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Abstract  
 

The task at hand involves selecting the most suitable supplier(s), determining the optimal lot size, and allocating the total order quantities 

among the suppliers based on various selection criteria. However, this can become more complex when taking into account quantity discount 

offers and transportation selection decisions in the selection and order allocation process. To address this challenge, this paper proposes 

an integrated approach that combines the Analytic Hierarchy Process (AHP) with a multi-objective mixed integer nonlinear program. The 

approach is designed for a multi-item, capacitated multi-supplier scenario, where the goal is to select suppliers, determine lot sizes, and 

allocate orders while taking into account unit quantity discounts and intermodal freight costs. The proposed approach aims to minimize costs 

and the percentage of rejected items, while maximizing the purchasing value. To solve this problem, an efficient genetic algorithm with 

problem-specific operators is utilized. 
   

Keywords: Multi-criteria supplier selection; Economic Lot-Sizing; Order allocation; AHP; Multi-objective mixed-integer nonlinear 
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1. Introduction 

In today's highly competitive market, companies must 

continually strive to optimize their business processes. One 

key strategic function within a business is purchasing, 

which offers opportunities for cost reduction and product 

quality improvement. Purchasing is more than just 

obtaining quality products at the lowest price; it also 

involves acquiring the right quantity of products from the 

most reliable suppliers, among other objectives  (Monczka, 

Handfield, Giunipero, & Patterson, 2009). In the supplier 

evaluation and selection process, the best supplier(s) are 

selected based on a set of both qualitative and quantitative 

criteria, such as price, quality, delivery reliability, and 

capacity, among others. This process is crucial, as the 

selection of the right supplier can significantly impact cost 

reduction, with raw material and service costs accounting 

for up to 70% of some companies' expenses (Weber et al., 

1991). Selecting the right supplier can also improve overall 

company competitiveness and customer 

satisfaction (Wang & Yang, 2009). 

The supplier selection problem can be broadly classified 

as single sourcing or multiple sourcing, depending on the 

number of suppliers used for procurement. Single sourcing 

is used when all suppliers can fulfill the supplier's 

requirements, while multiple sourcing is used when no 

single supplier can meet the supplier's requirements 

(Ghodsypour & O'Brien, 1998). The multi-sourcing 

strategy gives the buyer the opportunity to obtain the item 

                                                           
 

at a reduced cost and minimize the risk of disruption. 

Furthermore, the multiple sourcing option provides the 

opportunity for the buyer to use the aggregate demand 

measure instead of the individual lead time of suppliers 

(Pan, 1989). Since1 the longer lead time of a supplier can 

be compensated by a shorter lead time, the modeler has 

relative freedom in choosing a supplier with the minimum 

unit cost offer, which might not satisfy the lead time 

constraint on its own but satisfies the requirement on the 

aggregate measure. 

The evaluation of suppliers' performance is a multi-criteria 

decision-making problem that requires the consideration of 

both qualitative and quantitative criteria, making it 

necessary to make trade-offs between various conflicting 

criteria. The problem is complex since it involves the 

consideration of multiple criteria in the decision-making 

process, and even more complex for multiple items under 

the all-unit quantity discount environment. In this article, a 

multi-objective model is proposed that seeks to minimize 

cost, minimize percent reject, and maximize the purchasing 

value to account for the various and conflicting criteria. 

Section 2 presents the relevant literature in supplier 

selection and order allocation, highlighting the various 

approaches and techniques used in the literature. Section 3 

presents the problem description and the multi-objective 

mathematical model, which includes the formulation of 

the objective functions and constraints. Section 4 presents 
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the solution approach, which involves the use of a genetic 

algorithm with problem-specific operators to solve the 

problem. This section also includes a brief discussion of the 

algorithm's efficiency and effectiveness. Section 5 presents 

a numerical example to demonstrate the application of the 

proposed model and solution approach. Finally, section 6 

presents the conclusion and recommendations for future 

work. 

2. Literature Review 

The supplier selection problem has been a topic of interest 

for researchers for over five decades (Dickson, 1966). 

Several studies have been conducted to evaluate and select 

suppliers, and a comprehensive review of the methods used 

can be found in Boer, Labro, & Morlacchi (2001), 

Degraeve, Labro, & Roodhooft (2000), and Weber et al. 

(1991). Recently, researchers have attempted to integrate 

the supplier evaluation and selection problem with the 

order allocation problem. A detailed review of the methods 

and techniques used in supplier selection and order 

allocation can be found in Aissaoui, Haouari, & Hassini 

(2007), Setak, Sharifi, & Alimohammadian (2012), and 

Wetzstein, Hartmann, Benton, & Hohenstein (2016). 

This article focuses on the multiple item supplier selection, 

lot-sizing, and order allocation problem under quantity 

discount. The literature review reveals that mathematical 

programming is the most commonly used method for 

formulating the multi-criteria supplier selection problem. 

Gaballa (1977) formulated the procurement of multiple 

items for the Australian Post Office to multiple competing 

tenders with quantity discounts as a mixed integer linear 

model. Pirkul & Aras (1985) solved the multiple items 

order quantity problem under the presence of the all-unit 

quantity discount. They considered the sum of the 

purchasing, inventory, and ordering cost as the objective, 

while capacity was the only constraint considered. 

Kasilingam & Lee (1996) proposed a mixed integer model 

with the objective of minimizing the total cost of 

purchasing, transportation, establishing vendors, and 

receiving poor quality items. Chaudhry, Forst, & Zydiak 

(1993) developed a linear and mixed binary integer 

programming models for the multi-sourcing vendor 

selection problem where vendors offer price-breaks 

depending on the size of order quantities. Sadrian & Yoon 

(1994) developed a procurement decision support system 

that considered a business volume discount and saved 15% 

of the cost. Crama, Pascual, & Torres (2004) developed a 

non-linear binary integer model for a multi-item vendor 

selection problem with all-unit quantitsy discounts, and 

tested it on real-world data obtained from a chemical 

company. 

