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Abstract 

Rainfall is a natural climatic phenomenon and prediction of its value is crucial for weather forecasting. For time series data 

forecasting, the Long Short-Term Memory (LSTM) network is shown to be superior as compared to other machine learning 

algorithms. Therefore, in this research work, a LSTM network is developed to predict daily average rainfall values using 

meteorological data obtained from the Malaysian Meteorological Department for Kuching, Sarawak, Malaysia. Six daily 

meteorology data, namely, minimum temperature (°C), maximum temperature (°C), mean temperature (°C), mean wind speed (m/s), 

mean sea level pressure (hPa) and mean relative humidity (%) from the year 2009 to 2013 were used as the input of the LSTM 

prediction model. The accuracy of the predicted daily average rainfall was assessed using coefficient determinant (R2) and Root 

Mean Square Error (RMSE). Contrary to the common practice of dividing the whole available data set into training, validation and 

testing sub-sets, the developed LSTM model in this study was applied to forecast the daily average rainfall for the month December 

2013 while training was done using the data prior of this month. An analysis on the testing data showed that, the data is more spread 

out in the testing set as compared to the training data. As LSTM requires the right setting of hyper-parameters, an analysis on the 

effects of the number of maximum epochs and the mini-batch size on the rainfall prediction accuracy were carried out in this study. 

From the experiments, a five layers LSTM model with number of maximum epoch of 10 and mini-batch size of 100 managed to 

achieve the best prediction at an average RMSE of 20.67 mm and R2 = 0.82.   
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1. Introduction  

Accurate forecasting of rainfall is still remaining as a 

demanding issue in the field of meteorological services. 

Rainfall contributes significantly in hydrological cycle 

and its value is critical for water resource planning and 

management, flood risk prevention and reservoir 

operation which affects our community (Kumar and et 

all, 2019; Hernández and et all., 2016).  

For some parts of the world, rainfall is the only source 

of freshwater. Therefore, predicting future rainfall 

events is very important to help human in planning and 

adapting strategies (Tran Anh, Duc Dang, & Pham 

Van, 2019). However, as the rainfall is resulting from 

various meteorological circumstances which are 

complex and the mathematical modelling for rainfall 

prediction is nonlinear (Kashiwao, 2017), the design of 

an effective rainfall prediction system is still remaining 

as a difficult task for researchers. Traditionally, rainfall 

prediction methods were mainly focusing on the 

Numerical Weather Prediction (NWP) and statistical 

model (Liu and et all., 2019). Yet, it was reported that, 

serious constraints had been noticed in these two 

models when there is a dynamic change and linear shift 

of rainfall (Darji, Dabhi, & Prajapati, 2015).  

In recent years, data-driven models have gained 

popularity in the field of hydrological variables 

prediction problems (Mandal & Jothiprakash, 2012). 

Data-driven models are basically methods that use 

computational intelligence and machine learning 

algorithms with the existence  of enormous volume of 

data accounting the modelled phenomena (Solomatine, 

2006). There has been a lot of machine learning 

algorithms that are proposed for time series analysis. 

Among these various machine learning algorithms, 

deep-learning, which is rooted from conventional 

neural network, has shown to outperform its 

predecessors (Pouyanfar , 2018).  This is due to the 

expansion and accessibility of data as well as the 

significant improvement in hardware technologies 

which had driven the advancement of deep learning 

studies. Deep learning uses graph theories with 

transformation between neurons to develop learning 

models with multiple layers. One of the major 

advantages of deep learning as compared to 

conventional neural network is that, the feature 

extraction in deep learning algorithms are performed 

automatically while the efficiency of the conventional 

neural network models relies on the goodness of the 

representation of the input data. In addition, features 

extraction is domain particular and involves 

tremendous amount of human work.  

Recurrent neural network (RNN) is a unique kind of 

deep learning model which has the ability to explicitly 
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handle the order of input observations. In other words, 

RNN has the ability to learn the temporal context of the 

input sequences for better prediction. Long Short-Term 

Memory (LSTM) network, which is famous for its 

ability to adjust some hyper-parameters (Jia and et al., 

2017) and capture the long temporal features of the 

input data, is a unique type of RNN model (Nakisa and 

et al., 2018).  In machine learning, the values of the 

hyper-parameters are used to control the learning 

processes and fine-tuning these values is essential to 

exploit the network’s functionality. Temporal 

characteristics of the historical rainfall data could be 

used to analyse and identify the phases of seasons. 

