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 Abstract  

In this research, a tri-objective mathematical model is proposed for the Transportation-Location-Routing problem. The model considers a 

three-echelon supply chain and aims to minimize total costs, maximize the minimum reliability of the traveled routes and establish a well-

balanced set of routes. In order to solve the proposed model, four metaheuristic algorithms, including Multi-Objective Grey Wolf Optimizer 

(MOGWO), Multi-Objective Water Cycle Algorithm (MOWCA), Multi-objective Particle Swarm Optimization (MOPSO) and Non-

Dominated Sorting Genetic Algorithm- II (NSGA-II) are developed. The performance of the algorithms is evaluated by solving various test 

problems in small, medium, and large scale. Four performance measures, including Diversity, Hypervolume, Number of Non-dominated 

Solutions, and CPU-Time, are considered to evaluate the effectiveness of the algorithms. In the end, the superior algorithm is determined 

by Technique for Order of Preference by Similarity to Ideal Solution method. 
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1. Introduction 

The distribution network in the supply chain management 

consists of operations related to the transportation of final 

products and distrusting them to the final clients. 

Decisions about the location of distribution centers and 

distribution of products among clients are the two main 

challenges that should be addressed in the distribution 

systems (Martínez-Salazar et al., 2014). To address 

decisions about location and routing in the supply chain 

management, two classical models, including Facility 

Location Problem (FLP) and Vehicle Routing Problem 

(VRP) should be combined, which result in Location 

Routing Problem (LRP). These models are widely applied 

to solve real-world problems in the blood supply chain, 

food supply chain, humanitarian relief, etc. Both FLP and 

VRP are known as NP-Hard problems. Therefore, the 

resulting LRP formulation is even more complex 

(Cornnejols et al., 1977; Karp et al., 1972; Tuzun and 

Burke, 1999). 

As shown in the literature, solving FLP and VRP models 

separately results in sub-optimal solutions. The decisions 

related to the location of facilities are at the strategic level. 

However, those related to the routing are at the tactical 

level. Thus, a comprehensive model that considers both 

decisions is of great importance. In addition to considering 

the complexity of the resulting model, it is needed to  

As mentioned earlier, the LRP model is NP-Hard. 

Therefore, developing an efficient solution algorithm for 

this problem is a challenging task. Many researchers have 

aimed to develop new solution techniques to solve the 

LRP problem. One of the most commonly used solution 

approaches to solve the NP-Hard LRP model is 

metaheuristics. Metaheuristics have several advantages 

over traditional techniques. The first and most important 

advantage of the metaheuristic algorithms over the 

traditional optimization methods is that they do not need 

gradient information to solve optimization problems. 

Second, using exploration ability, metaheuristics can 

decrease the probability of trapping in local optima 

(Khalilpourazari et al., 2020). 

In recent years, many researchers have aimed to 

implement metaheuristic algorithms in order to solve LRP 

models such as Tabu Search(TS) (Albareda-Sambola et 

al., 2001; Albareda-Sambola et al., 2005, Caballero et al., 

2007; Lin and Kwok, 2006; Tuzun and Burke, 1999; 

Wang et al., 2005), Simulated Annealing (SA) (Wu et al., 

2002), Particle Swarm Optimization (PSO) (Peng and Bai, 

2006), multiple ant colony optimization algorithm 

(MACO) (Ting and Chen, 2013), variable neighborhood 

search (VNS) (Jarboui et al., 2013), and some hybrid 

metaheuristics, such as a hybrid PSO with Path Relinking 

(Marinakis and Marinaki, propose efficient solution 

techniques to solve complex LRP.2008), an algorithm 

combining Simulated Annealing with an Ant Colony 

System (Khalilpourazari et al., 2020), a GRASP algorithm 

complemented by Path Relinking (Prins et al., 2006). 

In recent years, Ghatreh Samani and Hosseini-Motlagh 

(2017) studied the LRP with simultaneous pickups and 

deliveries. In order to increase the applicability of the 

proposed model, the authors considered uncertainty in the 

formulation. The researchers proposed a MIP for the 
*Corresponding author Email address: safari.fariba@qiau.ac.ir 
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problem and solved it using GA and SA. Adrang et al. 

(2020) have raised the problem of location routing for 

emergency medical services in the event of a disaster. 

This problem is formulated as a two-objective mixed-

integer linear programming model (MILP). Brandão 

(2020) investigated the multi-depot open routing problem. 

The author developed a MIP for the problem and solved it 

using an iterated local search algorithm. Manavizadeh et 

al. (2020) In their paper, they present a mathematical 

model for the Green Vehicle Routing (GVRP) problem, 

combining dual-fuel pickup trucks (natural gas and 

gasoline) in a fleet of combined vehicles. Hosseini-

Motlagh et al. (2020) proposed a robust model for the 

inventory routing problem. The authors also considered 

several depots in their model. The authors used a robust 

possibilistic approach to formulate the uncertainties in the 

model.  

The main drawback and limitation in the previous studies 

was considering a single-stage LRP problem. Thus, in 

recent years researchers have aimed to develop more 

realistic models by considering multi-echelon supply 

chains such as: (Samani et al., 2019; Ambrosino and 

Scutella, 2005; Boccia et al., 2010; Contardo et al., 2012; 

Lashine et al., 2006; Hidayatul et al., 2019; Haeri et al., 

2020; Hosseini-Motlagh et al., 2020; Haeri et al., 2020). 

One of the main challenges in the previous studies is that 

the authors claimed that the solution of the proposed 

models takes several hours for small scale problems and 

even days for large scale problems. Thus, proposing an 

efficient solution method for the LRP problem is still an 

issue.  