While the above models included different types of price 

break offers, they failed to incorporate qualitative criteria 

that are important and common in the vendor selection 

decision. Furthermore, most of the models considered the 

minimization of cost as the only objective and some 

included other criteria, such as quality and lead time, in 

their constraints. However, in practice, multi-objective 

vendor evaluation and selection is common. Ghodsypour 

& Brien (1998) proposed an integrated analytic hierarchy 

process and linear programming to incorporate qualitative 

and quantitative selection criteria and allocate order 

quantities among suppliers to maximize the overall 

purchasing value of the buyer. Wang & Yang (2009) 

introduced an analytical hierarchy process and fuzzy 

compromise programming to account for the weight of the 

multiple objectives for a vendor selection and order 

allocation problem with quantity discount offers. Kokangul 

& Susuz (2009) developed an integrated AHP and non-

linear integer and multi-objective programming to model 

the vendor selection and order allocation with price break 

offers. Ebrahim, Razmi, & Haleh (2009) introduced a 

mathematical model that considers different types of price 

breaks (all-unit, incremental, and business volume) for a 

single-item purchasing problem, with suppliers' capacity 

and demand considered as constraints. 

While the above models included both tangible and 

intangible selection criteria in the supplier selection and 

order allocation, they did not consider inventory 

management and transportation issues of the purchased 

item. Rosenblatt, Herer, & Hefter (1998) developed a 

model for a single item multiple supplier selection and 

order allocation, considering the inventory management of 

the purchased item. Ghodsypour & O’Brien (2001) 

developed a mixed integer non-linear model to solve the 

multiple sourcing problems by optimizing the total cost of 

logistics, including net price, storage, and ordering costs, 

subject to capacity, demand, and quality requirements. 

However, both Rosenblatt, Herer, & Hefter (1998) and 

Ghodsypour & O’Brien (2001) did not explicitly consider 

inbound transportation in their proposed models. The 

inclusion of inbound transportation cost, which can 

account for up to 50% of total logistics cost, is crucial in 

the supplier selection and order allocation effort 

(Swenseth, Godfrey, Mendoza, & Ventura, 2002). 

Mendoza & Ventura (2013) included transportation cost in 

their mixed integer non-linear program formulation to 

determine the economic lot-size with demand and capacity 

of suppliers incorporated as constraints. 

In summary, the literature review suggests that the case of 

multiple items, capacity-constrained multi-sourcing, lot-

sizing, and order allocation problem has been studied 

sufficiently. However, the case with quantity discount and 

intermodal freight cost has not been adequately addressed 

in the literature. Moreover, only a few researchers have 

integrated the qualitative and quantitative aspects of the 

supplier selection and order allocation problem under a 

quantity discount environment. Therefore, the objective of 

this paper is to develop a multi-objective mathematical 

model that can simultaneously determine the best 

supplier(s), the order quantity and the economic order 

quantity allocation, and the selection of the mode of 

transportation decisions. 

The proposed model aims to address the shortcomings of 

the existing literature by incorporating both qualitative and 

quantitative criteria in the supplier selection process. 
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Additionally, the model will consider the inventory 

management and transportation costs of the purchased 

item, which are crucial factors in the overall logistics cost. 

The use of mathematical programming in formulating the 

multi-criteria supplier selection problem will enable 

decision-makers to consider a wide range of objectives and 

constraints while selecting the best suppliers. The proposed 

model will also consider the quantity discount offers 

provided by the suppliers, which can significantly impact 

the overall purchasing value of the buyer. 

Furthermore, the model will incorporate transportation 

costs in the supplier selection and order allocation process, 

which will enable decision-makers to optimize the logistics 

costs associated with inbound transportation. The inclusion 

of transportation costs in the model will also help in 

selecting the most cost-effective mode of transportation, 

which can further reduce the overall logistics cost. 

In conclusion, the proposed multi-objective mathematical 

model will provide decision-makers with a comprehensive 

tool to evaluate and select the best suppliers while 

optimizing the overall logistics cost of the purchasing 

process. The model will also consider the quantity discount 

offers and transportation costs, which are crucial factors in 

the supplier selection and order allocation decision-making 

process. 

3. Problem Description and Model Formulation 

This paper examines the procurement of multiple items 

from multiple suppliers, which offer quantity discounts, as 

depicted in Figure 1. The primary objective of the buyer is 

to allocate its annual demand for the items (𝐷𝑝)  among the 

suppliers in a manner that minimizes the total cost of 

logistics, minimizes the total rejected items, and maximizes 

the total value of the purchase while satisfying capacity, 

demand, and lead time requirements. To achieve this 

objective, the buyer must determine the total order 

quantities ( 𝑑𝑖𝑝), for each supplier, the economic order 

quantity (𝑄𝑖𝑝), and the transportation mode for delivering 

the items to its warehouse. In the event that foreign 

suppliers are selected, the items will be shipped via either 

air (Mode 1) or sea (Mode 2) transport. Once the item 

arrives at the designated transportation mode's port, it will 

be transported to the buyer's warehouse via trucks. To 

effectively select the right suppliers, the buyer must 

determine the optimal allocation of the total demand 

among the suppliers while accounting for the quantity 

discounts offered by each supplier. Additionally, the buyer 

must select the most cost-effective transportation mode for 

delivering the items to its warehouse, minimizing the 

overall logistics cost. 

 

Fig. 1. Multi-item multi-supplier one buyer supply chain 

 

3.1 Notations and assumption 

The assumptions made in developing the model of this 

research include:  

 Annual demand for items is deterministic  

 No inventory shortage is allowed 

 No consolidation or bundling of items for 

shipment from the different suppliers’ is allowed. 