LSTM has shown great success in various areas, 

including rainfall prediction. However, the use of 

LSTM in short-term precipitation prediction, i.e. less 

than 24 hours, which has a mandatory impact on 

natural disaster management systems that happen in a 

very short period of time, like flash flood forecasting 

and thunder storm alert, is limited (Akbari Asanjan and 

et al., 2018). Long-term precipitation, on the other 

hand, typically range from a month to a seasonal 

forecast. Short-term precipitation prediction is an 

extremely tough problem due to the non-uniform and 

flawed characteristics of the meteorological structure 

over time (Kumar and et al., 2020).  

LSTM models of different architecture and 

optimization algorithms were found to be used for 

precipitation prediction from the review. In addition, 

the selection of the hyper-parameters was mostly based 

on the processing power of the system used to develop 

the model. Although the effects of the hyper-

parameters on the LSTM performance are 

acknowledged, the discussion on the selection on the 

hyper-parameters especially on the rainfall prediction 

using meteorology data is very little.  Therefore, in this 

study, we propose the use of LSTM model for 1-day 

short-term rainfall prediction, focusing particularly on 

analysing the effects of two hyper-parameters, i.e. the 

number of maximum epochs and mini-batch size of the 

network model, in the prediction accuracy, using 

meteorology data.  

2. Data 

Daily mean precipitation (mm), together with the other 

six daily meteorology variables, namely daily 

minimum temperature (°C), daily maximum 

temperature (°C), daily mean temperature (°C), daily 

mean relative humidity (%), daily mean wind speed 

(m/s) and daily mean sea level pressure (hPa) were 

obtained for Kuching city from Department of 

Meteorology Malaysia (Sarawak Branch) for the year 

2009 to 2013. The mean and standard deviation for 

each of these variables could be seen in Table 1.   

Kuching, the capital city of Sarawak, exhibits a tropical 

rainforest climate with hot, humid and wet weather 

conditions throughout the year and is the wettest city in 

Malaysia. During the wet monsoon season, normally 

happens in the month of November to February, the 

city would be showered with high density of rainfall 

which sometimes can last for days.  The average annual 

precipitation in Kuching is around 4200mm with 

approximately 250 rainy days per year. Due to the high 

precipitation intensity, flash flood is common in 

Kuching notably during the monsoon season. 

Therefore, there is an urgent need to be able to predict 

the future average daily rainfall. From Table 1, it could 

be seen that, the variation in terms of rainfall within a 

year is quite high.  This is mainly due to the not so 

clear-cut two seasons in Kuching: drier season during 

the months April to September and wetter season from 

the month October to March.  
  

Table 1 

The mean and standard deviation (Std) distribution for all the 

seven variables obtained from the Department of 

Meteorology Malaysia (Sarawak Branch) for Kuching city 

from year 2009 to 2013. 

Variables 
 Year 

2009 2010 2011 2012 2013 

Daily Max 

Temperature 
(0C) 

Mean 31.40 31.45 31.52 31.87 31.20 

Std 1.74 1.47 1.72 1.59 1.84 

Daily Min 

Temperature 
(0C) 

Mean 23.49 23.27 23.48 23.57 23.66 

Std 0.59 0.63 0.61 0.60 0.61 

Daily Mean 

Temperature 

(0C) 

Mean 26.35 26.15 26.33 26.52 26.33 

Std 0.89 0.84 0.90 0.88 0.87 

Daily Mean 

Relative 

Humidity(%) 

Mean 85.27 85.71 86.49 85.02 86.33 

Std 4.34 4.15 4.10 3.96 4.30 

Daily Mean 

Wind Speed ( 

m/s ) 

Mean 1.73 1.76 1.79 1.78 2.02 

Std 0.28 0.32 0.31 0.31 0.46 

Daily Mean 
Sea Level 

Pressure 

(hPa) 

Mean 1010.
21 

1008.8
0 

1009.2
4 

1009.2
1 

1009.2
9 

Std 1.30 1.06 1.27 1.30 1.22 

Rainfall 
(mm) 

Mean 14.00 11.86 21.22 11.61 17.65 

Std 25.35 18.92 35.81 19.53 26.95 

3. Methodology 

There were a total of 1825 data for each variable (365 

days x 5 years) obtained from the Department of 

Meteorology Malaysia (Sarawak Branch) for the year 

2009 to 2013. The data will go through data pre-

processing and normalization stages before the data 

division stage which will separate the data into training 

and testing data sets for the LSTM model.  Figure 1 

summarizes the overall methodology of this study.  