In supply chain management and distribution systems, 

most decision-makers seek to optimize several objectives 

simultaneously, for instance, minimization of costs, 

minimization of total transportation time, or maximizing 

reliability of the network. Therefore, developing new 

models that can consider several objectives is essential. In 

this regard, Martínez-Salazar et al. Proposed a new bi-

objective mathematical model for the LRP problem 

considering transportation decisions, which is called 

Transportation Location Routing Problem (TLRP). The 

authors considered two objectives that aimed to minimize 

total network costs as well as establish well-balanced 

routes. They proposed two metaheuristics to solve the 

problem and showed that their proposed algorithms 

perform efficiently in large scale. In this paper, the 

proposed model by Martínez-Salazar et al.  is modified by 

adding a new objective function that aims to maximize the 

minimum reliability of the routes in the routing stage 

(Martínez-Salazar et al., 2014). Reliability is one of the 

most critical objective functions in distribution systems in 

the majority of real-world applications such as disaster 

relief distribution, blood supply chain network design, 

disaster management, etc. Therefore, considering this 

critical objective is essential in TLRP. 

Since the proposed model in this research is a tri-objective 

mathematical model, developing efficient solution 

methods to solve the problem is of great importance. In 

this research, the objective functions are in conflict. Thus, 

only efficient (Pareto) solutions are acceptable. These 

efficient solutions help the decision-makers to choose 

their preferred solutions and are of great importance. In 

this regard, in order to solve the proposed tri-objective 

model and obtain efficient Pareto optimal solutions, an 

efficient solution methodology called Multi-Objective 

Grey Wolf Optimizer is utilized, and its efficiency is 

evaluated and compared with well-known efficient 

algorithms such as Multi-Objective Water Cycle 

Algorithm (MOWCA), Multi-objective Particle Swarm 

Optimization (MOPSO) and Non-Dominated Sorting 

Genetic Algorithm- II (NSGA-II). Grey Wolf Optimizer 

(GWO) is a novel and recently developed metaheuristic 

algorithm which has been implemented on various 

research disciplines (Chaman-Motlagh, 2015; Emary et 

al., 2014; Kamboj et al., 2016; Khalilpourazari et al., 

2019; Mohammadi and Khalilpourazari, 2017; 

Khalilpourazari and Mohammadi, 2016; Komaki and 

Kayvanfar, 2015; Khalilpourazari et al., 2019; Precup et 

al., 2017; Sharma and Saikia, 2015; Song et al., 2015; 

Sulaiman et al., 2015). To the best of our knowledge, this 

is the first time that the GWO is implemented and adopted 

to solve a complex TLRP. The performance of the 

algorithms is evaluated by solving various test problems 

within different test instances in small, medium, and large 

scale. Four performance measures, including Diversity, 

Hypervolume, Number of Non-dominated Solutions, and 

CPU-Time, are considered to evaluate the effectiveness of 

the algorithms. In the end, the superior algorithm is 

determined by Technique for Order of Preference by 

Similarity to Ideal Solution method. 

2. Problem Definition 

The TLRP considers a three-echelon supply chain, which 

consists of suppliers, City Distribution Centers, and clients 

(demand points). The final products are produced in plants 

and transported to CDCs using different transportation 

means with variant capacities (Martínez-Salazar et al., 

2014). Then, products in the CDCs are used to satisfy the 

clients’ demand. The problem has some assumptions 

which are listed below. 

- The production capacity of plants is limited. 

- The capacity of transportation means that carry products 

from plants to CDCs is limited. 

- The establishment costs of a CDC at each potential 

location is different. 

- The capacity of vehicles that transport products from 

CDCs to clients is limited. 

- Each client should be allocated to precisely one CDC. 

- The demand of each client is known. 

In the following, a tri-objective mathematical model is 

presented for the problem. The model aims to minimize 

total supply chain costs, the establishment of a well-

balanced set of routes, and maximizing the minimum 

reliability of routes. By solving the proposed three 

objective mathematical model, the following decisions can 

be made. 

- Optimal location of CDCs. 

- The optimal number of required CDCs. 

- The number of transportation means required to 

transport products from each plant to each CDC. 
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- The number of products transported from each plant to 

each CDC. 

- Allocation of clients to CDCs. 

- Optimal transportation routes. 

The following sets, notations, and decision variables are 

considered in order to present the mathematical model of 

the problem. 

Sets 

k 1,2,...,p  Set of production plants 

j 1,2,...,m  Set of CDCs 

i 1,2,...,n  Set of clients 

l i  Set of clients 

q i j   Set of CDCs and clients 

h i j   Set of CDCs and clients 

Parameters 

ka  Production capacity of plant k 

kjd  
Cost of sending one truck from plant k to CDC j 

R  
Truck capacity used for transportation between 

plants and CDCs 

jg  Fixed establishment cost of a CDC at potential 

location j 

jb  Capacity of CDC located at location j 

ih  Demand of client i 

ijc  Cost of visiting client or CDC j right after client or 

CDC i in the route stage 

Q  Vehicle capacity in routing stage 

ij  Traveling distance from client or CDC i to client or 

CDC j 

T  Maximum allowable traveling distance vehicles in 

routing stage 

hqr  
Reliability of route between facility h and facility q 

Decision Variables 

kjv  Amount of product transported from plant k to CDC 

j 

kjw  Number of trucks sent from plant k to CDC j 

jy  1 if CDC j is opened; otherwise zero 

ijz  1 if client i is allocated to CDC j; otherwise zero 

0ijx  1 if client i is the first client on any route starting 

from CDC j 

i0 jx  1 if client i is the last client on any route starting 

from CDC j 

iljx  1 if client i is visited right after client l on any route 

of CDC j; otherwise zero 

iu  vehicles capacity and sub-tour elimination 
variables. 

ie  maximum distance constraint variables. 

minL  shortest route Length 

maxL  longest route Length 

hqjreliability  
hqr  if 

hqjx  is equal to 1; otherwise 1 

 

The first objective function aims to minimize total supply 

chain costs, including fixed establishment costs of CDCs 

and transportation costs in the first echelon and routing 

costs in the second echelon of the supply chain. The total 

cost function of the considered supply chain can be 

presented as follows. 

