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Abstract 

The main aim of this research is to find the best inventory review policy for different types of items in group B in ABC analysis through 

minimizing the total cost of the system and maximizing the service level. Moreover, this study has considered several operational 

constraints such as limitations on storage space, number of orders,  and mean shortage. To solve this problem, first, an individual 

optimization method is utilized to obtain optimal solutions. Afterward, two classic and novel multi-objective optimization methods have 

been used to convert the bi-objective problem to a single-objective and then achieve near-optimal solutions for both objectives 

simultaneously. Finally, the proposed methods are compared in terms of objective function values and computational time to find the better 

method. 
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1. Introduction and Background 

Inventory management is a critical issue on the effective 

performance of manufacturing firms and contains a large 

part of financial interactions (Keshavarz-Ghorbani and 

Pasandideh, 2021). Hence, applying an appropriate 

inventory review policy has a significant impact on the 

volume of selling, gaining profits, and enhancing system 

position in the current competitive world. Through 

analysis of inventory systems, it can be found that various 

products are not of the same importance. To distinguish 

the importance of different items, inventory control 

policies should be performed, by which products could 

fall under less or precise control policies. ABC analysis is 

a traditional method used to classify various inventory 

items on the basis of their values (Hajiagha et al., 2021). 

This method divides items into three groups with the most 

similar features (Abdolazimi et al., 2021). Wherein, items 

with a high price and low demand volume are referred to 

the group ‘A’; conversely, items with a low price and high 

demand volume are referred to the group ‘C’. Moreover, 

group ‘B’ items, which are notable in our investigation, 

are moderate in demand volume and sales price. The 

group ‘A’ items have drawn the attention of inventory 

control managers, due to high inventory holding and 

shortage costs. In these cases, managers often choose a 

continuous review policy to prevent products from being 

in overstock or stockout situations. On the contrary, the 

group ‘C’ items are negligible and need less control. The 

group ‘B’ items fall between the two other groups. 

Although they may require moderate attention, they are 

not as important as the group ‘A’ items. In this regard, 

Mohammaditabar et al. (2012) sought different types of 

classification methods like ABC analysis to find the best 

performing method that can significantly minimize 

inventory holding costs. They attempted to achieve better 

inventory control policies via minimizing the dissimilar 

items in each category. Soylu and Akyol (2014) used a 

multi-criteria ABC method to manage the inventory of the 

huge number of items based on the decision maker’s 

preference for each criterion. Yang et al. (2017) attempted 

to discover the link between inventory classification and 

its impact on system performance. According to their 

investigation in a real case study, a multi-criteria 

inventory classification method raises efficiency in an 

inventory system.  

The current research seeks to determine appropriate 

inventory review policies for the group ‘B’ items, which 

has never been investigated. For this purpose, we have 

considered that the inventory level could be inspected 

continuously or periodically.  

In a continuous review policy (r, Q), an order of size Q is 

placed when an inventory level drops r or below that.  

However, in a periodic review policy (R, T), the inventory 

level is inspected at fixed time intervals (T), and orders up 

to level R. The choice of inventory control policy 

remarkably affects the performance of systems. For 

instance, Rao (2003) proved that periodically reviewing 

an inventory system with a continuous demand rate incurs 

approximately 41.42% additional cost to the system. 

Johansen (2013) investigated an inventory system under 

the assumption of lost sale and a continuous review policy 

to suggest a modified based-stock policy. Massonnet et al. 

(2014) introduced a cost balancing technique for periodic 

review models and applied it in a continuous-time 

version, in which both demand and cost are time-based. 

They also proposed a modified algorithm for inventory 

lot-sizing problems that can notably raise worst-case 

bound. 

Continuous review policy is more common for cases with 

uncertain demand and lead time. This policy provides 
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accurate inventory quantity but couldn’t work well for 

plenty of items. In this respect, the continuous review 

policy has been investigated for many single-product 

inventory problems (e.g., Axsäter, 2007; Lau and Lau, 

2008; Mattsson, 2010; Qi, 2013). However, most of real 

inventory systems encounter with multi-product 

warehouses that have been reviewed under (r, Q) policy 

(e.g., Ghalebsaz-Jeddi et al., 2004; Betts and Johnston, 

2005; Berk and Gürler, 2008; Pasandideh et al., 2011; 

Hajiaghaei-Keshteli et al., 2011; Zhao et al., 2012; Kundu 

and Chakrabarti, 2012; Poormoaied and Atan, 2020; 

M’Hallah et al., 2020). 

