify that 

both Islamic and conventional indices have negative returns. 

Besides, the average value of KLCI index is slightly higher 

than FBMHS index which explain that the conventional 

series is riskier than its Islamic counterparts. By referring to 

the value of coefficient of variation (CV) and standard 

deviation (SD) for FBMHS and KLCI, it can be concluded 

that the Syariah index is slightly more volatile than the 

conventional index. The findings are reinforced by the larger 

difference between the maximum and minimum value for 

FBMHS index as compared to the KLCI index.  

Table 1 also illustrates that the value of Kurtosis for both 

indices is greater than 12. This explained that all series have 

leptokurtic distribution. Thus, the stylized facts of heavier 

tails are proven for our data set. Next, the skewness has a 

value greater than zero which implies that both series are 

positively skewed. The significant value of Jarque-Bera (JB) 

test supports the evidence of non-normality for both 

distributions. Finally, the null hypothesis of ADF test is 

rejected and implies that both series are stationary.   

4.2.Marginal models 

We use time series model since the Malaysia indices are not 

independently and identically distributed (iid). Table 2 

shows the parameter estimates, standard errors (in brackets), 

p-values of diagnostic test for the preferred marginal model, 

and the value of AIC and BIC. The ARMA(1,0)-

GARCH(1,1) model and ARMA(1,0)-EGARCH(1,1) model 

with t  distributions are considered to be well-fitted for both 

series.  

In terms of ARMA model specification, the AR(1) shows a 

good fit for Malaysia indices indicating that the previous 

day's return affects the current return. The lag 1 and lag 0 are 

chosen by referring to ACF and PACF, significant value of 

parameter estimation, and the lowest value of AIC and BIC.   

To measure the volatility of the return series, the hybrid 

ARMA(p,q)-GARCH(P,Q) models are employed. Under 

GARCH model, all parameters are significant at 1 percent 

level except for omega ( ) coefficient and the stationary 

assumption still holds since 
1  is positive and less than one. 

In addition, both series have high persistence volatility since 

the sum of alpha (
1 ) and beta (

1 ) are close to value one.  

EGARCH model is also considered for this study due to the 

inability of GARCH model to capture the asymmetric 

behavior and the leverage effect. The ARMA(1)-

EGARCH(1,1) in Table 2 show that the leverage effects (
1

) are positive for both series, implying that positive past 

events greatly influence the volatility of future stock, 

compared to negative past events. Besides, the significant of  

1  coefficient illustrate the existence of asymmetric effects 

for KLCI and FBMHS returns series.  Findings also shows 

that the parameters estimated for both series are significant.  

Next, diagnostic tests are examined to ensure that the 

specification of marginal models with various error 

distributions are correct. The Ljung-Box Q-statistics with lag 

10, 15, and 20 and the Langrage Multiplier (LM) test 

respectively detects autocorrelation and heteroscedasticity 

problems in the residuals. Insignificant values for both tests 

imply that the selected models are appropriate to capture the 

volatility of returns series. Generally, the findings reveal that 

AR(1)-GARCH(1,1)-student-t and AR(1)-EGARCH(1,1)-

student-t are well-fitted to both indices. However, the lowest 

information criterion explained that the ARMA-EGARCH 

model outperformed the ARMA-GARCH model for KLCI 

and FBMHS series.  
  

Table 2 

Results for selected ARMA-GARCH and ARMA-EGARCH model. 

 
ARMA (1,0) – 

GARCH(1,1) 

ARMA (1,0) – 

EGARCH(1,1) 

Stock KLCI FBMHS KLCI FBMHS 

Parameter estimation 

  -0.000327** 

(0.000105) 

-

0.000299** 

(0.000105) 

-0.000439** 

(0.000101) 

-0.000360** 

(0.000105) 

1  0.106982** 

(0.019333) 

0.102163** 

(0.018587) 

0.114004** 

(0.018543) 

0.108712** 

(0.017554) 

  0.000001 

(0.000001) 

0.000001 

(0.00001) 

-0.115286** 

(0.003262) 

-0.115480** 

(0.001738) 