 1 kj kj j j ij oij i0 j il ilj

k j j i j i j l

Min  z d w g y c x x c x       
 

(1) 

The second objective function aims to establish well-

balanced routes. This objective function is presented as 

follows [28]: 

2 max minMin  z L L      (2) 

In which Lmin is the length of the shortest route and Lmax is 

the length of the longest route. 

The third objective function targets maximization of the 

minimum reliability of the established routes. This 

objective function is formulated as follows. 

3 hqj

h q j 1,2,...,m

Max  z Min reliability



 
  

 


 
(3) 

In order to calculate the value of the variable reliabilityitj, 

the following constraints are considered. 

 hqj hqjreliability 1 x   (4) 

 hqj hq hqj hqjreliability r x 1 x    (5) 

hqj hq hqjreliability r x  (6) 

The above-mentioned constraints assign a value equal to 

rhl selected routes and 1 to available routes. The 

production capacity of plant k is presented as follows. 

kj k

j

v a  
(7) 

The following constraint calculates the number of requires 

trucks to transport products from each plant to each CDC. 

kj

kj

v
w

R
  (8) 

Where R is the capacity of trucks in the routing stage and 

wkj is a positive integer variable, it is necessary to ensure 

that the total amount of transported products to a specific 

CDC does not exceed its capacity. For this purpose, the 

following constraint is considered. 

kj j j

k

v b y  
(9) 
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The total amount of transported products to each CDC is 

equal to the total demand of clients assigned to that CDC. 

The following constraint is considered to ensure this. 

kj ij i

k i

v z h 
 

(10) 

The following constraint guarantees that each client is 

assigned to precisely one CDC. 

ij

j

z 1  
(11) 

The following constraint ensures that if a vehicle leaves a 

CDC, it should return to the same CDC. 

0ij i0 j

i i

x x   
(12) 

i0 j

i

x 1  
(13) 

In the considered supply chain, it should be ensured that 

each client is visited immediately after exactly one CDC 

or after another client. On the other hand, some constraints 

should be considered to construct routes only between 

clients assigned to the same CDC. 

hlj lj

h

x z  
(14) 

ihj ij

h

x z  
(15) 

In order to prevent exceeding vehicle capacities and avoid 

the generation of sub-tours, the following constraints are 

considered. 

i l ilj l

j

u u Q x Q h     
(16) 

i ih u Q   (17) 

In order to calculate the value of the second objective 

function, the following constraints are considered [28]. 

   i l il ilj il lij

j j

e e T x T x T          
(18) 

 0ij ji i 0ij ji

j j

x e T x T        
(19) 

i ij i0 j

j

e T x    
(20) 

max i ij i0 j

j

L e x    
(21) 

 min i ij i0 j

j

L e T x T      
(22) 

The following constraints show the decision variables and 

their possible values. 

i i kje ,u ,v 0  (23) 

 j ij hqjy ,z , x 0,1  (24) 

kjw 0,   int  (25) 

hqj0 reliability 1   (26) 
 

3. Solution Methodology 

The TLRP model presented in this paper consists of 

decisions related to the location of CDCs and routing. 

Both location and routing decisions are known as Np-hard 

problems in the literature. Therefore, the proposed model 

in this research is Np-hard. Besides, the proposed model 

in this research is a tri-objective model. For a multi-

objective model, the ideal solution is a solution that 

minimizes (maximizes) the minimization (maximization) 

objective functions simultaneously. Since, in this research, 

the objective functions are in conflict, only efficient 

(Pareto) solutions are acceptable (Fazli-Khalaf et al., 

2017; Pasandideh and Khalilpourazari, 2018; 

Khalilpourazari et al., 2019). These efficient solutions 

help the decision-makers to choose their preferred 

solutions and are of great importance. Therefore, in order 

to solve the proposed tri-objective model and obtain 

efficient Pareto optimal solutions, an efficient solution 

methodology called Multi-Objective Grey Wolf Optimizer 

is utilized. Its efficiency is evaluated and compared with 

well-known efficient algorithms such as Multi-Objective 

Water Cycle Algorithm (MOWCA), Multi-objective 

Particle Swarm Optimization (MOPSO) and Non-

Dominated Sorting Genetic Algorithm- II (NSGA-II). 

Grey Wolf Optimizer (GWO) is a novel and recently 

developed metaheuristic algorithm which has been 

implemented on various research disciplines (Chaman-

Motlagh, 2015; Emary et al., 2014; Kamboj et al., 2016; 

Khalilpourazari et al., 2019; Mohammadi and 

Khalilpourazari, 2017; Khalilpourazari and Mohammadi, 

2016; Komaki and Kayvanfar, 2015; Khalilpourazari et 

al., 2019; Precup et al., 2017; Sharma and Saikia, 2015; 

Song et al., 2015; Sulaiman et al., 2015). To the best of 

our knowledge, this is the first time that the GWO is 

implemented and adopted to solve a complex TLRP. 
 