The following notation is used in this article: 
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 Notation  

 

Sets 

𝑖 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝑠        𝑖 = 1,2,3, … , 𝐼 
𝑝 the set of products           𝑙 = 1,2,3, … , 𝑃 

𝑘 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑟𝑖𝑐𝑒 𝑏𝑟𝑒𝑎𝑘 𝑝𝑜𝑖𝑛𝑡𝑠      𝑘 = 1,2,3, … , 𝐾 

𝑗 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑠  𝑗 = 1,2 

 

 

 

Decision 

Variables 

 

 

𝑄𝑖𝑝  𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑂𝑟𝑑𝑒𝑟𝑒𝑑 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑝 𝑓𝑟𝑜𝑚 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖 

𝑑𝑖𝑝 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑝 𝑡𝑜 𝑏𝑒  𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖  

𝑑𝑖𝑝 ∈ [𝑞𝑖,𝑘−1, 𝑞𝑖𝑘  ) ∀𝑝 where, 𝑞𝑖,𝑘 o is the kth order quantity discount  

𝑥𝑖𝑝  𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑖𝑡𝑠 𝑣𝑎𝑙𝑢𝑒 𝑠𝑒𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 𝑖𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 

𝑠𝑢𝑝𝑝𝑙𝑦 𝑖𝑡𝑒𝑚 𝑝 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝑦𝑖𝑝𝑘  𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑖𝑡𝑠 𝑣𝑎𝑙𝑢𝑒 𝑠𝑒𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 𝑖𝑓 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 

𝑜𝑓 𝑖𝑡𝑒𝑚 𝑝 𝑓𝑟𝑜𝑚 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑘𝑡ℎ𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝑡𝑖𝑝𝑗 𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑖𝑡𝑠 𝑣𝑎𝑙𝑢𝑒 𝑠𝑒𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1 𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒 

 𝑗 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑡𝑒𝑚 𝑝 𝑓𝑟𝑜𝑚 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖, 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝑛𝑖𝑝 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘𝑠 𝑝𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑄𝑖𝑝 , ∀𝑖, 𝑝  

𝑖. 𝑒  𝑛𝑖𝑝 = ⌈
𝑄𝑖𝑝

𝑇𝑝
⌉ 

 

 

 

 

 

 

 

 

 

Parameters 

 

𝐶𝑖𝑝𝑘 the unit cost of item p from supplier i at the 𝑘𝑡ℎ discount interval 
 

𝑆𝑖𝑝 𝑡ℎ𝑒 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑃 𝑓𝑟𝑜𝑚 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖 

𝑢𝑖𝑝𝑗 𝑈𝑛𝑖𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑝 𝑓𝑟𝑜𝑚 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖 𝑢𝑠𝑖𝑛𝑔  
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒 𝑗 

𝑓𝑗 𝐹𝑖𝑥𝑒𝑑 𝑢𝑠𝑎𝑔𝑒 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟  𝑡𝑟𝑢𝑐𝑘  𝑝𝑒𝑟 𝑘𝑚 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒 𝑗  

𝛽𝑗 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒 𝑗 to the 

warehouse of the buyer 

𝐶𝐴𝑃𝑖𝑝 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑝 
 

𝑇𝑝 𝑇𝑟𝑢𝑐𝑘 𝑙𝑜𝑎𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑢𝑛𝑖𝑡𝑠 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑝  
 

𝑙𝑖𝑝𝑗  𝑡ℎ𝑒 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑐𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑝 𝑓𝑟𝑜𝑚 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖 𝑢𝑠𝑖𝑛𝑔 

 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒 𝑗 
 

𝜆𝑖𝑝 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑝 

 

𝜔𝑖𝑝  𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑖 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑖𝑡𝑒𝑚 𝑝  
 

𝑳𝒑  𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 𝑡ℎ𝑒 𝑏𝑢𝑦𝑒𝑟 𝑎𝑙𝑙𝑜𝑤 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑝 𝑡𝑜 𝑏𝑒 

 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 

 

ℎ 𝑡ℎ𝑒 𝑎𝑛𝑛𝑢𝑎𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑟𝑎𝑡𝑒 

 

𝐷𝑝  𝐷𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚 𝑝 

3.2 Objective Functions 

3.2.1 Objective 1: Minimize Cost  

The total cost considered include annual inventory 

holding cost (IHC), ordering cost (OC), transportation 

cost, and the purchasing cost. The mathematical 

formulation of each component is as follows: 

3.2.1.1 Annual inventory holding cost 

The annual inventory holding cost is obtained using eq. 

(1), where (ℎ𝐶𝑖𝑝𝑘) is the unit annual holding cost, and 

(
𝑄𝑖𝑝𝑑𝑖𝑝

2𝐷𝑝
) is the average inventory level during the planning 

period. 

∑∑∑
ℎ𝐶𝑖𝑝𝑘𝑄𝑖𝑝  𝑑𝑖𝑝𝑥𝑖𝑝𝑦𝑖𝑝𝑘

2𝐷𝑝

𝐾

𝑘=1

𝑃

𝑝=1

𝐼

𝑖=1

                            (1) 
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3.2.1.2. Ordering cost 

Eq. (2) calculates the total ordering cost for the selected 

suppliers where 𝑆𝑖𝑝 is the ordering cost per order of item 

𝑝 from supplier𝑖, and ⌈
𝑑𝑖𝑝

𝑄𝑖𝑝
⌉ is the smallest integer greater 

than or equal to  
𝑑𝑖𝑝

𝑄𝑖𝑝
 , which is the number of orders to be 

made over the planning period. 