1  0.112530** 

(0.021084) 

0.102861** 

0.015241 

-0.102112** 

(0.013197) 

-0.078022** 

(0.013698) 

1  0.873323** 

(0.019846) 

0.888216** 

(0.012784) 

0.988465** 

(0.000446) 

0.988432** 

(0.000361) 

1  - 

- 

- 

- 

0.170203** 

(0.001456) 

0.177265** 

(0.005645) 

  6.184515** 

(0.688408) 

4.706431** 

(0.374103) 

6.716744** 

(0.810864) 

5.019226** 

(0.504493) 

Diagnostic tests 

Q (10) 0.6211 0.7651 0.6203 0.8010 

Q (15) 0.8528 0.7922 0.8301 0.7988 

Q (20) 0.7336 0.8957 0.6188 0.8895 

Q2 (10) 0.3757 0.5516 0.1231 0.4671 

Q2 (15) 0.4777 0.6597 0.1969 0.5403 

Q2 (20) 0.4021 0.7054 0.1986 0.5977 

LM test  0.3848 0.7475 0.2595 0.5223 

Information Criterion 

AIC -7.4130 -7.3391 -7.4378 -7.3546 

BIC -7.4002 -7.3263 -7.4229 -7.3397 

**The values are significant at 1% level 
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4.3 Dependence estimations 

The residuals for selected marginal model are extracted and 

converted into pseudo samples. Then, we used pseudo 

sample to estimate the dependency by using static and time-

varying copula approach. The overall dependence of KLCI-

FBMHS returns will be explained by the Gaussian copula. 

Meanwhile, the SJC copula is used to describe the tail 

dependence of the bivariate data.  

4.3.1.Static copula 

Table 3 illustrates the findings for the static copulas namely 

the Gaussian and the SJC copula for different marginal 

models (ARMA-GARCH and ARMA-EGARCH).    
 

 

Table 3 

 Summary results for static copulas 

GARCH type ARMA - GARCH ARMA – EGARCH 

Gaussian Copula  

  0.9029 0.9009 

AIC -4720.4516 -4664.6704 

BIC -4720.4495 -4664.6683 

Symmetric Joe Clayton Copula  
U  0.7612 0.7651 

L  0.7441 0.7366 

AIC -4621.7832 -4562.7403 

BIC -4621.7789 -4562.7361 

The value of estimated parameter for both input model of 

Gaussian copula is close to 1. This indicates that the KLCI 

index has strong correlation with its Islamic counterpart. 

Regardless of whether the ARMA-GARCH or the ARMA-

EGARCH is chosen as the input model, the upper tail 

coefficient of the SJC copula is slightly greater than the 

lower tail coefficient. This scenario describes the co-

movement among extreme gains during booming period. 

The finding is in line with the results of leverage effect from 

the finding of marginal models in previous sub section. The 

information criterion (AIC and BIC) reveal that the Gaussian 

copula is more appropriate to present the time-invariant 

dependency between KLCI-FBMHS pair throughout the 

study period regardless any kind of marginal model used. 

This output is consistent with past article written by 

Aminuddin, Razak, and Ismail (2018). 

4.3.2.Time-varying copula 

Next, we used the time-varying Gaussian copula and the 

time-varying SJC copula to explain the time-varying 

dependency of Islamic-conventional pair. The results of both 

copulas with ARMA-GARCH and ARMA-EGARCH as an 

input model will be discussed in this section.  The 

coefficients  ( U  or L ) and  ( U or L ) are used 

to measure the time distinctions of dependency between 

KLCI and FBMHS index. On the other hand,  ( U  or 
L ) is used to measure the dependence level of bivariate 

data.  

The value of  coefficients for Gaussian copula are 

relatively lower than  coefficients implying that most of 

the sample period are close to white noise. In contrast to the 

Gaussian copula, the SJC copula has larger value of 
compared to its persistence coefficient  for both upper and 

lower tail when the ARMA-EGARCH is selected as the 

marginal model. This finding explained that the dependence 

structure has a slight change for both tails over the study 

period. However, ARMA-GARCH models have zero value 

for parameters of  U , L , U , and L .  