3. 1. Grey wolf optimizer 
 

Grey Wolf Optimizer (GWO) was first proposed by 

Mirjalili et al., (2014). The GWO mimics the behavior of 

the Grey Wolves while hunting in order to optimize 

complex problems. Grey wolves usually live in a pack 

consisting of 5-12 grey wolves (Khalilpourazari and 

Pasandideh, 2019). One of the most interesting things 

about grey wolves is their social hierarchy, which is 

showed graphically in Figure 1. 
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Fig. 1. Grey wolves’ hierarchy and their responsibilities 

Alpha, Beta, and Delta wolves are the most dominant 

wolves in the pack, respectively. The alpha wolf acts as 

the leader and is responsible for making decisions. The 

beta wolf is the wolf who helps the alpha in managing the 

pack. The omega wolves are lowest in rank and must 

follow Alpha, Beta, and Delta wolves. The other wolves 

are called Delta, who help the Alpha and Beta in 

managing the pack. In the GWO, the positions of 

dominant wolves are considered as the best 

approximation of the position of prey (optimal point). So, 

the GWO updates the position of other wolves regarding 

the positions of Alpha, Beta, and Delta. This process is 

called hunting, which is illustrated in the following. 

In nature, the grey wolves start the hunting process by 

encircling the prey. In GWO, the hunting process also 

starts with encircling the prey. To encircle the prey, the 

following formulation is used to update the position of the 

grey wolves (Khalilpourazari and Pasandideh, 2019). 

)()(. tXtXCD p


  (27) 

DAtXtX p


.)()1(   (28) 

Where C


and A


are coefficients.
pX


is the 

position of prey and X


 is the position of the grey wolves 

(Mirjalili et al., 2014). In the above formulations, 

Parameter A has a prominent role since it determines the 

search radius of the grey wolves. These coefficients are 

calculated in each iteration of the GWO as follows. 

araA


 1. 2  (29) 

22. C r  (30) 

Where a


decreases from two to zero throughout 

iterations. 1r


, 2r


parameters are randomly generated 

numbers between 0 and 1. The above formulas allow the 

grey wolves to update their positions around the prey, 

efficiently.  

As mentioned earlier, the omega wolves update their 

position based on the position of the dominant wolves. 

The following equations are considered to update the 

position of the omega wolves in GWO. 

XXCDXXCDXXCD


  .,  .,  . 321
 (31) 

 DAXXDAXXDAXX


.,  .,  . 332211   (32) 

3
)1( 321 XXX

tX




  (33) 

By decreasing the value of the a


(search radius) over the 

course of iterations, GWO makes a proper trade-off 

between exploration and exploitation during the 

optimization process (Khalilpourazari and Mohammadi, 

2018) 

In order to solve multi-objective problems using GWO, 

some modifications are needed. So, first, an external 

archive is added to basic GWO to maintain the obtained 

non-dominated Pareto solutions. By adding the archive to 

GWO, three cases may occur during optimization 

(Mirjalili et al., 2016) 

1- A recently found Pareto solution can be dominated by 

at least one of the current solutions in the archive. In this 

case, the recently found solution will be ignored. 

2- The new solution dominates one or more solutions in 

the archive. In this case, the dominated solutions are 

eliminated from the archive, and the new solution will be 

added to the archive. 

3- If neither the new solution nor archive members 

dominate each other, the new solution should be added to 

the archive. 

4- If the archive is full, the grid mechanism should be run 

to re-arrange the segmentation of the objective space to 

find the most crowded segment, the best segment to 

eliminate a solution from. 

Second, grid mechanism and leader selection techniques 

are added to basic GWO in order to determine dominant 

wolves based on the least populated segments of objective 

space. The leader selection mechanism considers the least 

crowded segments of the objective space and choses some 

non-dominated solutions as alpha, beta, or Delta. The 

selection is carried out using a roulette-wheel method 

with the following probability for each segment. 

j

j

c
P

N
 

(34) 

Where c is a constant and 
jN is the number of non-

dominated particles in j
th 

segment. The pseudo-code of the 

MOGWO is presented in the following. 
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Initialize the grey wolf population Xi (i = 1, 2, ..., n) 

Initialize a, A, and C 

Calculate the objective values for each search agent 

Find the non-dominated solutions and initialized the archive 
with them 

Xα=SelectLeader(archive) 

Exclude alpha from the archive 

Xβ= SelectLeader(archive) 

Exclude beta from the archive 

Xδ= SelectLeader(archive) 

t=1; 

while (t < Max number of iterations) 

for each search agent 

Update the position of the current search agent by equations 

(3.5)-(3.11) 

endfor 

Update a, A, and C 

Calculate the objective values of all search agents 

Find the non-dominated solutions 

Update the archive with respect to the obtained non-dominated 
solutions 

If the archive is full 

Run the grid mechanism to omit one of the current archive 
members 

Add the new solution to the archive 

endif 

If any of the new added solutions to the archive is located 
outside the hypercubes 

Update the grids to cover the new solution(s) 

endif 

Xα=SelectLeader(archive) 

Exclude alpha from the archive 

Xβ= SelectLeader(archive) 

Exclude beta from the archive 

Xδ= SelectLeader(archive) 

t=t+1 

endwhile 

return archive 

 

4. Performance Evaluation 

In this section, various test problems are solved in 

different sizes to evaluate the performance of the solution 

methodologies. In order to compare the solution methods, 

four performance measures are considered. The first 

measure is diversity. This measure, introduced by Zitzeler 

et al. (2001) and Zitzler and Thiele (1999), takes the 

measurement of the space spread by Pareto-optimal 

solutions; this measure shows the coverage of an 

algorithm. The high value of D is desirable. The second 

measure is the Number of Non-dominated Pareto 

solutions (NNS). This measure determines the number of 

non-dominated Pareto-optimal solutions provided by each 

algorithm. The high value of NNS is desirable. The third 

measure is Hyper volume (HV) proposed by Zitzler and 

Thiele (1998). This measure determines the convergence 

of an algorithm. A significant value of HV is desirable. 