In classical practices, continuous review policies have 

been commonly used for multi-item single-period non-

perishable problems. Saracoglu et al. (2014) formulated a 

multi-period continuous review model considering some 

constraints such as limited budget and warehouse space. 

Genetic algorithm has been performed to solve the 

problem and achieve near-optimal solutions in large-sized 

instances. Cobb et al. (2015) considered continuous 

review inventory systems with uncertain demand and lead 

time. In their research, a mixture of polynomial 

distribution and a mixture of truncated exponentials 

distribution have been proposed to enhance efficiency. 

Then, these methods were compared together. Priyan and 

Uthayakumar (2015) considered a continuous review 

policy with allowable shortages. They attempted to 

analyze system behavior under uncertainty in order 

quantities. Tamjidzad and Mirmohammadi (2015) 

proposed an optimal (r, Q) policy considering resource 

constraint and a quantity discount to make attraction in 

selling products. In their model, customers’ demand could 

be satisfied by renting extra quantity in face of deficiency. 

Horng and Lin (2017) applied an assemble-to-order 

system under (r, Q) policy which is an Np-hard problem, 

therefore they utilized an ordinal optimization problem 

based on a metaheuristic algorithm to find near-optimal 

solutions. Fattahi et al. (2015) investigated a multi-

product (r, Q) inventory system with the aim of 

minimizing the total cost of the system and maximizing 

the service level, simultaneously. In their investigation, 

there are limitations on warehouse space and budget, and 

unsatisfied demand is backlogged. 

In recent studies, some authors have focused on the 

periodic review policy on various topics. For instance, 

Chand et al. (2016) investigated a periodic review policy 

for an inventory system in which unfulfilled demand is 

backordered. In their model, if an urgent condition occurs, 

delivery lead-time is zero. In the regular condition, lead-

time should be less than the length of each period.  Xu et 

al. (2017) considered a periodic review policy with finite 

horizon planning and stochastic demand. If stochastic 

demand exceeds up on-hand inventory, it is backlogged 

and met by future orders. Ahmadzadeh and Vahdani 

(2017) introduced a periodic review policy for a multi-

level supply chain, in which shortages are allowed. They 

presented a location inventory model, thereby finding the 

appropriate number and location of warehouses. Besides, 

a metaheuristic algorithm is applied to solve the problem 

due to its complexity. Dillon et al. (2017) presented a 

multi-period multi-product lot-sizing problem, dealing 

with demand uncertainty and product perishability. In 

their model, blood inventory control is dependent on three 

distinct periodic review policies. The first policy is the 

current hospital policy. The second policy is to find the 

optimal amount of replenishment interval and maximum 

inventory position. The third policy has to determine the 

optimal amount of reorder points, considering daily 

replenishment. Tao et al. (2017) considered an inventory 

system with stochastic demand and backlogged shortage. 

In their study, the inventory level is reviewed regularly 

through a periodic review policy. Moreover, in emergency 

conditions, orders are with extra freight unit cost and 

shorter lead time. Taleizadeh et al. (2020) proposed a 

vendor-managed inventory contract in both (r, Q) and (R, 

T) systems. Their model investigates the effects of some 

parameters, such as ordering costs, inventory holding 

costs, and shortage costs, on inventory review policy 

selection. However, they have not proposed a 

mathematical model to simultaneously analyze inventory 

systems. Kong et al. (2020) proposed a periodic review 

policy to periodically control single-product non-

stationary inventory systems over a finite horizon. 

In many inventory systems, firms may face overstock or 

stockout situations due to uncertain customer demand. In 

the face of shortages, backordering helps the companies to 

manage their inventories and deliver orders later. 

Therefore, many researchers and practitioners offer 

backordering in inventory management problems (e.g., 

Niknamfar and Pasandideh, 2014; Poorbagheri and 

Akhavan, Niaki, 2015; Ahmadi et al., 2016; Fatehi Kivi et 

al., 2018). In this study, demand for each product is 

uncertain and follows a continuous uniform distribution, 

and shortages are backlogged. In addition, the gaps are 

identified by reviewing the related literature and shown in 

Table 1. 