 
Figure 1. Overall methodology 

3.1. Data cleansing 

The data obtained contained defective values, which 

could be the result of missing values during data 

collection. As a pre-processing step, these values were 

cleaned from the data set. A total of 11 defective values 

were found from the total of 1825 data, resulting a 

remaining of 1814 data for further processing. These 
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defective values were denoted as -1.1 in the original 

dataset.  

3.2. Data Normalization/ De-normalization 

The cleaned data is next normalized using z-score 

normalization in order to convert the variables to a 

common scale with an average of zero and standard 

deviation of one using the formula below: 






x
z                                                      (1) 

where : 

z  : Normalized data, 

x  : Observed data 

  : Mean of the sample 

  : Standard deviation of the sample 

 

In this research study, the normalization was done 

according to each variable.  In other words, the mean 

and standard deviation of each variable were used to 

normalize the variable itself. Moreover, the training and 

testing data set used the standard deviation and mean 

from their own set of data for each variable.  

After the LSTM model has predicted the rainfall 

values, these values will be de-normalized using the 

mean and standard deviation of the rainfall data of the 

training and testing set to compute the accuracy of the 

prediction for the training and testing data set 

respectively. 

3.3. Data division  

Contrary to the common practice of dividing the whole 

dataset into training, validation and testing data set, the 

prediction will be done for the month December 2013 

in this study.  The rationale of this is that, the 

forecasting is for a future unseen month.  The training 

data set will consist of 59 months of meteorology data 

(from January 2009 to November 2013) while the 

testing data will be the 1-month of December 2013.  

The distribution of the mean and standard deviation of 

all the seven parameters in the training and testing data 

are listed in Table 2. From this table, it is clear that the 

testing data set has an average rainfall of much higher 

as compared to the training data. In addition, by 

looking at the higher standard deviation of the rainfall 

data of the testing data, it could be concluded that, the 

rainfall data in the testing data set is more spread out.  

Another observation from Table 2 is that, despite the 

large difference in the mean and standard deviation of 

the rainfall data in the testing data set, the mean and 

standard deviation for the other variables were quite 

consistent.  
 

Table 2 

The Mean and Standard deviation (Std) of the training and 

testing data set. 
Variables Training 

Data Set 

Testing 

Data Set 

Number of Data 1784 31 

Daily Max Temperature (0C) Mean 31.99 30.40 

Std 1.89 1.79 

Daily Min Temperature (0C) Mean 23.52 21.81 

Std 0.71 0.50 

Daily Mean Temperature (0C) Mean 26.63 26.04 

Std 1.05 0.68 

Daily Mean Relative Humidity(%) Mean 84.49 88.17 

Std 4.91 3.70 

Daily Mean Wind Speed ( m/s ) Mean 1.80 2.24 

Std 0.32 0.60 

Daily Mean Sea Level Pressure 

(hPa) 

Mean 1009.55 1009.02 

Std 1.34 1.09 

Rainfall (mm) Mean 11.76 23.54 

Std 22.98 30.91 

3.4. Long Short-Term memory (LSTM) network model 

LSTM model is a unique type of Recurrent Neural 

Network (RNN) network model that was developed 

specially to model temporal series (Salman and et al. 

2018). This special architecture was first presented by 

Hochreiter and Schmidhuber (Hochreiter & 

Schmidhuber 1997) to solve the vanishing and 

exploding gradients issues, i.e. the error backflow 

problem in the backpropagation algorithm, in RNN. 

This is mainly because the traditional RNN model 

could not learn the long-distance correlation in a long 

sequence as the gradient vector component deteriorate 

rapidly over the long distance (Bengio, Simard, & 

Frascon, 1994; Hochreiter, 1998). LSTM model offers a 

remedy to this by integrating memory units. With this 

memory units, the LSTM model will have the ability to 

learn when to disregard the past hidden states and when 

to update the hidden states with the given new 

information (Chen, 2016).  

 
Fig. 2. A typical LSTM block (Sakinah and et al., 2019)  

An LSTM block has hidden states as in the traditional 

RNN model. On top of this, the LSTM block is added 

with a cell state and three different gates, namely input 

gate, output gate, and forget gate as shown in Figure 2. 