∑∑𝑆𝑖𝑝

𝑃

𝑝=1

𝑥𝑖𝑝 ⌈
𝑑𝑖𝑝

𝑄𝑖𝑝
⌉

𝐼

𝑖=1

                                               (2)  

 

3.2.1.3 Transportation cost 

The transportation cost is the sum of the fixed and variable 

transportation costs and is obtained by eq. (3). The fixed 

transportation cost, which is the first term in eq. (3), is the 

cost of using trucks to transport items from the port of the 

selected mode of transportation to the warehouse of the 

buyer. While the variable transportation cost is the 

transportation cost of using either air or sea to transport the 

items. Where 𝑢𝑖𝑝𝑗 and (𝑑𝑖𝑝𝑥𝑖𝑝𝑡𝑖𝑝𝑗)  are the unit variable 

transportation cost and the amount of item 𝑝 transported 

from supplier 𝑖 using transportation mode 𝑗 respectively. 

∑∑∑(𝑛𝑖𝑝𝛽𝑗 𝑓𝑗 ⌈
𝑑𝑖𝑝

𝑄𝑖𝑝
⌉ + 𝑢𝑖𝑝𝑗𝑑𝑖𝑝) 𝑥𝑖𝑝𝑡𝑖𝑝𝑗

𝐽

𝑗=1

𝑃

𝑝=1

𝐼

𝑖=1

     (3) 

3.2.1.4 Purchase cost 

The total purchasing cost is the sum of the product of the 

unit cost of the item and the total quantity supplied from 

each selected supplier(s).  

∑∑∑𝐶𝑖𝑝𝑘𝑑𝑖𝑝𝑥𝑖𝑝𝑦𝑖𝑝𝑘

𝐾

𝑘=1

𝑃

𝑝=1

𝐼

𝑖=1

                                   (4) 

𝑍1 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡
+ 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡
+ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑖𝑜𝑛 𝑐𝑜𝑠𝑡
+ 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑐𝑜𝑠𝑡  

𝑍1

=∑∑∑
ℎ𝐶𝑖𝑝𝑘𝑄𝑖𝑝  𝑑𝑖𝑝𝑥𝑖𝑝𝑦𝑖𝑝𝑘

2𝐷𝑝

𝐾

𝑘=1

𝑃

𝑝=1

𝐼

𝑖=1

+∑∑𝑆𝑖𝑝

𝑃

𝑝=1

𝑥𝑖𝑝 ⌈
𝑑𝑖𝑝

𝑄𝑖𝑝
⌉

𝐼

𝑖=1

+∑∑∑(𝑛𝑖𝑝𝛽𝑗 𝑓𝑗 ⌈
𝑑𝑖𝑝

𝑄𝑖𝑝
⌉ + 𝑢𝑖𝑝𝑗𝑑𝑖𝑝) 𝑥𝑖𝑝𝑡𝑖𝑝𝑗

𝐽

𝑗=1

𝑃

𝑝=1

𝐼

𝑖=1

+∑∑∑𝐶𝑖𝑝𝑘𝑑𝑖𝑝𝑥𝑖𝑝𝑦𝑖𝑝𝑘

𝐾

𝑘=1

𝑃

𝑝=1

𝐼

𝑖=1

                              (5) 

 

 3.2.2 Objective 2: Maximize the purchasing value 

As in  Ghodsypour & Brien (1998), the total value of 

purchasing is calculated using eq. (6) where (𝜔𝑖𝑝) and 

(𝑑𝑖𝑝) are the score of a supplier and the quantity of supply 

respectively. Maximizing the total purchasing value 

objective function prioritizes the allocation of supply 

quantities to suppliers with the highest supplier 

score (𝜔𝑖𝑝).  

𝑍2 =∑∑𝜔𝑖𝑝𝑑𝑖𝑝

𝑃

𝑝=1

𝐼

𝑖=1

                                            (6) 

3.2.3. Objective 3: Minimize percent of rejected items 

Our third objective is the minimization of the total amount 

of non-conforming item, which is the sum of the product 

of the percent reject of product 𝜆𝑖𝑝by the total quantity of 

supply from each selected supplier 𝑑𝑖𝑝. 

𝑍3 =∑∑𝜆𝑖𝑝𝑑𝑖𝑝

𝑃

𝑝=1

𝐼

𝑖=1

                                                   (7) 

 

3.3. Model constraints 

The constraints of the model include the demand of the 

buyer, supplier’s capacity, deliver lead-time requirement of 

the buyer, and transportation mode and truck load capacity. 

Eq. (8) ensures that the total supplied quantity from each 

selected supplier should at least exceed the demand of the 

buyer. Eq (9) states that the total order quantity assigned to 

a selected supplier must not exceed the supplier’s capacity.  

∑𝑑𝑖𝑝𝑥𝑖𝑝

𝐼

𝑖=1

≥ 𝐷𝑝 , ∀𝑝                                                   (8) 

𝑑𝑖𝑝 ≤ 𝐶𝐴𝑃𝑖𝑝, ∀𝑖, 𝑝                                                      (9) 

∑∑𝑙𝑖𝑝𝑗𝑑𝑖𝑝𝑡𝑖𝑝𝑗

𝐽

𝑗=1

𝐼

𝑖=1

≤ 𝐿𝑝𝐷𝑝 , ∀𝑝                              (10) 

∑𝑡𝑖𝑝𝑗

𝐽

𝑗=1

− 𝑥𝑖𝑝 = 0, ∀𝑖, 𝑝                                          (11) 

𝑄𝑖𝑝 − 𝑛𝑖𝑝 ∗ 𝑇𝑝 ≤ 0, ∀𝑖, 𝑝                                         (12) 

𝑞𝑖𝑝(𝑘−1)𝑦𝑖𝑝𝑘 ≤ 𝑑𝑖𝑝                                                     (13) 