In this paper, we formulate a bi-objective multi-product 

inventory model as a mixed-binary non-linear 

programming (MBNLP) problem in order to determine 

optimal inventory review policies for group ‘B’ items, 

with the aim of minimizing total cost and maximizing 

service level under the assumptions of uncertain demand 

and stochastic constraints. Simultaneously optimization of 

the objective functions leads to a reduction in system cost 

and an increase in customers’ satisfaction. To solve the 

MBNLP problem, first, three multi-objective decision 

making (MODM) methods are proposed, individual 

optimization method, LP-metric method, and multi-choice 

goal programming with utility function method. 

Afterward, numerical test problems are introduced to 

analyze the behavior of the model. We use general 

algebraic modeling system (GAMS) software to solve this 

problem. By using a one-way analysis of variance 

(ANOVA), we compare the results to select the best-

performing method in terms of objective function values 

and required CPU-time. 

The rest of this paper is organized as follows: in section 2, 

problem definition and notations are defined. In section 3, 

a bi-objective multi-product problem is formulated. In 

section 4, several MODM methods are provided to 
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convert the bi-objective model to a single-objective. Then, 

the results of numerical examples are analyzed in section 

5. Finally, the conclusion and future directions are given 

in section 6. 

 
Table 1 

Literature review 

Authors 

Inventory 

review 

policy 

Variety of 

products 
Horizon 

Budget 

constraint  

Storage 

constraint  

Number 

of orders 

constraint 

 

Demand Shortage 

Saracoglu et al., 

(2014) 
(r, Q) Multiple Finite * * - D L 

Cobb et al., (2015) (r, Q) Single Infinite - - - ND - 

Priyan and 

Uthayakumar, 

(2015) 

(r, Q) Single Infinite - - - ND B 

Tamjidzad and 

Mirmohammadi, 

(2015) 

(r, Q) Single Infinite * - - ND B 

Horng and Lin, (2017) (r, Q) Multiple Finite - * - ND L 

Fattahi et al., (2015) (r, Q) Multiple Infinite * * - ND B 

Chand et al., (2016) (R,T) Single Finite - - - ND B 

Xu et al., (2017) (R,T) Single Finite - - - ND B 

Ahmadzadeh and 

Vahdani, (2017) 
(R,T) Single Infinite - * - ND B 

Dillon et al., (2017) (R,T) Multiple Finite - * - ND L 

Tao et al., (2017) (R,T) Single Finite - - - ND B 

Current study 
(r, Q), 

(R,T) 
Multiple Infinite - * * ND B 

ND: Nondeterministic; D: Deterministic 1; B: Backlogged; L: Lost-sale  

2. Problem Definition and Assumptions 

In this paper, we propose a multi-product inventory 

control problem with uncertainty in customers’ demand. 

In this respect, unsatisfied demand is backlogged and 

fulfilled at the next interval. Besides, limitations on the 

storage space, number of orders, and mean shortage are 

considered to adapt to real situations.  

In many studies, researchers have classified the inventory 

items to facilitate the process of inventory management. 

ABC analysis is a classification method based on 

differences in value and volume of products. Accordingly, 

high-value and low-volume items are categorized into 

group ‘A’, needing the continuous review policy. 

Conversely, low-value and high-volume items are 

categorized into group ‘C’, needing less control. The 

group ‘B’ items are moderate in both value and volume, 

and the issue of selecting the optimal review policy is 

ahead. This paper has investigated two commonly 

inventory review policies to model a MBNLP problem, (r, 

Q) and (R, T). 

The goal is to select an appropriate inventory review 

policy for each product; consequently, determining the 

reorder point and order quantity in (r, Q) policy, or the 

maximum inventory position and optimal length of the 

period in (R, T) policy. This model aims to minimize the 

total cost, including the ordering cost, inventory holding 

cost, and shortage cost, and simultaneously maximize the 

cumulative distribution of demand. 

Besides, some of the assumptions of the problem are 

presented as follows: 

 Only one warehouse is available. 

 Limitations on storage space and number of orders 

are chance constraints with normal distribution. 

 Demand for each type of product is uncertain and 

follows a continuous uniform distribution. 

 Shortages are backlogged. 

 The planning horizon is infinite. 
 

