
Journal of Optimization in Industrial Engineering

Vol.13, Issue 2, Summer & Autumn 2020, 123-140

DOI: 10.22094/JOIE.2020.579974.1605

123

A Hybrid Unconscious Search Algorithm for Mixed-model Assembly

Line Balancing Problem with SDST, Parallel Workstation and

Learning Effect

Moein Asadi-Zonouz
 a
, Majid Khalili*

,b
, Hamed Tayebi

 b

a
Department of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran
b

Department of Industrial Engineering, Islamic Azad University Karaj Branch, Karaj, Iran

Received 27 November 2018; Revised 26 April 2020; Accepted 01 June 2020

Abstract

Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover,

considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line

balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid method based on

unconscious search algorithm (USGA) is proposed to solve mixed-model assembly line balancing problem considering some realistic

conditions such as parallel workstation, zoning constraints, sequence dependent setup times and learning effect. This method is a modified

version of the unconscious search algorithm which applies the operators of genetic algorithm as the local search step. Performance of the

proposed algorithm is tested on a set of test problems and compared with GA and ACOGA. The experimental results indicate that USGA

outperforms GA and ACOGA.

Keywords: Unconscious Search algorithm; Assembly line balancing problem; Learning Effect; Parallel workstation; Sequence-dependent

setup times.

1. Introduction

The most important purpose of each organization can be

defined as maximizing the benefits and revenues. Since

time and resources have a strong effect on achieving this

purpose, optimal use of time and resources is crucial.

Moreover, due to the variety of products, simultaneous

production of different models is significant and using of

a mixed-model production system is essential.

Mixed-model assembly lines are commonly used for their

flexibility with respect to model changes, for reducing the

final product inventories and for a continuous flow of

materials (Yagmahan, 2011). In order to avoid the high

cost of building and maintaining an assembly line for each

model, mixed-model assembly line handled for the first

time by Thomopoulos (1967), which has shown that

single-model line balancing techniques are adaptable to

mixed-model schedules. In a follow up work,

Thomopoulos (1970) shown how mixed-model line

balancing problems can be modified to yield smoother

model assignments in continuous assembly stations.

Mainly two types of balancing problems come up for

mixed-model assembly lines: (1) design of a new

assembly line for which the demand can be easily

forecasted and (2) redesign of an existing assembly line

when changes in the assembly process or in the product

range occurs. The first type is discussed in this paper

which is called as MMALBP-I and can be stated as

follow: Given M models, the set of tasks associated with

each model, the performance times of the tasks, and the

set of precedence relations which specify the permissible

orderings of the tasks for each model, the problem is to

assign the tasks to an ordered sequence of stations such

that the precedence relations of each model are satisfied

(Gokcen & Erel, 1997).

Before the 70s of the 20th century, most of the techniques

applied to solve the ALBP required assigning each task to

a single workstation and, consequently, the production

rate was limited by the longest task time. This assumption

could be relaxed by utilizing parallel workstations in such

a way that two or more replicas of a workstation can

perform the same set of tasks on different assemblies. The

introduction of parallel workstations not only allowed for

cycle times shorter than the longest task time and thus an

increase in the production rate, but also provided greater

flexibility in designing the assembly line (Buxey, 1974).

When parallel workstations are introduced, the number of

tasks performed by each worker increases, but this

contradicts one of the main advantages of using an

assembly line which is using of low-skilled labor that can

be easily trained. Therefore, in order to maintain that

advantage, it is necessary to control the process to create

parallel workstations in such a way that workstations are

replicated only when required (Vilarinho & Simaria,

2002).

In many real production lines, however, the sequence in

which tasks are developed inside the workstation matters,

*Corresponding author Email address: khalili.mj@kiau.ac.ir

Moein Asadi-Zonouz and et al./ A Hybrid Unconscious Search Algorithm…

124

since sequence-dependent setup times between tasks are

present. Andres showed that assembly line not only

requires balancing, but also the scheduling of tasks

assigned to every workstation must be defined due to the

existence of sequence-dependent setup times (Andres et

al., 2008). For example, sequence-dependent setup times

must be considered when they are very low compared to

operation times, or in robotic lines, or when components

placed in distanced containers. So, if these kinds of setup

times are considered, better solutions will be achieved for

line balancing problems.

In many realistic settings, the production facility (a

machine, a worker) improves continuously with time. As

a result, the production time of a given product is shorter

if it is scheduled later, rather than earlier in the sequence.