The cell state, which is also the “memory” of the 

network, acts as a transport highway that carries 

relative information all the way down the sequence 

chain. Using Sigmoid activation function in the forget 

gate, the data enter into the LSTM model will be 

processed in order to decide which data to be stored or 

discard on the memory cell.  In the next step, the 

decision is to be made on what new information will be 

stored in the cell state. This particular process is 

divided into two phases: 1. Using the sigmoid layer, 

called as the input gate layer, a decision is to be made 

on which values will be updated, and 2. Using tanh 

activation function to create a new value vector to store 

at the memory cell.  The combination of the values 

from the forget and input gates will substitute the 

former value in the memory cell of the cell gate. Two 
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operations will be implemented in the output gates.  In 

the first operation, using sigmoid activation function, 

the decision on which part the memory cell to be freed 

will be made. In the second operation, a new value will 

be positioned in the memory cell using the tanh 

activation function.  This new value will be calculated 

by multiplication of these two functions. The main 

parts of an LSTM network are the input and LSTM 

block/layer.  The input layer is the layer where 

sequence or time series data are inputted into the 

model. The LSTM block/layer will learn the long-term 

dependencies between the time steps of the sequence 

data.  In Figure 2, the repeating modules (labelled as A) 

in an LSTM architecture are shown. In the central 

block shown in Figure 2, input xt together with an input 

in the time point t-1 are received. Next, it generates 

output ht which is also an input in the time point t+1.  

 
Fig. 3. LSTM architecture used. 

In our proposed methodology, a five layers network 

model as shown in Figure 3 is developed: one input 

layer, two LSTM blocks/layers, one fully connected 

layer and one regression output layer.  In the input 

layer, the six meteorology data (daily maximum 

temperature (
0
C), daily minimum temperature (

0
C), 

daily mean temperature (
0
C), daily mean relative 

humidity (%), daily mean wind speed (m/s) and daily 

mean sea level pressure (hPa) were used. The hidden 

units in LSTM layer 1 and LSTM layer 2 are set to 10 

in each layer.  The output layer consisted of the one 

response which is the daily mean rainfall. The size of 

the fully connected layer was set to the number of 

response in the output layer, which is one in this case. 

The Adaptive Moment Estimation (ADAM) 

optimization algorithm (Kingma & Ba, 2014) is used to 

train the LSTM model. ADAM, an adaptive learning 

rate algorithm, will calculate the learning rates for each 

individual parameter. The advantages of ADAM 

included efficient stochastic optimization which only 

needs first-order gradients with little memory 

requirement (Jiang & Chen, 2017).  

3.5. LSTM Hyper-parameters  

Regardless of the application areas of LSTM, there are 

several hyper-parameters that affect the performance of 

the network. Hyper-parameters are configurations that 

are external to the model and whose values cannot be 

estimated from the data(Paper, 2020). These values 

require tuning in order to harness the ability of the 

network. The tuning process is tedious as it is normally 

non-intuitive, time-consuming and systematic trial-and-

error procedures. In this research work, the effects of 

the two hyper-parameters, i.e. maximum epoch and 

mini batch size, on the effects on the LSTM 

performances are analysed.  These two hyper-

parameters are explained below: 

Maximum number of Epochs 

An epoch is defined as the thorough pass of the training 

algorithm over the entire training set. The maximum 

epoch is the maximum number of full pass of the 

training algorithm through the entire training set. In this 

study, the maximum number of epochs was set with 

values ranging from 10 to 1000, in order to analyse the 

effects of this hyper-parameter.   

Mini batch-size 

The mini-batch size is defined as a sub group of the 

training data set that is used to assess the gradient of 

the loss function and to update the weights. In neural 

network training, stochastic gradient descent 

optimization algorithm is used. A general gradient 

descent algorithm is defined as: 

   J    (1) 

where  J : objective function, 

       : model’s parameters, and  

       : learning rate which determines the size of the 

steps taken to reach a local minimum  

A stochastic gradient descent algorithm is a variation of 

the general gradient descent algorithm and can be 

calculated using the formula below:  

 )()( ;; ii yxJ      (2) 

where 
)(ix is the training example, and  

     
)(iy  is the label  

Using the stochastic gradient descent optimization 

algorithm, the present state of the model will be used 

for prediction.  The prediction will next be compared 

with the expected values and the difference of these 

two values is used to estimate the error or loss gradient 

(Brownlee, 2018).  This loss gradient, which is a 

statistical estimate, is then used to update the model 

weights and the process is repeated. From here, it could 

be seen that, the more training examples used in the 

estimate, the more accurate this estimate will be and 

more likely that the weights of the network will be 

adjusted in a way that will improve the performance of 

the model. The improved estimate of the loss gradient 

comes at the cost of having to use the model to make 

many more predictions before the estimate can be 

calculated, and in turn, the weights updated. The 

number of training examples used in the estimate of the 

error gradient is a hyperparameter for the learning 

algorithm called the “batch size”. Batch size controls 

the accuracy of the estimate of the error gradient when 

training neural networks(Masters & Luschi, 2018). A 

mini batch-size is a configuration of the batch size 

anywhere in between, e.g. more than 1 example and 

less than the number of examples in the training 

dataset. This sub-unit of the training data has two 

purpose: 1. to assess the gradient of the loss function, 

as well as, 2. to update the weights.  The neural 

network weights are updated using the gradients values. 