 

The notations throughout the paper are defined as follows: 
 

Indices 

i: index of products (i = 1,2, …, n) 

Parameters 

Di: demand rate of product i 

SH: maximum allowable shortage for all products 

  : mean demand of product i 

πi: shortage cost of product i 

hi: holding cost of product i 

fi: required storage space for product i 

F: available storage space for all products 

ai: fixed ordering cost of product i 
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M: big number  

N: maximum number of orders  

Decision variables 

yi: binary variable; 1 if continuous review policy is 

selected for product i, otherwise, products should be 

controlled under the periodic review policy 

Qi: order quantity of product i 

Li: maximum inventory level of product i 

Ti: time interval to review the inventory level of product i 

ri: reorder point of product i 

Tc: total cost of inventory system 

Sl: service level of inventory system  

     : cumulative distribution of demands for product i 

under the continuous review policy 

     : cumulative distribution of demands for product i 

under the periodic review policy 

     : mean shortage of product i under the continuous 

review policy 

     : mean shortage of product i under the periodic 

review policy 

3. Model Description 

This research aims to maximize customer satisfaction by 

supplying their demand as much as possible and minimize 

system costs simultaneously. To this aim, we proposed a 

multi-product MBNLP problem based on the notations 

and assumptions as follow: 
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The first objective function (1) aims to minimize system 

cost consisting of holding cost, ordering cost, and 

shortage cost for all products. The first term is the average 

cost when products are under (r, Q) policy (    ), and 

the second term is the average cost when products are 

under (R, T) policy (    ). The second objective 

function (2) maximizes the cumulative distribution of 

demand. 

Constraint (3) ensures the average number of orders, 

whether the inventory review policy is continuously or 

periodically, should be less than N. This constraint should 

be met with a probability of at least  . In this constraint, if 

yi equals 1, the average number of orders is calculated 

based on the continuous review policy; otherwise, it is 

based on the periodic review policy. Constraint (4) 

represents a limitation on storage space which should not 

exceed the available storage space. This constraint should 

be met with a probability of at least  . In this constraint, 

the first term in the left hand refers to storage space of 

products under the continuous review policy, and the 

second term refers to the periodic review policy. 

Constraint (5) avoids the average number of shortages for 

all products exceeding a certain limit. Constraints (6) – 

(9) are developed for the MBNLP model and assert if the 

inventory level is reviewed continuously, the model 

determines the optimal order quantity and reorder point, 

otherwise, the inventory level is reviewed periodically, 

and the model determines the maximum inventory 
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position and interval time. Constraint (10) denotes the 

type of variables. 

In order to make the model solvable, first, constraints (3)-

(5) should be transformed into a deterministic problem. 

To this purpose, stochastic constrained programming has 

been applied as follows: 

∑ (  
  

  
       

 

  
)   

                                                                                                (11) 

∑   (  (
  

 
     )        (

    

 
     ))         

 
         (12)                                    

where    is the mean allowable number of orders,    is 

the standard deviation of the allowable number of orders, 

   the mean storage capacity, and    is the standard 

deviation of storage capacity.    is the cumulative 

standard normal distribution (      ).   

4. Solution Methods 

In this paper, we presented a MBNLP problem with two 

conflicting objectives. In such models, an ideal solution 

cannot simultaneously optimize both objective functions. 

Hence, we propose two MODM methods to reformulate a 

bi-objective optimization problem to a single one, using 

the GAMS software to solve the problem. The MODM 

methods are classified into four groups based on getting 

information from decision-makers. The first group works 

without preliminary information from decision-makers, 

including individual optimization, LP-metric/global 

criteria, Max-Min, and filtering/displaced ideal solution 

methods. The second group needs primitive information 

from decision-makers that lexicography/preemptive 

optimization method, goal attainment method, goal 

programming method, utility function method are placed 

in this group. The third group needs to get information 

from decision-makers during the solution procedure, 

including the Geoffrion method, satisfactory goal 

programming method, and Zionts-Wallenius method. The 

fourth group of this category gets information from 

decision-makers after the solution procedure, including 

the multi-criteria simplex method, minimum deviation 

method, and Denovo programming method. 

In this paper, first, ideal solutions are obtained through 

individual optimization method. Each objective function 

has to be optimized separately with respect to the 

constraints. To this end, basic open-source nonlinear 

mixed-integer programming (BONMIN) is used to solve 

mixed-integer nonlinear models. The BONMIN solver 

implements various algorithms such as a nonlinear-based 

branch-and-bound algorithm, outer-approximation 

decomposition algorithm, Quesada and Grossmann’s 

branch-and-cut algorithm, and hybrid outer-

approximation based branch-and-cut algorithm. The 

BONMIN employs a proper algorithm to improve the 

quality of solutions that can reach the optimal solutions 

for convex problems (Bonami et al., 2009). 