This phenomenon is called as “learning effect” by

Mosheiov (2001) who has used it in some scheduling

problem.

It is known that a sequencing problem in MMAL falls

into NP-hard class of combinatorial optimization

problems and thus a large-sized problem may be

computationally intractable (Hyun et al., 1998; Moradi &

Zandieh, 2013). So the problem cannot be solved by

ordinary methods and more efficient algorithms are

needed to solve this kind of problems. The unconscious

search algorithm which is proposed by Ardjmand and

Amin-Naseri (2012), is based on psychoanalysis theory of

Freud and mimics the process of treating the patient by

the psychoanalytic. Since the US has been never used to

tackle the balancing problem, in this study, a new method

based on unconscious search algorithm hybridized with

the operators of genetic algorithm (USGA) is proposed to

solve the mixed-model assembly line balancing problem

with setup times (MMALBPS) by considering some real

world constraints. In the past researches, Sequence-

dependent setup time, parallel workstation, zoning

constraints have been used in the mixed model assembly

line balancing problem. In this study, in addition to the

mentioned constraints the effect of learning phenomenon

is considered in modeling the problem.

The rest of this study is organized as follows. The

literature of the mentioned areas is reviewed in section 2.

In section 3, the definition of the problem is presented and

considered conditions are described by examples. In

section 4, the details of the proposed method is discussed

step by step and with some examples. Computational

results of applying the proposed hybrid USGA algorithm

and two other algorithms from the literature to solve

different test problems are illustrated in section 5. Finally,

conclusion and future research directions are presented in

section 6.

2. Literature Review

Metaheuristics has been frequently used to solve mixed-

model assembly line balancing problem. This section

reviewed some of the recent researches which tackled

simple, two-sided, and U-shaped assembly line balancing

problems solved mostly by metaheuristics.

Haq et al. (2006) by using obtained solutions from the

modified ranked positional weight method as initial

population, presented a hybrid genetic algorithm to solve

mixed-model assembly line balancing problem which

minimizes the number of workstations. By minimizing the

balance delay, the smoothness index between stations and

the smoothness index within stations for a given cycle

time, the mixed-model assembly line balancing problem

has been solved using a multi-objective ant colony

optimization approach (Yagmahan, 2011). Hamzadayi

and Yildiz (2012) presented a priority-based genetic

algorithm (PGA) for balancing mixed-model U-shape

assembly line with parallel workstations and zoning

constraints. Moreover, a simulated annealing based

fitness evaluation approach (SABFEA) is developed to

calculate the fitness function easier and more effectively.

Simulated Annealing algorithm has been applied to solve

the mixed-model U-line assembly line balancing problem

with parallel workstations in a just-in-time (JIT)

production system. Moreover, to increase the efficiency of

the proposed approach, some policies for labor

assignment have been set (Manavizadeh et al., 2013).

Imperialist competition algorithm (ICA) is also applied

for solving simple mixed-model assembly line and multi-

objective U-type assembly line problems (Moradi &

Zandieh, 2013); (Nourmohammadi et al., 2013). In the

study of Akpinar and Baykasoğlu (2014b), a multi colony

hybrid bees algorithm is applied to solve the mixed-model

assembly line balancing problem of type I with some

particular features of the real world problems. Yuan et al.

(2015) hybridized honey bee mating optimization

algorithm with simulated annealing algorithm and

proposed a hybrid approach for balancing Mixed-model

two-sided assembly lines. Fattahi and Samouei (2016)

presented a multi-objective PSO for mixed model

assembly line balancing problem. The author considered

the task times depended on the worker's skill level when

the task must be executed manually. It means that if a

high-skilled worker assigned to a task, the task time and

the cycle time could be reduced. A modified particle

swarm optimization algorithm with negative knowledge

has been also proposed by Delice et al. (2017) for solving

the mixed-model two-sided assembly line balancing

problem. Gansterer and Hartl (2018) evaluated the

performance of genetic algorithm (GA), tabu search (TS),

and differential evolution (DE) for solving one- and two-

sided assembly line balancing problem. Authors also

considered three types of constraints, namely zoning

constraints, positional constraints, and synchronous

constraints. Fattahi and Askari (2018) applied a Multi

objective harmony search (MOHS) algorithm to solve

mixed-model assembly line (MMAL) problem in a

stochastic environment which aims to minimize total

utility work cost, total idle cost, and total production rate

variation cost, simultaneously. A discrete version of

artificial fish swarm algorithm is developed by Zhong et

al. (2019) to solve the two-sided assembly line balancing

problem. The objective of the problem is to minimize the

construction cost and the number of stations. Rabbani et

al. (2019) after selecting and prioritizing customer orders

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 123-140

125

using ANP procedure, and validating the mathematical

model by GAMS, used GA and PSO to solve mixed

model two-sided assembly lines (MM2SAL) problem.