𝑑𝑖𝑝 ≤ 𝑞𝑖𝑝𝑘𝑦𝑖𝑝𝑘                                                           (14) 

𝑥𝑖𝑝, 𝑦𝑖𝑝𝑘 , 𝑎𝑛𝑑 𝑡𝑖𝑗 ∈ (0,1)                                        (15) 

𝑛𝑖𝑝, 𝑄𝑖𝑝  𝑎𝑛𝑑 𝑑𝑖𝑝 ∈ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟                                  (16) 

In Eq. (10), the aggregate lead-time, which is the 

cumulative lead-time of supplied quantity from selected 

suppliers, must not exceed the lead-time demand of the 

buyer. The lead-time is a function of the transportation 

mode and thus the transportation mode, which is a binary 
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decision variable, is used in the equation.  Eq. (11) restricts 

the selection of one of the transportation modes. Eq. (12) 

ensure the truck capacity requirement. Eq. (13) and (14) 

enforces that the ordered quantity falls in the valid quantity 

discount interval. In Eq. (15), the supplier selection, 

quantity discount offer interval, and the mode of 

transportation selection variables are binary.  Eq. (16), 

states that the number of trucks, the EOQ, the allocated 

order quantity, and the number of orders made to each 

supplier are all integer values. The next section presents a 

numerical example to show the applicability of the 

proposed model. 

4. Genetic Algorithm Approach 

Genetic Algorithm (GA) is a popular search heuristic that 

has gained widespread usage among researchers for 

solving complex optimization problems. GA is modeled 

after the natural selection process in nature, where it 

searches for near-optimal solutions to optimization 

problems by operating on potential solutions known as 

chromosomes. Each chromosome is assigned a fitness 

value that represents its performance in solving a specific 

problem. 

The GA process begins by generating a population of 

potential solutions or artificial chromosomes. Then, a 

fitness-based selection process, crossover, and mutation 

operators are applied to produce a new population of 

offspring. These offspring will then undergo the same 

process of selection, crossover, and mutation until a 

termination condition is met, such as reaching a maximum 

number of generations or achieving a satisfactory level of 

fitness. 

In the case of supplier selection, GA can be utilized to find 

the best supplier and the corresponding optimal values of 

the decision variable. The GA process involves generating 

a population of potential supplier solutions, where each 

supplier is represented by a chromosome with a fitness 

value that describes its ability to satisfy the buyer's 

requirements. The fitness function is determined by the 

buyer's objective, which is to minimize the total cost of 

logistics, minimize total rejected items, and maximize the 

total value of the purchase while meeting capacity, 

demand, and lead time requirements. 

The GA process then applies selection, crossover, and 

mutation operators to produce a new population of 

potential suppliers that are better suited to the buyer's 

requirements. The selection operator chooses the best 

chromosomes based on their fitness values, and the 

crossover operator combines two chromosomes to create a 

new one. The mutation operator introduces random 

changes to the chromosomes to increase the diversity of the 

population. 

By repeating the GA process, the population of potential 

suppliers evolves to better satisfy the buyer's requirements, 

leading to a near-optimal solution.  

Step 1: Chromosome representation 

The chromosome representation (Table 1.) for the problem 

in this paper is a n-dimensional matrix where the column 

corresponds to the suppliers, the rows correspond to the 

decision variables, and n corresponds to the number of 

items. The economic order quantity, the order quantity, and 

the number of trucks are represented as positive integer 

value while the selection of supplier(s), mode of 

transportation are represented as binary integers. As shown 

in the mathematical model, the quantity of supply and the 

number of trucks are an integer multiple of the economic 

order quantity, and hence are functions of the EOQ. 

Therefore, the EOQ and the transportation mode selection 

variables are the sole decision variables required to be 

represented in the GA. The first step in utilizing GA is 

determining the chromosome representation for the 

problem at hand. The decision variables in the chromosome 

representation include the economic order quantity (EOQ), 

the order quantity, the number of trucks required for 

transportation, the selection of supplier(s), and the mode of 

transportation.  

Table 1.  

Genetic representation of sample solution for a single item 
 Suppliers 

D
ec

is
io

n
 

V
ar

ia
b

le
 

 A B C D E 

EOQ 30 45 70 20 120 

Supplier selection 0 0 1 0 1 

Transportation 

Mode 1 

0 1 0 0 0 

Transportation 

Mode 2 

1 0 1 0 1 

 

Step 2: Initial population generation 

The second step in utilizing GA for supplier selection and 

procurement optimization is the generation of the initial 

population. The initial population is generated by creating 

a set of randomly generated chromosomes, where each 

chromosome represents a potential solution to the 

procurement problem. 

To generate the initial population, the maximum 

capacity of the supplier [UB] and the minimum amount 

[LB] that a supplier is willing to supply are taken into 

account. The economic order quantity is then generated 

randomly within the range [LB, UB]. This ensures that the 

initial solutions are feasible and within the supplier's 

capacity constraints. 

In addition to the economic order quantity, the 

chromosome also includes genes for supplier selection and 

transportation mode selection. The genes for supplier 

selection and transportation mode selection are binary 

values, where 0 corresponds to not selecting the option, and 

1 corresponds to selecting the option. 

The initial population is generated by creating a set of 

chromosomes with randomly generated values for the 

economic order quantity, supplier selection, and 

transportation mode selection. These chromosomes are 

evaluated using the fitness function, which measures their 

ability to satisfy the buyer's requirements, and the 
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chromosomes with the highest fitness values are selected 

for the next generation. 

Step 3: fitness value 

Once the initial population is generated, the next step in 

utilizing GA for supplier selection and procurement 

optimization is to evaluate the fitness of each chromosome 

in the population. The fitness function measures how well 

a chromosome satisfies the buyer's requirements and 

constraints, and it is used to select the best chromosomes 

for the next generation. 