The fourth measure is CPU-Time. This measure shows 

the CPU time required by an algorithm to obtain Pareto-

optimal solutions (Zitzler, 1999; Khalilpourazari et al., 

2020; Fazli-Khalaf et al., 2017). 

In order to compare the efficiency of the algorithms, the 

performance of the algorithms is evaluated, considering 

the four afore-mentioned performance measures. As 

suggested in the literature of metaheuristics, it is better to 

evaluate the performance of metaheuristics in small-to-

medium and large scale separately (Khalilpourazari et al., 

2019). 
 

4. 1. Small-to-medium size test problems 

In this section, various small-to-medium size test 

problems are considered to evaluate the performance of 

the algorithms. For this purpose, twenty test problems 

with different sizes are considered. Then, each test 

problem is solved several times using each algorithm, and 

the average value of D and HV measures are reported. 

Table 1 presents the specific details of the results. 

 
Table 1 

Results of optimization in small-to-medium size test problems 

Size 

k-m-n 
MOGWO MOWCA MOPSO NSGA-II 

DAverage HVAverage DAverage HVAverage DAverage HVAverage DAverage HVAverage 

2-2-5 2880967 99316003.85 2880967 99316003.85 2880967 99316003.85 2880967 99316003.85 

2-2-7 4018429.001 264055967.3 2979762.601 166233851.2 4018429.001 264025676.3 3499095.801 215131819.3 

3-2-7 4758953 188691696.3 4768402.2 151272795.4 4758953 188693668.2 4758953 188692241.2 

3-3-8 5081126.801 176613580.7 5022030.201 155985646.1 4738560.201 174899948.8 5017587.801 166742466.3 

4-3-9 4873318.001 195446388.7 4857454.401 119419895.8 4855554.001 134017485.5 4886551.201 142414336.6 

4-4-10 7336504.001 348940267.3 7156756.401 302949409.5 6917706.001 328196721.3 7370578.801 317142165.3 

5-4-11 2543409653 1.15899E+11 745519109.2 10907646054 5321769.801 196693850.9 1224116537 72175199873 

5-5-12 6209881701 2.31853E+11 10307204.2 286784979.3 11837509.2 354504461.4 10467808.8 338160215.2 

5-5-13 3063602838 99427682039 1649463705 1.42853E+11 10140956.4 287665885.3 10693791.4 349655364.9 

6-5-14 745322821.4 63931782889 6752259.201 223615029.8 7902679.601 263799682.1 7126430.001 224749382 

6-6-15 2927626201 2.31396E+11 8356462 203458977.8 267720647 9490871808 8949852 274746386.1 
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7-6-17 4309402985 1.16087E+11 10412309.8 296814944.2 10015421.2 276557879.8 1391251969 1.18739E+11 

7-7-18 10366961075 4.00872E+11 12293964 273963930.6 2491489289 21871763314 11488305.6 310851044.3 

8-7-20 8291973928 3.16766E+11 12979417.6 320003735.6 2210185057 94197378573 16898576.8 572720181.4 

8-8-22 16207505155 5.02597E+11 1891798085 1.23393E+11 11462900 296211288.1 14097474 624571781.1 

9-8-24 14346806745 5.94459E+11 1893948808 1.03283E+11 6832572597 1.66528E+11 13945798 442585894.2 

9-9-25 32426178281 1.41717E+12 16579189.6 530546731.5 696521093 41712851532 1595188092 57562454631 

10-9-27 13173019227 4.819E+11 4395126207 2.4013E+11 1235183768 49662960674 18758841.8 741858079.3 

10-10-28 35205789297 1.19433E+12 5212518031 2.2816E+11 15112923075 6.20641E+11 475137358.4 29538482489 

10-10-30 19647957768 5.78246E+11 1753742744 97814732345 6812723313 2.55482E+11 4917241588 2.18769E+11 

Average 
8474719349 3.1731E+11 882373143.4 47483582723 1787208512 63122584214 487188807.8 25089682214 

 

As can be seen from the results, the performance of the 

algorithms in obtaining better Pareto frontier in terms of 

both coverage and convergence is very competitive. 

However, MOGWO with higher average diversity and 

hypervolume performs better than other algorithms. 

Therefore, to compare the algorithms, more analyses are 

needed. To show a schematic view of the results, figures 

2-3 are presented that show Diversity and hypervolume 

measures obtained by each algorithm in each test 

problem. 

 

 

Fig. 2. Diversity of Pareto solutions provided by the algorithms in small-to-medium test problems. 

 

 

Fig. 3. Hypervolume of Pareto solutions provided by the algorithms in small-to-medium test problems. 

Based on the results, MOGWO is the best algorithm in 

terms of diversity and hypervolume measures. To show 

how MOGWO outperforms other algorithms in diversity 

and hypervolume, a schematic view of Pareto solutions 

provided by each algorithm in each test problem is 

presented in figure 4. 
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Fig. 4. A schematic view of Pareto solutions provided by each algorithm in the small-to-medium test problem 

The results ensure that not only MOGWO is able to 

converge to true Pareto frontier, but also, it provides 

Pareto solutions that are highly distributed among 

objectives and provide various alternatives for the 

decision-maker. Detailed information about the 

performance of the algorithms on NNS and CPU-Time 

measure are provided in Table 2. 