After obtaining optimal solutions for each objective 

function, MODM methods are used to convert the bi-

objective problem to a single one. One of the applied 

MODM methods in this paper is LP-metric, which is easy 

to implement and used to solve many multi-objective 

optimization problems (e.g., Yousefi-Babadi et al., 2017; 

Mardan et al., 2019; Hemmati and Pasandideh, 2020; 

Nemati-Lafmejani and Davari-Ardakani, 2020).  Another 

MODM method to use in this paper is multi-choice goal 

programming with utility function (MCGPU) introduced 

by Chang (2011). This method falls into the second group 

of MODM and is the extension of classical goal 

programming (GP). GP has been widely used to solve 

multi-objective optimization problems (e.g., Pasandideh 

et al., 2015; Hafezalkotob et al., 2016; Maleki et al., 2017; 

Mirkhorsandi and Pasandideh, 2020). The proposed 

methods are described in detail as follows:  

4.1. LP-metric/global criteria method  

The aim of this method is to minimize the sum of relative 

deviations between objective functions (fc; c = 1, 2, …, C) 

and their ideal solutions (  
 ; c=1,2, …, C). The ideal 

solution of each objective function is obtained through the 

individual optimization method. LP-metric is calculated 

for a maximization problem as follows: 

     (∑ (
  
    

  
 )

 
 
 )

 

 
                                          (13) 

It is worth noting that minimization problems should be 

converted to maximization, and also p is 1, in this paper. 

4.2. Multi-choice goal programming with utility function 

Charnes et al. (1955) proposed the classical GP that aims 

to minimize undesirable deviations between objective 

functions and aspiration levels of decision-makers to 

solve multi-objective problems. The formulation of GP is 

given by 

      ∑      
    

                        

Subject to 

     
    

    
                                          (14) 

  
    

                                                                                              

where   
        

  are over and under expected values of 

the goals. If the objective function is the maximization 

type, GP minimizes   
 , otherwise, GP minimizes   

 . In 

addition,   
  is the expected value of the objective function 

determined by decision-makers. 

In this method, aspiration levels are determined by 

decision-makers as a parameter that may be far from 

reality. Therefore, Chang (2007) introduced a multi-

choice goal programming method to achieve multiple 

vector aspiration levels instead of being a parameter. This 

method avoids decision-makers setting the unrealistic 

value of aspiration level for each goal. The mathematical 
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formulation of multi-choice goal programming is written 

as follows: 
       ∑ {     

    
        

     
  } 

            

Subject to 
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where    is a continuous variable within an 

interval [              ], and   
       

 are over and 

under expected values of |         |or |         |, 

and    is weight for each of them.    is the weight for 

deviations from aspiration levels. This method can be 

easily performed as a linear form of the mathematical 

model, however, it has not considered the decision 

maker’s preference value. According to decision maker’s 

preferences, Chang (2011) improved a multi-choice goal 

programming method considering a utility function. In 

this case, decision-makers would like to increase or 

decrease the utility as much as possible. The following 

explanation shows how to add utility functions to increase 

or decrease the utility values. 

Case 1. Decision-maker’s preference to decrease the 

utility value in MCGPU method   

       ∑ {     
    

       
 } 

     

            

Subject to 
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where    is a weight for    
 , indicating the preference 

based on the utility function (   ). This mathematical 

formulation is used for the minimization problem, in 

which   
  would like to become 0, and consequently    

tries to become 1.  This formulation forces yc to become 

close to its lower bound gc,min. Interested readers can refer 

to Kettani et al. (2004) for further information. 

 

 

 

 

Case 2. Decision-maker’s preference to increase the 

utility value in MCGPU method 
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Subject to 
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In this case, as c approaches 1, yc tends to get its upper 

bound for the maximization problem. 

5. Numerical analysis 

The parameters are generated in predefined ranges 

according to Table 2. All parameters are considered for 

five independent types of products, having the features of 

group B in ABC analysis. In addition, the range of 

parameters changes for each instance to analyze the 

system cost and its effects on the inventory review policy 

selection.  