However, as the gradients travel through the network, 

the gradients will start to vanish.   There will be not 

much learning if the gradients values become extremely 
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small.  In this study, this number was set to 100 at the 

very beginning when running the analysis on the 

number of maximum epochs. Next, using the number 

of maximum epochs which achieves the lowest RMSE 

(Root Mean Square Error) value, the experiments on 

the mini-batch size, which ranges from 10 to 1000 were 

carried out.   

4. Results & Analysis 

4.1. Performance measurements parameters  

To assess the efficiency of the developed model, two 

performance measurements are calculated, which are 

the Root Mean Square Error (RMSE) and correlation of 

determinant (R
2
). The RMSE will assess how closely 

the predicted values match the observed values, i.e. 

measures that overall agreement between the actual and 

predicted values.  There is no upper bound and the 

value 0 means the model is perfect. The calculation of 

RMSE was done using equation (3):  

 

N

ActualForecasted
RMSE

N

i ii 


 1

2

      (3) 

The coefficient of determinant (R
2
), also called 

goodness of fit, measures the strength of the linear 

relationship between the forecasted and actual rainfall 

value. R
2
 ranges in between 0.0 to 1.0 with value of 1.0 

suggests a perfect fit between the two variables and 0.0 

would mean the model did not manage to model the 

data accurately.  

In addition to the RMSE and R
2 

values, the training 

elapsed time (sec), which is the amount of time 

MATLAB takes to accomplish the training process on 

the Intel® Xeon ® CPU at 2.4 GHz system with 32GB 

was also recorded.  

4.2. Analysing the effects of maximum epochs  

An epoch is defined as the thorough pass of the training 

algorithm over the entire training set. To analyse the 

effects of the maximum epoch, experiments with the 

maximum number of epochs being set to 10, 20, 30, 40, 

50, 60, 70, 80, 90, 100, 200, 300, 500 and 1000 were 

carried out and the results in terms of RMSE (mm), R
2
 

and the average training elapsed time (sec) were shown 

in Table 3.  For each experiment, the LSTM model is 

run ten times and the average RMSE, R
2
 and training 

elapsed time were calculated. The size of the mini-

batch was set to 100 for this part of experiment.  
 

Table 3 

 Effects of the maximum epochs on the rainfall prediction 

using the proposed LSTM architecture. 

#Max Epoch RMSE (mm) R2 

Training Elapsed 

Time (sec) 

10 20.67 0.82 5.10 

20 21.50 0.75 8.60 

30 22.62 0.68 11.50 

40 22.68 0.70 14.30 

50 22.47 0.71 17.70 

60 22.07 0.70 20.00 

70 24.20 0.64 23.80 

80 23.79 0.64 26.20 

90 23.22 0.70 30.30 

100 23.83 0.62 36.00 

200 24.48 0.59 72.00 

300 24.32 0.61 95.60 

500 23.35 0.67 154.60 

1000 23.67 0.65 338.60 

 

 
Fig. 3. Line graph showings the RMSE and R2 obtained with 

different number of maximum epoch used.  

From Table 3, it could be seen that, the best RMSE 

achieved was 20.67 mm with R
2
 = 0.82 with the 

number of maximum epochs equals to 10. The worst 

RMSE value achieved was 24.48 mm with lowest R
2
 = 

0.59 when the maximum epochs were 200.  There was 

a difference of around 18% between the lowest and 

highest RMSE obtained. It could be concluded that, 

when the number of maximum epochs increases, the 

accuracy of the LSTM model deteriorates, with RMSE 

values getting larger and R
2 

values getting smaller. 

When the number of maximum epochs rises, more time 

was needed to train the LSTM model. The average 

training elapsed time for each maximum epochs are 

shown in Table 3. Therefore, it can be concluded that, 

the RMSE and R
2
 values show that, the accuracy of the 

LSTM network model is affected by the number of 

maximum epochs used. In this case, the increase of the 

number of maximum epochs does not improve the 

accuracy of the prediction made.  