The authors revealed that GAMS is an appropriate

software for solving small sized problems, and for large

sized problems the performance of GA is better than PSO.

Yemane et al. (2020) to improve the productivity of

production line, modeled assembly line balancing

problem by combining manual line balancing techniques

with computer simulation. To evaluate the performance of

model, it has been applied to a case study in garment

industry.

In addition to the work of Andres which considered

sequence dependent setup times in the assembly line

balance problem, there are some other researches which

solved assembly line balance problem with setups. Özcan

and Toklu (2010) proposed a mixed integer program

(MIP) to solve two-sided assembly line balance problem

with setups (TALBPS). The proposed method minimizes

the number of mated-stations as the primary objective and

it minimizes the number of stations as a secondary

objective for a given cycle time. Seyed-Alagheband et al.

(2011) similar to the work of Andres, considered

sequence dependent setup times for type II of general

assembly line balancing problem where the challenge is to

find the minimum cycle time for a predefined number of

work stations. They developed a mathematical model and

a novel simulated annealing (SA) algorithm to solve the

problem and employed the Taguchi method as an

optimization technique for tuning the parameters of

proposed algorithm. Yolmeh and Kianfar (2012)

presented a hybrid genetic algorithm to solve setup

assembly line balancing and scheduling problem

(SUALBSP) and the operators and parameters of GA are

calibrated via a multifactor analyze of variance

(ANOVA). Akpinar and Baykasoğlu (2014a) formulated

the sequence dependent setup times between tasks in

type-I mixed-model assembly line balancing problem and

developed a mixed-integer linear mathematical

programming for this problem. Li et al. (2019) developed

a linear programming model for the two-sided robotic

assembly line balancing problem considering sequence-

dependent setup times and robot setup times. Moreover, a

set of metaheuristics applied to solve the problem and the

good performance of two variants of artificial bee colony

algorithm and migrating bird optimization algorithm has

been shown.

The effect of learning phenomenon in production lines

has been evaluated recently by some researchers. Cohen

et al. (2006) showed that, under homogeneous learning

and relatively smaller lot sizes, unequal allocation of work

to stations is better than balanced allocation. Then,

developed a non-linear programming model for solving

the problem of determining optimal allocation of work to

the stations of an assembly line. Toksarı et al. (2008)

proved that the simple assembly line balancing problem

and U-type line balancing problem with the consideration

of learning effects remains polynomially solvable. Toksarı

et al. (2010) introduced simultaneous effects of learning

and linear deterioration into assembly line balancing

problem and developed a mixed nonlinear integer

programming model. Hamta et al. (2013) by considering

the learning effect on worker(s) performance and

sequence dependent setup times, proposed a new method

based on the combination of particle swarm optimization

(PSO) algorithm with variable neighborhood search

(VNS) to solve the single-model assembly lie balancing

problem.. In order to investigate the role of learning in the

rebalancing of assembly lines with repetitive tasks, Lolli

et al. (2017) proposed a cost-based stochastic balancing

heuristic by using a time-dependent learning curve. Koltai

and Kalló (2017) explored the effects of an exponential

learning function on the operation of simple assembly

lines and presented an algorithm to determine throughput-

time of a production run.

 3. Problem Definition and the Mathematical

Programming Model

Mixed-model assembly line balancing problem with

setups (MMALBPS) which is studied in this paper

consists of assigning a set of tasks for a set of models to

an ordered sequence of workstations, such that the

precedence constraints between tasks are maintained, the

setup times between tasks for all models are considered,

the number of workstations and variation of workload are

minimized. In addition, some other real situations are

considered in this study.

Learning effect causes to reduction in processing times of

activities in the workstations. For an example, by

processing one job after the other the skills of the workers

continuously improve, e.g. the ability to perform setups

faster, to deal with the operations of the machines and

software or to handle raw materials, components or

similar operations of the jobs at a greater pace. So the

processing time of tasks in each station will be calculated

using learning curve introduced by Biskup (1999), in

which the operation time of task with a learning effect if

assigned to position is defined as:

 (1)

Where () is the learning effect when is

the learning rate.