In this section, various test problems are executed in order 

to evaluate the application of the aforementioned MODM 

methods and compare them in terms of both objective 

function values and computational time. As seen in Table 

1, there are thirty numerical examples, where        are 

the parameters generated based on uniform distribution 

between a and b, and         are the parameters 

following a normal distribution with mean   and variance 

 , and mean capacity of shortage is deterministic. 

To sum up, we have used two classic and novel MODM 

methods to simultaneously optimize both objective 

functions. We coded the model in GAMS 24.1.3 and 

solved it via BONMIN solver, using a computer with 

Intel
@

 Core ™ i7-CPU 2.20 GHz, RAM 8.00 GB. Table 3 

represents the objective function values and 

computational time.  

http://mathworld.wolfram.com/Mean.html
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Table 2 

 Fixed and uncertain parameters of the model 
Instances Di ~ U(a, b) fi  ~ U(a, b) ai  ~ U(a, b) hi  ~ U(a, b) πi ~ U(a, b) N~N( ,2) F~ N( ,2) SH 

1 [180,328] [1,10] [10,25] [5,30] [36,48]  [550,144] [2500,625] 300 

2 [50,100] [5,15] [20,45] [15,39] [25,45] [120,64] [750,441] 50 

3 [10,25] [2,12] [5,25] [20,100] [15,30] [45,9] [142,49] 13 

4 [5,11] [10,45] [50,100] [10,35] [60,105] [46,16] [259,81] 17 

5 [10,49] [30,90] [90,110] [90,120] [95,130] [96,16] [1880,441] 75 

6 [20,55] [20,55] [80,100] [20,38] [18,40] [96,36] [2800,1618] 45 

7 [20,85] [10,15] [5,15] [15,24] [15,30] [87,49] [1865,961] 19 

8 [12,64] [5,14] [19,31] [10,18] [25,35] [47,16] [948,144] 19 

9 [180,328] [1,5] [20,45] [10,20] [35,50] [550,144] [450,121] 300 

10 [240,360] [1,6] [5,10] [1,5] [10,20] [350,100] [650,225] 450 

11 [5,15] [20,30] [50,85] [30,45] [65,95] [56,25] [350,64] 17 

12 [10,35] [35,50] [10,16] [5,17] [15,30] [66,25] [1750,960] 18 

13 [100,180] [10,40] [20,95] [30,60] [55,100] [396,121] [4750,1225] 589 

14 [18,46] [25,45] [20,60] [10,20] [40,65] [106,64] [1500,360] 75 

15 [4,24] [5,16] [16,38] [9,23] [20,30] [26,9] [448,121] 14 

16 [30,50] [5,18] [30,90] [10,40] [60,85] [186,64] [198,49] 98 

17 [5,14] [20,28] [10,25] [4,20] [20,32] [86,9] [298,81] 48 

18 [5,15] [15,30] [40,65] [8,27] [45,70] [96,25] [408,196] 35 

19 [30,90] [4,18] [20,33] [4,12] [25,35] [165,49] [843,122] 98 

20 [5,18] [4,9] [20,30] [9,18] [25,35] [15,9] [193,81] 5 

21 [10,40] [10,20] [20,33] [4,12] [25,42] [69,16] [689,81] 14 

22 [10,27] [15,30] [20,33] [4,12] [25,35] [172,25] [659,169] 87 

23 [30,130] [10,25] [100,150] [60,90] [115,150] [180,64] [2959,1089] 295 

24 [50,170] [10,25] [100,120] [60,90] [100,125] [90,49] [5056,1156] 50 

25 [40,90] [10,25] [50,114] [60,90] [50,85] [189,64] [1259,576] 160 

26 [100,200] [20,45] [50,84] [60,90] [60,95] [269,81] [3995,1681] 244 

27 [10,20] [12,18] [20,44] [20,35] [25,50] [89,36] [365,121] 10 

28 [30,70] [12,18] [20,44] [20,35] [35,60] [89,25] [895,256] 71 

29 [180,328] [10,25] [30,45] [20,35] [35,50] [550,144] [1950,625] 300 

30 [180,328] [20,35] [10,55] [10,45] [35,50] [550,144] [5050,625] 300 

 

In this section, various test problems are executed in order 

to evaluate the application of the aforementioned MODM 

methods and compare them in terms of both objective 

function values and computational time. As seen in Table 

1, there are thirty numerical examples, where        are 

the parameters generated based on uniform distribution 

between a and b, and         are the parameters 

following a normal distribution with mean   and variance 

 , and mean capacity of shortage is deterministic. 