4.3. Analysing the effects of mini-batch size  

The mini-batch size is defined as a sub group of the 

training data set that is used to assess the gradient of 

the loss function and to update the weights. Using small 

batch size is known to achieve faster convergence as 

the LSTM model with small batch size will start to 

learn before seeing all the data.  However, there is no 

guarantee that the network would converge to the 

global optima. In this part of the experiments, the mini-

batch size was set to 10, 20, 30, 40, 50, 60, 70, 80, 90, 

100, 200, 300, 400, 500 and 1000. For each mini-batch 

size, the LSTM model was trained and tested 10 times 
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and the average RMSE, R
2
 and training time elapsed 

were calculated. The maximum number of epochs was 

set to 10, which is the lowest RMSE with highest R
2
 

values obtained from the previous experiment. 
 

Table 4 

Effects of the different mini-batch size on the rainfall 

prediction using the proposed LSTM architecture. 
Mini-batch 

Size RMSE (mm) R2 

Training Elapsed 

Time (sec) 

10 21.48 0.78 5.30 

20 22.26 0.77 5.20 

30 21.40 0.79 5.30 

40 21.47 0.77 5.50 

50 22.80 0.71 5.30 

60 21.21 0.79 5.40 

70 21.86 0.77 5.40 

80 21.49 0.76 5.40 

90 21.50 0.78 5.40 

100 20.67 0.82 5.10 

200 20.83 0.79 5.50 

300 21.21 0.79 5.20 

400 21.48 0.78 5.30 

500 21.81 0.76 5.40 

1000 21.45 0.79 5.40 

 

 
Fig. 4. Line graph showings the RMSE and R2 obtained using 

different number of mini-batch size.  

From Table 4, the lowest RMSE obtained was 20.67 

mm with R
2
 = 0.82 using mini-batch size of 100. Figure 

4 shows the RMSE and R
2
 values obtained in this part 

of the experiment. From Figure 4, it could be seen that, 

the performance of the LSTM model increases, 

although not consistently, when the mini-batch size 

increases from 10 to 100, and started to decrease after 

the 100 mini-batch size. The training elapsed time was 

quite consistent for all the different number of mini-

batch size used.  

4.4. Rainfall prediction  

Using the proposed LSTM architecture as explained 

above, and with maximum epochs and mini-batch size 

set to 10 and 100 respectively, the network model is 

trained and tested for 10 times using 59 months of data 

for training and the last one month of the data for 

testing.  The RMSE and R
2 

for the rainfall prediction 

obtained are shown in Table 5. In addition, the elapsed 

time in seconds for training of the model is also shown. 

The average RMSE obtained was 20.67 mm with R
2
 = 

0.82. The average training elapsed time was 5.10 sec.  
 

Table 5 

RMSE, R2 and Training Elapsed time (sec) for the 10 runs 

using the developed model to predict the daily mean rainfall 

(mm) 
Run RMSE (mm) R2 Training Elapsed 

Time (sec) 

1 22.15 0.80 5.00 

2 19.35 0.82 5.00 

3 20.91 0.79 5.00 

4 19.07 0.87 5.00 

5 22.76 0.87 5.00 

6 20.56 0.78 6.00 

7 19.06 0.83 5.00 

8 22.55 0.78 5.00 

9 20.16 0.85 5.00 

10 20.13 0.86 5.00 

Average 20.67 0.82 5.10 

5. Conclusion 

In this research work, a five layers LSTM network 

model was designed and developed to predict rainfall 

values using six meteorology data obtained from the 

Department of Meteorology Malaysia (Sarawak 

Branch) for the year 2009 to 2013. An analysis on the 

number of maximum epochs and the mini-batch size of 

the LSTM network model on the accuracy of the daily 

rainfall prediction was done. It was revealed that, the 

prediction accuracy is influenced by these two 

parameters. For the maximum epochs, the increase of 

this number shows that, the accuracy of the rainfall 

prediction deteriorates.  In terms of mini-batch size, the 

rainfall prediction accuracy increases when the mini-

batch size increases from 10 to 100, and started to 

decrease after the 100 mini-batch size.  The best 

prediction accuracy obtained was RMSE = 20.67 mm 

with R
2
 = 0.82.  A further improvement of the current 

research would be a study on the relationship between 

the size of training set on the prediction accuracy.  
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