 

Table 2  

Performance of the algorithms on NNS and CPU-Time measure in small-to-medium test problems 

size 

k-m-n 

MOGWO MOWCA MOPSO NSGA-II 

NNS CPU-Time (s) NNS CPU-Time (s) NNS CPU-Time (s) NNS CPU-Time (s) 

2-2-5 100 16.40956 100 9.706816 100 11.12597 100 8.96072 

2-2-7 100 18.88489 91.8 13.8898 100 14.74622 97 12.63774 

3-2-7 99.2 33.44344 89.2 14.20475 100 13.00538 100 13.00578 

3-3-8 83.4 21.02694 61.6 16.20199 87.6 15.45934 92.8 14.78405 

4-3-9 54.8 18.18527 46.2 18.05213 47 15.71796 61.6 16.48335 

4-4-10 48.4 17.23668 28.8 20.88946 25 14.82635 49.2 19.03586 

5-4-11 36 17.34963 30.6 23.0441 22.6 16.87138 64.6 20.99748 

5-5-12 31.4 24.93169 21 34.87413 17.8 26.441 58 32.45193 

5-5-13 62.2 19.84275 12.2 37.72567 3 28.98039 11.6 35.0655 

6-5-14 24.8 23.18938 11.4 40.9993 8.6 33.05937 27.6 37.80487 

6-6-15 31 32.17695 16.6 45.67898 7.6 38.50252 64.4 42.27676 

7-6-17 27.2 36.45483 15.8 52.27618 5 43.92014 73.8 47.63897 

7-7-18 34.4 32.30958 17.2 55.62539 5.6 41.71131 50.8 51.86404 

8-7-20 29.4 37.32629 13.6 61.31536 6.6 50.33802 56.4 56.61623 
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8-8-22 37.6 45.74919 12.6 68.69277 2 57.54689 62.8 63.43468 

9-8-24 47.2 51.77222 12.2 75.26403 12.8 64.44105 72.4 69.59232 

9-9-25 25.2 53.86277 12.6 78.49109 2 66.19845 74.4 73.56282 

10-9-27 30.4 60.96448 5.4 85.45912 2.8 75.43951 95.8 79.38989 

10-10-28 37 63.81463 8.6 86.93611 1 77.76155 92.6 81.06216 

10-10-30 30.8 65.42782 10.2 93.3953 0.6 83.06426 71 86.9336 

Average 
48.52 34.51795 30.88 46.63612 27.88 39.45785 68.84 43.17994 

 

Based on the results, the algorithms are very competitive. 

To present a graphical representation of the results, 

Figures 5-6 are provided, which show detailed 

information on the performance of the algorithms on NNS 

and CPU_Time measures. 

 

Fig. 5. Number of Non-dominated Pareto solutions provided by the algorithms 

 

 

Fig. 6. CPU-Time of the algorithms in small-to-medium size test problems 

As is clear from the results, the NSGA-II and MOGWO 

perform better in providing a higher number of non-

dominated solutions in each test problem. However, 

NSGA-II has a slightly higher average in NNS. On the 

other hand, MOGWO performs very well in 

computational time measures. The MOGWO can solve 

the problems faster in a specific number of function 

evaluations. 
 

 

 

 

4. 2.Large size test problems 

In this section, various significant size test problems are 

generated in order to evaluate the performance of the 

algorithms in solving large size test instances. For this 

purpose, twenty test problems with different sizes are first 

generated. Then, each test problem is solved several times 

using each algorithm, and the average value of D and HV 

measures are reported. Table 3 presents the specific 

details of the results. 
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 Table 3 

 Results of optimization in large size test problems 

Size 

k-m-n 
MOGWO MOWCA MOPSO NSGA-II 

DAverage HVAverage DAverage HVAverage DAverage HVAverage DAverage HVAverage 

15-10-30 43654461399 1.37512E+12 11473946577 6.67555E+11 7891075262 3.86173E+11 4411328029 2.0079E+11 
15-10-35 76012995095 2.61999E+12 4890756367 2.56644E+11 25808701249 1.06989E+12 77923808.2 3666270893 
15-10-40 76424509926 1.90266E+12 29010543470 1.1929E+12 43469174018 1.12758E+12 3452229507 98570779750 
15-10-45 1.10308E+11 2.87205E+12 40288776621 1.19866E+12 66404606676 1.91952E+12 9331445026 3.25631E+11 
15-10-50 1.00327E+11 3.08652E+12 36827194019 1.35346E+12 46045844464 1.35368E+12 14349895682 3.90345E+11 
20-15-55 1.25312E+11 4.39449E+12 35793847860 1.10694E+12 52630270581 1.57871E+12 8076566628 1.72277E+11 
20-15-60 1.40032E+11 4.9784E+12 32015341153 1.14748E+12 63930411840 1.8768E+12 2054786472 80744858934 
20-15-65 1.65527E+11 5.04101E+12 59730002156 1.60244E+12 74846323931 1.93502E+12 10411065119 3.36406E+11 
20-15-70 1.75922E+11 5.53078E+12 78628788438 2.61288E+12 1.05307E+11 2.65981E+12 7732800059 3.09667E+11 
20-15-75 1.80543E+11 5.91145E+12 72347614269 2.05073E+12 1.06024E+11 3.1848E+12 11948162620 3.59016E+11 
25-20-80 2.72348E+11 1.01001E+13 56370635027 1.79305E+12 93349735850 3.11819E+12 13961074449 3.79204E+11 
25-20-85 1.41486E+11 4.32083E+12 71772639793 1.62312E+12 1.06588E+11 3.03618E+12 9955116811 3.18072E+11 
25-20-90 2.48106E+11 7.58312E+12 92167580334 2.68561E+12 1.33605E+11 3.43152E+12 3594734491 1.43447E+11 
25-20-95 2.52583E+11 6.83002E+12 1.45723E+11 3.46458E+12 1.45743E+11 3.31568E+12 12532797377 3.94004E+11 
25-20-100 3.51014E+11 1.03481E+13 94867198157 2.97704E+12 1.51543E+11 3.36505E+12 12335300804 3.70965E+11 
30-25-105 2.27387E+11 5.66917E+12 1.18869E+11 3.79887E+12 1.28848E+11 3.21086E+12 9001294866 2.75148E+11 
30-25-110 3.36939E+11 1.04094E+13 1.27107E+11 3.47283E+12 1.93245E+11 4.34557E+12 10157443963 2.86852E+11 
30-25-115 4.13755E+11 1.319E+13 1.32969E+11 3.33371E+12 1.90646E+11 5.08877E+12 7457207918 2.54485E+11 
30-25-120 3.39896E+11 8.50794E+12 1.32009E+11 3.88776E+12 2.01224E+11 5.40012E+12 9514533026 4.49316E+11 
30-25-125 3.39852E+11 8.96722E+12 1.76206E+11 4.60356E+12 2.52241E+11 7.68682E+12 13233919980 3.99083E+11 
Average 2.05872E+11 6.18192E+12 77453420562 2.24149E+12 1.0947E+11 2.95454E+12 8679481332 2.77385E+11 