To sum up, we have used two classic and novel MODM 

methods to simultaneously optimize both objective 

functions. We coded the model in GAMS 24.1.3 and 

solved it via BONMIN solver, using a computer with 

Intel
@

 Core ™ i7-CPU 2.20 GHz, RAM 8.00 GB. Table 3 

represents the objective function values and 

computational time.  

http://mathworld.wolfram.com/Mean.html
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Table 3 

 Results of applying the MODM methods 
Instances Individual Optimization method (A) LP-metric method (B) MCGPU (C) 

TC SI CPU time TC SI CPU time TC SI CPU time 

1 17142   0.845 16.256 17941 0.63 8.07 18065 0.636 9.989 

2 5407 0.724 8.567 5569 0.657 6.662 5528 0.657 10.013 

3 1865 0.795 3.779 1994 0.699 1.903 1920 0.658 1.370 

4 1347 0.825 8.664 1530 0.515 0.663 1641 0.57 0.646 

5 4641 0.902 2.024 4917 0.711 2.096 4904 0.708 1.996 

6 4294 0.985 1.888 4480 0.781 0.803 4517 0.789 2.203 

7 2761 0.945 2.838 3139 0.892 1.535 3198 0.907 3.334 

8 2243 0.939 2.185 2400 0.831 1.575 2401 0.832 2.316 

9 14789 0.922 16.720 15366   0.683 10.144 15683 0.7 27.857 

10 3831 0.96 16.42 3936 0.723 16.046 3939 0.723 16.760 

11 1750 0.745 2.333 1971 0.524 0.633 2050 0.499 0.781 

12 1017 0.761 9.327 1078 0.66 1.052 1114 0.682 5.978 

13 13296 0.96 1.239 13750 0.782 7.481 13797 0.785 6.179 

14 2890 0.83 5.093 3075 0.642 0.634 3104 0.65 6.381 

15 1388 0.766 7.322 1439 0.687 1.066 1451 0.693 2.108 

16 5309 0.659 4.295 5964 0.422 0.740 5948 0.42 5.105 

17 479 0.78 2.467 530 0.549 0.906 537 0.561 1.630 

18 881 0.843 5.266 941 0.652 0.992 965 0.673 3.192 

19 3020 0.819 5.859 3179 0.657 0.852 3233 0.67 1.575 

20 716 0.715 3.425 724 0.714 2.073 724 0.714 4.331 

21 1246 0.669 2.043 1299 0.634 3.632 1342 0.652 4.997 

22 812 0.715 1.641 1154 0.463 1.739 871 0.672 4.302 

23 22745 0.815 1.619 23957 0.677 1.886 23787 0.67 5.45 

24 23048 0.929 2.027 24099 0.857 1.848 24129 0.858 2.61 

25 10548 0.878 1.892 11520 0.681 4.561 11614 0.688 3.535 

26 20212 0.806 4.787 21636 0.675 2.031 21598 0.673 7.945 

27 1148 0.924 1.508 1250 0.697 1.660 1318 0.741 3.644 

28 3407 0.756 6.377 3653 0.622 1.970 3641 0.619 1.012 

29 20512 0.714 15.007 22194 0.57 8.588 21999 0.563 23.382 

30 18652 0.781 8.163 19927 0.645 5.282 19661 0.633 6.877 
 

Figs. (1)-(3) show the comparison of the total cost, service  level, and computational time between MODM and the 

individual optimization methods for all examples. 

 

 
Fig. 1. The graphical representation of the results in terms of the total cost 
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Fig. 2. The graphical representation of the results in terms of the service level 

 
Fig. 3. The graphical comparison of the computational time 

ANOVA is carried out to compare the performance of the 

MODM methods in terms of both objective function 

values and computational time. Figs. (4)-(6) show the 

relative interval plots for mean computational time, 

service level, total cost. 

 

 

 
Fig. 4. Interval plots of mean computational time 
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Fig. 5.  Interval plots of mean service level 

 
Fig. 6. Interval plots of mean total cost 

Based on the results in Table 4, the null hypothesis, which 

is equality of mean cost in different methods, cannot be 

rejected at the 95% confidence level because P-Value is 

more than 0.05. That means there is no significant 

difference between used MODM methods and their 

optimal solutions. Moreover, ANOVA is used to examine 

the equality of the mean computational time of the 

MODM methods. The results in Table 5 indicate the null 

hypothesis cannot be rejected at the 95% confidence level, 

as P-Value becomes more than 0.05.  