 

Table 4 

 Summary results for time-varying copulas 

GARCH-type ARMA - GARCH ARMA - EGARCH 

Time-varying Gaussian Copula 

  4.178 4.9997 

  0.518 0.4659 

  -1.8133 -2.7038 

AIC -4761.2490 -4697.3242 

BIC -4761.2426 -4697.3178 

Time-varying Symmetric Joe Clayton Copula 
U  1.1594 1.1790 

U  0 -0.0010 

U  0 -4.41e-05 

L  1.0674 1.0316 

L  0 -0.0006 

L  0 0.0033 

AIC -4621.6938 -4562.7418 

BIC -4621.6810 -4562.7291 

 

Table 4 also shows that the value of all parameters U  are 

higher than L . This reveals that the correlation between 

both indices are slightly weaker during the crisis period 

compared to the normal period. Overall, the time-varying 

Gaussian copula model is chosen as the best dependence 

model for the KLCI-FBMHS pair due to the lowest value of 

AIC and BIC. Hence, both marginal models used have 

similar dependence structure, but the value of parameter 

estimations are slightly different.  
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Fig. 1. Graph dependency for KLCI-FBMHS pair using a) ARMA-GARCH models and b) ARMA-EGARCH models 

 

Figure 1 illustrates graphs dependency of time-varying 

copula for Islamic-conventional pair involving parameters 

t  (Gaussian), U (SJC upper tail), and L (SJC lower tail). 

The parameter values
t  range between 0.87 and 0.96 for 

the ARMA-GARCH models. The output for the ARMA-

EGARCH models is slightly different where the parameter 

values range between 0.86 and 0.96. In addition, the 

parameter values for the lower tail are constant at 0.74 for 

both marginal models. The ARMA-EGARCH models also 

experiences a constant value of  U  (0.74) throughout the 

study period. For data sets with ARMA-GARCH as an input 

models, the estimates of upper tail parameters result in a 

range between 0.76 and 0.77.  

Overall, the time-varying Gaussian copula model is chosen 

as the best dependence model for the KLCI and FBMHS 

index due to the lowest value of AIC and BIC. As a 

conclusion, both marginal models (ARMA-GARCH and 

ARMA-EGARCH) have similar dependence structure, but 

the value of parameter estimations are slightly different.  

5.Conclusion 

As a conclusion, the Islamic and conventional stock markets 

have non-normal distributions which are positively skewed, 

fat tails and leptokurtic. This findings is consistent with a 

study by Razak, Ismail, and Aridi (2016) which stated that 

the Islamic and conventional series have identical 

characteristics. In term of marginal model, AR (1) is chosen 

as the best model for conditional mean. Meanwhile, 

GARCH(1,1) and EGARCH(1,1) are selected as the well-

fitted model for conditional variance part. Based on the 

lowest value of information criterion, AR(1)-EGARCH(1,1) 

with t distributions is selected as the best model for KLCI-

FBMHS pair. Generally, the KLCI-FBMHS pair experience 

positive correlation, strong relationship, and the correlation 

are stronger during the stable period compared to the crisis 

period. Therefore, the diversification between KLCI-

FBMHS is advisable during normal time. In term of 

dynamic dependency, the time-varying Gaussian copula is 

chosen as an appropriate model for Malaysia stock markets 

data. The results are consistent regardless of whether 

ARMA-GARCH or ARMA-EGARCH is used as the 

marginal model. Hence, we can conclude that different 

marginal models have similar dependence structure. 

However, the value of parameter estimations is slightly 

different. Thus, inaccurate marginal model will lead to 

inaccurate results for copula model.  

This paper is only limited to one set of bivariate data, two 

GARCH-type models, four types of error distributions and 

four types of copulas. Future study is recommended to use 

more data set, various GARCH-type models with six error 

distributions including Generalized error distributions 

(GED) and skewed GED and other copula families. Instead 

of using daily closing price as a sample data, tick by tick 

data or minutes data of the Malaysia stock markets need to 

be considered as well.  
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