 

From the results, it becomes evident that the performance 

of the proposed algorithms in both coverage and 

convergence is competitive. Although MOGWO with 

higher average diversity and hypervolume performs better 

than other algorithms, more analyses still needed to make 

a reliable conclusion. To show a schematic view of the 

results, figures 7-8 are presented. 

 

Fig. 7. Diversity of Pareto solutions provided by the algorithms in large size test problems 
 

 

Fig. 8. Hypervolume of Pareto solutions provided by the algorithms in large size test problems. 
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As is clear from figures 7-8, the MOGWO performs 

significantly better than other algorithms in obtaining 

efficient solutions with better convergence and higher 

coverage. To show detailed information about diversity 

and hypervolume, a schematic view of pareto solutions 

provided by each algorithm in each test problem is 

presented in figure 9. 

 

 

Fig. 9. A schematic view of pareto solutions provided by each algorithm in large size test problems 

It is also essential to compare the performance of the 

algorithms in other strong performance measures such as 

NNS and CPU-Time. Detailed information about 

performance of the algorithms on NNS and CPU-Time 

measure are provided in Table4. 

 

 
Fig. 10. Number of Non-dominated Pareto solutions provided by the algorithms in large sizes 
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Fig. 11. CPU-Time of the algorithms in in large size test problems 

Table 4 
Performance of the algorithms on NNS and CPU-Time measure in large size test problems 

size 

k-m-n 

MOGWO MOWCA MOPSO NSGA-II 

NNS CPU-Time (s) NNS CPU-Time (s) NNS CPU-Time (s) NNS CPU-Time (s) 

15-10-30 28.4 109.784 8.8 96.00541 2 74.62348 73.6 88.77081 
15-10-35 25.4 111.4808 12 101.88 5.2 77.58882 71.2 94.85577 

15-10-40 29.4 154.7248 10.4 112.1106 3 94.06409 84 107.2182 

15-10-45 27.2 122.6033 21.4 151.1674 2.2 90.48907 84.6 120.4602 
15-10-50 35.4 150.693 3.8 164.9968 0.8 110.8508 85.6 132.086 

20-15-55 17.4 170.4769 12.8 180.1332 1.8 133.9831 79.6 144.2936 

20-15-60 26.4 189.6893 1.8 192.3552 2.8 150.9008 86 154.0885 
20-15-65 35 198.808 0.6 202.4022 0.4 167.0327 76 168.4551 

20-15-70 19.4 215.7433 0.4 219.1452 3.6 186.9495 91.4 181.8631 
20-15-75 15 232.1496 7 234.9436 2.6 204.3237 91.8 195.3666 

25-20-80 14.6 267.7209 0.4 227.2343 3.4 258.9538 79.4 217.0996 

25-20-85 26.2 290.9251 1.8 234.9865 2.2 275.1145 91 224.7564 
25-20-90 17.4 301.6766 3 249.5228 2.6 301.0802 90.4 238.274 

25-20-95 21.2 312.1806 7 268.3212 1 332.6621 82.4 256.8523 

25-20-100 17.6 380.4591 1.6 287.3339 3.2 373.772 93.2 272.9469 
30-25-105 42.2 420.3721 3.2 313.0504 1 446.2748 85.4 302.2949 

30-25-110 18.2 414.3664 4.2 329.5421 2.2 474.3587 93.6 317.6775 

30-25-115 18.8 458.2839 1.8 349.14 3.6 520.521 65.2 336.6145 
30-25-120 28.2 436.8539 3.2 356.026 2 527.9978 86 342.6122 

30-25-125 20.8 505.9949 3.6 378.0739 2.2 601.2685 74.6 364.0099 

Average 24.21 
272.2493 5.44 232.4185 2.39 270.1405 83.25 213.0298 

 

 

Also, a graphical representation of the results is presented 

in Figures 10-11 which show detailed information about 

performance of the algorithms on NNS and CPU_Time 

measures. 

From the results, the NSGA-II and MOGWO perform 

better in providing a higher number of non-dominated 

solutions in each test problem. Considering coverage and 

convergence measures (D and HV), the MOGWO 

performs significantly better than other algorithms and 

outperforms other algorithms in these measures. NSGA-II 

has a slightly higher average in NNS and CPU_Time. 