Table 4 

The one-way ANOVA to compare the MODM methods in terms 

of the total cost 
Source DF SS MS EMS P-value 

Factor 2 3902497 1951249 0.03 0.970 

Error 87 5507037433 63299281   

Total 89 5510939930    

Table 5 

The one-way ANOVA to compare the computational time of the 

MODM methods 
Source DF SS MS EMS P-value 

Factor 2 126.2 63.08 2.47 0.091 

Error 87 2225.6 25.58   

Total 89 2351.7    

 

Table 6 

The one-way ANOVA to compare the MODM methods in terms 

of the service level 
Source DF SS MS EMS P-value 

Factor 2 0.4710 0.235500 23.71 0.000 

Error 87 0.8643 0.009935   

Total 89 1.3353    

 

According to the results in Table 6, the null hypothesis, 

which is equality of mean service level, cannot be 

accepted. Indeed the ANOVA test has drawn that P-value 

is less than 0.05. Therefore, there are significant 
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differences between MODM methods in terms of service 

level. To exactly demonstrate the differences between 

these methods, we used Tukey’s comparison test in 

Minitab 17. The results have been presented in Table 7, 

indicating there are no significant differences between 

LP-metric and MCGPU. However, there are significant 

differences between MODM methods comparing to their 

optimal values. Fig.7 demonstrates the graphical 

comparison of service level by Tukey's comparison test. 

 

                                   Table 7 

                                   The results of Tukey’ comparison test related to the service level 

Difference of levels Difference of means Se of difference 95% CI T-Value P-Value 

B – A -0.1592 0.0257 (-0.2205, -0.0978) -6.18 0.000 

C – A -0.1470 0.0257 (-0.2084, -0.0857) -5.71 0.000 

C – B 0.0121 0.0257 (-0.0492,  0.0735) 0.47 0.885 

 

 
Fig. 7. The results of Tukey’s comparison test related to the service level 

Fig. 8 illustrates the average percentage of products under 

the continuous review policy. The results are obtained 

from solving numerical test problems by MODM methods 

or the individual optimization problem, indicating the (r, 

Q) policy is preferred to review inventory levels in most 

cases.  

 

 
Fig. 8. The average percentage of products under the continuous review policy 
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6. Conclusion 

ABC analysis is a classification method to tackle with the 

complex management of a large number of items. 

According to this method, the group ‘A’ items need 

precise control while the group ‘C’ items need less 

control. Although a survey on the literature reveals 

several studies in ABC analysis and inventory control 

policies, there is a lack of discussion on the group ‘B’ 

items. This group has moderate features. An appropriate 

inventory review policy for these items can increase 

customer satisfaction or avoid wasting resources. 

Therefore, this study proposed a bi-objective MBNLP 

model for a multi-product multi-period inventory 

problem, aiming to determine a proper inventory review 

policy for the group ‘B’ items. This study considered 

several functional constraints, storage capacity, number of 

orders, and maximum allowable shortage. Besides, the 

number of orders and storage capacity are chance 

constraints due to uncertainty. The model employs 

chance-constrained programming to transform the 

uncertain problem into deterministic.  

This study aims to minimize total cost and maximize 

service level simultaneously. On that account, two classic 

and novel MODM methods have been proposed to solve 

the bi-objective problem, namely LP-metric and MCGPU. 

These methods convert a bi-objective model to a single 

objective and can reach the exact solutions. Numerical 

test problems have been executed by MODM methods to 

compare them in terms of both objective function values 

and computational time. The results reflect insignificant 

differences between LP-metric, MCGPU, and the optimal 

values in terms of the total cost and computational time. 

However, there are significant differences between LP-

metric, MCGPU, and their optimal values in terms of the 

service level.  Moreover, the (r, Q) policy is selected to 

review the inventory levels in most instances.  

For further investigation, the proposed model can be 

extended in a multi-level supply chain considering lateral 

transshipments as an effective strategy to cope with the 

uncertainties. The solution procedure may revisit in large 

size instances. Moreover, a mixture of backorders and lost 

sales is considered as another modification.  
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