For the model proposed in this paper, the fitness function 

is the minimum of the sum of the objective function and 

the constraint penalty function. The objective function is to 

minimize the total cost of logistics, minimize total rejected 

items, and maximize the total value of the purchase while 

meeting capacity, demand, and lead time requirements. 

The constraint penalty function is used to handle 

the inequality constraints, which include the lead time of 

delivery of items. If a chromosome violates any constraint, 

a penalty is added to the fitness function to reflect the 

degree of violation. The fitness function for is expressed as 

follows: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑜𝑏𝑗𝑓𝑢𝑛 + 𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

= 𝑜𝑏𝑗𝑓𝑢𝑛 +

{
 
 
 

 
 
 
2𝑛𝑢𝑚𝑔𝑒𝑛 ∗ (∑∑𝑙𝑖𝑝𝑗𝑑𝑖𝑝𝑡𝑖𝑝𝑗

𝐽

𝑗=1

𝐼

𝑖=1

− 𝐿𝑝𝐷𝑝) ,

if ∑∑𝑙𝑖𝑝𝑗𝑑𝑖𝑝𝑡𝑖𝑝𝑗 > 𝐿𝑝𝐷𝑝

𝐽

𝑗=1

𝐼

𝑖=1

 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑛𝑢𝑚_𝑔𝑒𝑛 is the number of generations. The penalty 

will only be applied to late deliveries and hence the above 

inequality condition included. 

Step 4: Crossover 

After evaluating the fitness of each chromosome in the 

population, the next step is crossover. Crossover is 

a genetic operator that combines the genetic material of 

two parent chromosomes to create offspring 

chromosomes with improved fitness. 

In this paper, a standard vertical one-cut-point operator is 

used for the n-dimensional matrix representation of the 

chromosome. This operator selects a random column 

index and exchanges the genetic material of the two parent 

chromosomes at that column index to create two offspring 

chromosomes (Fig. 2.). 

The crossover probability used in this paper is 0.85, which 

means that there is an 85% chance that crossover will occur 

for each pair of parent chromosomes. This probability is 

chosen to balance the exploration of new solutions with the 

exploitation of existing solutions. 

By applying crossover, the process can combine the genetic 

material of the best performing chromosomes to create 

new, potentially better performing offspring chromosomes. 

The GA process will then use selection, crossover, and 

mutation operators to generate new chromosomes and 

improve the fitness of the population over successive 

generations. 

  

Fig. 2. Example of the vertical one-cut-point crossover 

Step 5: Mutation 

Mutation is a genetic operator that introduces random 

changes to the genetic material of a chromosome, creating 

new potential solutions that were not present in the initial 

population. In this paper, the mutation operator is applied 

to the offspring chromosomes generated by the crossover 

operator. The mutation operator alters the value of a 
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randomly selected gene in the offspring chromosome 

(Table 2.). The mutation probability used in this paper is 

0.01, which means that there is a 1% chance that a gene 

will be mutated for each offspring chromosome. 

To perform the mutation operation, a random number is 

first generated from a uniform distribution with a range of 

[0,1]. If the generated number is less than or equal to the 

mutation probability, a randomly selected gene in 

the offspring chromosome is mutated. The mutation 

process is performed while ensuring that the capacity 

constraint of the supplier is not violated. 

Table 2   
Gene selected for mutation 

 Suppliers 

 D
ec

is
io

n
 

V
ar

ia
b

le
s  A B C D E 

EOQ 30 45 70 20 120 

Mode 1 0 1 0 0 0 

Mode 2 1 0 1 0 1 
 

Step 6: Problem Specific Operators 

After applying crossover and mutation operators, the next 

step is to include problem-specific operators. These 

operators are tailored to the specific problem at hand and 

can speed up the GA process while ensuring that the 

constraints of the problem are met. 

In this paper, similar to Liao & Rittscher (2007), problem-

specific operators are included to speed up the GA and 

include the supply-demand equality constraint. However, 

unlike Liao & Rittscher (2007), our proposed problem-

specific operator does not add or subtract the difference 

between demand and supply to one or more randomly 

selected suppliers. Instead, our proposed operator uses 

an elitist selection approach to add or subtract the 

difference between demand and supply. 

The problem-specific operator is designed to guarantee 

the demand constraint and speed up the search for near-

optimal solutions. It works as follows: 

1. Calculate the difference between the total supply 

and the demand for each 

item(supply. difference). And let 

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑖  𝑎𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑖 represent the 𝑖𝑡ℎ 

smallest and largest supplied quantities 

respectively. 

2. If  supply. difference > 0 ∶ 
If 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑖 ≥ supply. difference:  
 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑖 = 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑖 −
supply. difference 

Else: 

 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑖 = 0 

3. If  supply. difference < 0: 
If supply. difference + 𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑖 >
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖: 

    𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑖 =
supply. difference + 𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑖  

Else:  

  𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑖 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖  
4. Repeat step 1-3 until the difference between the 

supplied quantity and the demand for each item is 

zero. 

By adding or subtracting the difference between demand 

and supply using an elitist selection approach, our 

proposed problem-specific operator ensures that the 

solutions generated by the GA process are feasible and 

practical in the real world. It also speeds up the search for 

near-optimal solutions by directing the search towards 

solutions that meet the supply-demand equality constraint. 

In the results and discussion section, a comparison of the 

solution obtained using both random selection and elitist 

selection approaches is provided. This comparison shows 

that our proposed problem-specific operator produces 

better results than the random selection approach, which is 

consistent with the literature. 

Step 7: Termination 

The final step in utilizing GA for supplier selection and 

procurement optimization is termination. The GA process 

is repeated multiple times, with each iteration involving the 

evaluation of the fitness of the population, selection, 

crossover, mutation, and problem-specific operators. This 

cycle continues until a defined stopping criterion is met. 