Since the algorithms are very competitive and in different 

performance measures, different algorithms are superior, 

a Multi-Criteria Decision Making (MCDM) approach is 

utilized to make the final decision about the superiority of 

the algorithms. 

4. 3. Determining the best solution method 

The technique for order of Preference by Similarity to 

Ideal Solution (TOPSIS) method was first proposed by 

Hwang and Yoon (1981). The concept of the TOPSIS 

method is based on the selection of an alternative, which 

has the longest (shortest) distance from the negative 

(positive) ideal solution. In this section, the TOPSIS 

method is applied to determine the best algorithm in 

solving the problem. Since TOPSIS methods require 

predetermined weights for measures, equal weights for all 

four performance measures are considered in this 

research. To implement the TOPSIS method, the decision 

matrices for small and large sizes are presented as in 

Table 5. 
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Table 5 

Decision matrix for small-to-medium and large sizes 

Problem instances Algorithm DAverage HVAverage NNS CPU-Time (s) 

Small-to-medium 

MOGWO 8474719349 3.1731E+11 48.52 34.51795 

MOWCA 882373143.4 47483582723 30.88 46.63612 

MOPSO 1787208512 63122584214 27.88 39.45785 

NSGA-II 487188807.8 25089682214 68.84 43.17994 

Large 

MOGWO 2.05872E+11 6.18192E+12 24.21 272.2493 

MOWCA 77453420562 2.24149E+12 5.44 232.4185 

MOPSO 1.0947E+11 2.95454E+12 2.39 270.1405 

NSGA-II 8679481332 2.77385E+11 83.25 213.0298 

 

To perform TOPSIS, first it is needed to normalize the 

decision matrix using Euclidean Norm: 




i ij

ij

ij

r

r
n

2

 
(35) 

Where r is the decision matrix and n is normalized 

decision matrix using Euclidean Norm. i Is the index of 

algorithms and j is the measure index. To obtain 

weighted normalized decision matrix, 
jWeight (weight of 

performance measures) should multiply by normalized 

decision matrix. 

  ijjijnmij nvvmatrixnormalizedweighted 


Weight   ,       (36) 

Therefore, we can determine the ideal positive solution 

and the ideal negative solution as following: 

   jjvjjvionidealsolut ijiiji   :   ,   min  :   max
 

(37) 

   jjvjjvionidealsolut ijiiji   :   ,   min  :   max  (38) 

Distance from the positive and negative ideal solutions for 

each algorithm is calculated using below formulas: 



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(39) 
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Equation (41) presents the Similarity ratio formula which 

is calculated using 
id

 and
id
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(41) 

The results of TOPSIS method are presented in Table 6. 

 

                                        Table 6 

                                        Similarity ratios and ranking of the algorithms 
Problem instances Algorithm Sr Rank 

Small-to-medium 

MOGWO 0.8578 1 

MOWCA 0.0649 4 
MOPSO 0.1503 3 

NSGA-II 0.2551 2 

Large 

MOGWO 0.6336 1 
MOWCA 0.2635 4 

MOPSO 0.34 3 

NSGA-II 0.4458 2 
 

Based on the results, MOGWO with higher similarity 

ratio is ranked as the first and best algorithm in solving 

the proposed tri-objective mathematical model. The 

results indicate that the MOGWO has a significantly 

higher similarity ratio comparing to other algorithms that 

guarantee its superiority. The NSGA-II is ranked second 

based on the values of similarity ratio, and MOPSO and 

MOWCA ranked thi
rd

 and 4
th

, respectively. 
 

5. Conclusion and Future Research Directions 

In this research, a tri-objective mathematical model was 

proposed for the Transportation-Location-Routing 

problem. The model considered a three-echelon supply 

chain and aimed to minimize total costs, maximize the 

minimum reliability of routes and establish a well-

balanced set of routes. In order to demonstrate the 

efficiency of the mathematical model on one hand, and 

determination of a practical solution approach on the 

other hand, four metaheuristics including Multi-Objective 

Grey Wolf Optimizer (MOGWO), Multi-Objective Water 

Cycle Algorithm (MOWCA), Multi-objective Particle 

Swarm Optimization (MOPSO) and Non-Dominated 

Sorting Genetic Algorithm- II (NSGA-II) were utilized. 

The performance of the algorithms was evaluated in 

solving various test problems. The results revealed that 

the NSGA-II and MOGWO perform better in providing a 

greater number of non-dominated solutions in each test 

problem. Considering coverage and convergence 

measures (D and HV), the MOGWO performed 

significantly better than other algorithms and 

outperformed other algorithms in these measures. NSGA-

II has a slightly higher average in NNS and CPU_Time. 

In the end, considering different performance measures 

including Diversity, hypervolume, Number of Non-

dominated solutions, and CPU_Time, the best algorithm 

was determined by Technique for Order of Preference by 
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Similarity to Ideal Solution method. Based on the results, 

MOGWO with a higher similarity ratio was ranked as the 

first and best algorithm in solving the proposed tri-

objective mathematical model. The results indicate that 

the MOGWO had a significantly higher similarity ratio 

comparing to other algorithms, which guarantees its 

superiority. The NSGA-II was ranked second based on 

the values of similarity ratio, and MOPSO and MOWCA 

were ranked thi
rd

 and 4
th

, respectively. The presented 

methodology can be applied to solve any location routing 

problems in real-world applications. 

For future studies, it will be worthwhile to consider 

pickup and delivery decisions in the proposed model. This 

can significantly increase the complexity of the proposed 

model. Therefore, developing efficient solution 

techniques is essential. Considering uncertainty in the 

parameters of the mathematical model is another 

extension of this work since, in real-world applications, 

most of the main parameters are uncertain. 
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