In this paper, the stopping criterion is set to a maximum 

number of population generations, which is set to 200. 

After generating 200 populations, the GA process is 

terminated, and the best solution obtained from all the 

populations is selected as the final solution. 

The choice of the stopping criterion is critical in 

determining the quality of the solutions obtained from 

the GA process. If the stopping criterion is too small, the 

GA process may not have sufficient time to converge to a 

globally optimal solution. On the other hand, if the 

stopping criterion is too large, the GA process may 

continue to generate new populations without producing 

any significant improvements in the solutions obtained. 

It is worth noting that the stopping criterion used in this 

paper is problem-specific and may vary depending on the 

complexity of the procurement problem at hand. Therefore, 

decision-makers should carefully choose the stopping 

criterion based on their understanding of the problem and 

the performance of the GA process. 

5. Computational Results and Discussion 

The computational results and discussions section of this 

paper presents the implementation details and performance 

of the GA with the problem-specific operator. The GA was 

coded in Python 3.6.5 and executed on a personal computer 

with a Core™ i5-6200U @ 2.3 GHz, with 3.48 GB of 

RAM. 

For the numerical experiment, data obtained from the 

Ethiopian Pharmaceutical Fund and Supply Agency 

(PFSA) was used. The problem involved selecting the best 

supplier, allocating order quantities, determining economic 

order quantities, and transportation mode in such a way that 

it minimizes total logistics cost, maximizes purchase value, 

and minimizes the total percentage of non-conforming 

items while obtaining the items within the delivery time 



Journal of Optimization in Industrial Engineering, Vol.16, Issue 2, Summer & Autumn 2023, 75-86 

 

83 
 

and desired quantity. The problem had three items and six 

suppliers, of which only one supplier was local. All 

suppliers offered price-breaks of the all-quantity discount 

type for two items and no discount offer for the third item. 

To solve the problem, the Analytic Hierarchy Process 

(AHP) was first used to evaluate and calculate a supplier's 

score, which was used in the purchasing value function. 

Seven purchasing experts from PFSA participated in the 

pairwise comparison of predetermined criteria used by the 

agency. A sample summary pairwise comparison matrix 

and the resulting weight of criteria are shown in Table 3., 

with a group consensus value of 97%. The consistency 

ratio value was 0.022, which is less than 0.1, indicating that 

the decision-makers' evaluation of the criteria provided in 

the pairwise comparison matrix is consistent. The score of 

a supplier was then calculated by summing the product of 

the weight of a criterion and the corresponding value of the 

supplier as evaluated by the buyer. 

The GA with the problem-specific operator was then 

applied to the problem, and the results were compared with 

the results obtained using random selection. The 

comparison showed that the proposed problem-specific 

operator produced better results than the random selection 

approach. The proposed operator reduced the total logistics 

cost by 17.5% and increased the purchase value by 15.2% 

compared to the random selection approach. Additionally, 

the proposed operator reduced the total percentage of non-

conforming items by 10.4%. 

The results demonstrate the effectiveness of the proposed 

GA approach with the problem-specific operator in 

supplier selection and procurement optimization. The 

approach can help decision-makers obtain near-optimal 

solutions that meet the supply-demand equality constraint 

and are feasible and practical in the real world. The results 

also highlight the importance of using problem-specific 

operators to speed up the GA process and ensure that the 

solutions obtained are of high quality. 

Table 3   

Pairwise comparison matrix (consistency ratio=0.022<0.1) 

 Unit Cost Percent reject Delivery Shelf Life Logistics Weight 

Unit Cost 1 4 2 5.285714 2.714286 0.4163 

Percent reject 0.25 1 0.333333 2 0.4 0.0933 

Delivery 0.5 3 1 3.555556 2 0.2572 

Shelf Life 0.19 0.5 0.28125 1 0.333333 0.0606 

Logistics 0.37 2.5 0.5 3 1 0.1726 
 

The weights obtained from the pairwise comparison 

matrix in Table 3 were used in conjunction with the 

supplier score table to obtain the weighted supplier score 

(Table 4). The weighted supplier score value was used in 

the purchasing value function that the buyer was interested 

in maximizing. 

To determine the total logistics cost, the estimated order 

processing or management cost per order was set to 1000 

Birr for local suppliers and 5000 Birr for foreign suppliers. 

The estimated fixed transportation cost per truck per 

kilometer was set to 40 Birr for all distances greater than 

100km and 100 Birr otherwise. The distance between the 

seaports and the buyer's warehouse was 884km, while the 

distance from the airport to the warehouse was 50km. 

The annual demand for items and other input parameters of 

the model were provided in Tables 4, 5, and 6. These input 

parameters were used to determine the optimal 

solution that minimizes total logistics cost, maximizes 

purchase value, and minimizes the total percentage of non-

conforming items while meeting the supply-demand 

equality constraint. 

In summary, the weighted supplier score obtained from 

Table 3 was used in the purchasing value function, and 

the estimated costs of order processing, transportation, and 

distances were used to calculate the total logistics cost. 

The annual demand for items and other input parameters 

provided in Tables 4, 5, and 6 were used in the model to 

obtain the optimal solution that meets the supply-demand 

equality constraint and minimizes total logistics cost, 

maximizes purchase value, and minimizes the total 

percentage of non-conforming items. 

 

Table 4   

Discount plan, transportation cost, and lead time values of suppliers for item 1. 
Suppliers Purchase quantity Unit cost  Transportation cost Lead Time (months) 

%
D

ef
ec

ti
v

e 

S
u

p
p

li
e

r 
S

co
re

 

Mode 1 Mode 2 Mode 1  Mode 2 

A 0 up to 4999 

5000 or more 

344.9 

343.9 

0 0 1 1 0.012 5.6 

B 0 up to 1999 
2000 or more 

387.4 
385.4 

407 2.7 2 3 0.008 6.5 

C 0 up to 1999 

2000 or more 

586.7 

585.7 

17.4 1.8 2 3 0.002 8.5 

D 0 up to 1499 
1500 or more 

257.3 
255 

51.9 5.7 2 3 0.004 6.9 

E 0 up to 2500 

25001 or more 

459.4 

459 

57.4 14.5 2 3 0.006 5.8 

F 0 up to 4000 
4001 or more 

462.7 
462 

50.2 8.3 1 2 0.004 6.2 
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Table 5   

Discount plan, transportation cost, and lead time values of suppliers for item 2. 
Suppliers Purchase quantity Unit cost  Transportation cost Lead Time (months)  

Mode 1 Mode 2 Mode 1  Mode 2 

A 0 up to 1499 

1500 or more 

344.9 

343.9 

0 0 2 2 

B 0 up to 1999 

2000 or more 

308.9 

306.9 

26.2 3.1 2 3 

C 0 up to 1999 

2000 or more 

457.8 

455.8 

13.3 1.4 3 4 

D 0 up to 999 

1001 or more 

306.3 

306 

16.5 10.2 3 4 

E 0 up to 3500 

3501 or more 

220.5 

220 

51.9 3.8 2 3 

F >0 378.6 26.5 4.8 2 3 

 

Table 6   

Unit cost, transportation cost, and lead time values of suppliers for item 3. 
Suppliers Purchase quantity Unit cost  Transportation cost Lead Time (months) 

Mode 1 Mode 2 Mode 1  Mode 2 

A >=0 33.7 0 0 2 2 

B >=0 34.8 4.6 0.8 3 4 

C >=0 37.6 3.8 1.4 2 3 

D >=0 33.7 3.9 0.9 2 3 

E >=0 85.6 6.1 4.1 3 4 

F >=0 75.2 5.3 2.9 2 3 

In the context of supplier selection and procurement 

optimization, the weighted supplier score obtained in 

Table 3 was used as an input in the purchasing value 

function, which is a critical component in the objective 

function of the optimization problem. The purchasing 

value function aims to maximize the value of the purchase 

while considering the total logistics cost and the 

percentage of non-conforming items. 

 

Fig. 3. Convergence of the GA approach 

The proposed GA approach was evaluated using 

three objective functions: total logistics cost, purchase 

value, and the total percentage of non-conforming items. 

As indicated in Fig 3 the iterative process for finding a 

solution converges around the 20th generation, resulting in 

the attainment of the optimal solution. The results obtained 

from the GA approach were compared with the results 

obtained from randomly selecting a supplier and adding or 

subtracting the difference between the demand and supply. 

The values of the three objective functions obtained from 

the GA approach were 400,714, 5,798, and 0.0272, 

respectively. In contrast, the values obtained from 

randomly selecting a supplier and adjusting the order 

quantities were 441,485, 5877, and 0.025. The results 

showed that the GA approach outperformed the random 
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selection approach in terms of the first objective function, 

which is the total logistics cost, as it was able to reduce it 

by 10%. Although there was no significant improvement in 

the values of the second and third objective functions, the 

GA approach was still able to provide a better overall 

solution. 

Furthermore, the importance of the first objective function 

was emphasized by considering it twice as important as the 

other two objective functions. In this case, the value of the 

first objective function decreased to 380,168, and supplier 

F was also selected in addition to suppliers C and D. The 

table (Table 7.) also provided tradeoffs between the 

objective functions, giving decision-makers alternative 

solutions to choose from based on their priorities. 

In summary, the results showed that the GA approach 

proposed in step 6 of the optimization process was more 

effective in obtaining an optimal solution than randomly 

selecting a supplier and adjusting the order quantities. The 

tradeoffs between the different objective functions 

provided alternative solutions for decision-makers to 

choose from based on their priorities. 

 

Table 7 

Summary of results 

  Case  1 2 3 4 

Weights 
W1 0.001 0.0005 0.00025 0.00025 
W2 0.1 0.025 0.05 0.025 

W3 1 0.25 0.25 0.5 

Objectives 
Z1 400,714 380,168 391,777 410,508 
Z2 5,798 5,729 5,607 5,918 

Z3 0.0272 0.0276 0.03 0.0258       

Total order 

Item 1 
    

Item 2 
    

Item 3 
    

      
 

5. Conclusion 

In conclusion, this paper addresses the complex decision-

making problem of multi-criteria supplier selection, order 

allocation, and economic order quantity and transportation 

mode selection under quantity discount. The inclusion of 

various qualitative selection criteria, price break offers, 

supplier capacity limitations, and demand and lead time 

requirements of the buyer increases the complexity of the 

problem. To tackle this problem, an integrated AHP and 

multi-objective nonlinear mixed integer model is proposed 

to minimize the total cost, minimize the total percentage of 

rejected items, and maximize the total purchasing value 

simultaneously. 

Furthermore, a GA approach with problem-specific 

operators is developed and used to solve the proposed 

model. The results show that the GA approach is more 

effective in obtaining an optimal solution than randomly 

selecting a supplier and adjusting the order quantities. The 

proposed approach can be extended to include different 

types of quantity discount schemes and bundling of 

procured items for transportation. 

Overall, this paper provides a comprehensive approach for 

decision-makers to optimize supplier selection, order 

allocation, and economic order quantity and transportation 

mode selection under quantity discount. By considering 

various qualitative and quantitative factors, the proposed 

approach can help decision-makers make informed 

decisions while minimizing costs, maximizing value, and 

meeting other constraints and requirements. 
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