In the following, some examples are explained to describe

other realistic considered constraints. Workstations can be

expanded and used as parallel workstations, when the

time of some tasks is higher than cycle time. There is

another real condition in assigning tasks to workstations

which is called zoning constraints. Sometimes a certain

task should be assigned to a specific workstation or due to

the some limitations, assigning a task to a workstation is

impossible. So, a feasible solution is a task assignment

that has considered mentioned constraints. These

constraints and situations are explained by a real case of

producing two models in a line. The combined precedence

diagram and assignment of tasks to workstations are

shown in Fig. 1 and Fig. 2.

Moein Asadi-Zonouz and et al./ A Hybrid Unconscious Search Algorithm…

126

1

2

3

4

5

6

7

8

9

t1=1.8

t2=0.8

t3=2.2

t4=2.8

t6=9.3

t7=1.4

t5=1.5

t8=3.1

t9=2.1

WorkStation 1

WorkStation 2

a. a feasible solution for assigning tasks to workstations

1

2

3

4

5

6

7

8

9

WorkStation 2

b. an infeasible solution by considering zoning constraints

t1=1.8

t2=0.8

t3=2.2

t7=1.4

t5=1.5

t8=3.1

t9=2.1

t4=2.8

t6=9.3

c. an infeasible solution that turns into a feasible solution by

considering learning effect

1

2

3

4

5

6

7

8

9

WorkStation 1

WorkStation 2

t1=1.8 t3=2.2

t7=1.4

t5=1.5

t8=3.1

t9=2.1

t4=2.8

t6=9.3

CT=7

CT=7

t2=0.8

1

2

3

4

5

6

7

8

9

WorkStation 1

WorkStation 2

t11=1.8 t34=1.41

t72=1.2

t53=1.05

t83=2.17

t94=1.34

t45=1.67

t61=9.3

t22=0.64

CT=7

tir=tirα

α(=log2S 0)

S=0.8

α=-0.322

Fig. 1. Feasible and infeasible assignment of precedence diagram

1 23 5 6 78 94

WorkStation 1 WorkStation 2 WorkStation 3

ST13
ST32 ST25 ST46 ST87 ST79

ST51
ST64 ST98

Fig. 2. Tasks ordering and workstations

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 123-140

127

Some constraints should be considered during the

assignment of tasks to workstations in the diagram shown

in Fig. 1. Task times in Fig. 1 are sum of the processing

times of each model on the particular task. The processing

times for the models A and B are shown in Table 1 where

 and indicate task times for models A and B. Since

performing task 3 requires a special technology existed in

workstation 1, task 3 must be executed in workstation 1.

Moreover, due to the lack of some instruments, task 4

cannot be performed in workstation 1. Therefore, the

assignment in Fig.1.b is infeasible. For this model, cycle

time is calculated as 7 minute (task times are in minutes).

Obviously, process time of task 6 is higher than cycle

time and existence of parallel workstation is crucial. So as

it can be shown in Fig. 2, a worker is added to

workstation 2 which can be considered as a parallel

workstation. Ordering of tasks in workstation 1 is another

remarkable point in Fig.2. Since there is no precedence

between task 2 and task 3, two task ordering in this

workstation is possible: * +.
According to the setup times between tasks for both

models which are shown in Table 2, the time of each

arrangement of tasks is calculated as follows:

* +

* +

where

 .

According these calculations, performing of task 3 before

task 2 will cause to time saving and it will provide better

solution. Similarly performing task 8 before task 7 in

workstation 3 causes better solution. Fig. 1. c shows an

infeasible assignment of tasks that turns into a feasible

assignment after consideration of learning effect due to

the reduction of operation times of tasks. Moreover,

learning effect causes less workstations in comparison to

the solution of Fig. 1. a. As a result, a feasible solution

should fulfill the capacity constraints, precedence

constraints and zoning constraints and consider learning

effect on processing times. Also, taking sequence

dependent setup times into account among tasks of a

workstation provides better solutions.

Table 1

Task times for model A and B.

Task 1 2 3 4 5 6 7 8 9

 1 0.3 1 1.7 0.6 4.5 0.0 2 1

 0.8 0.5 1.2 1.9 0.9 4.1 1.5 1.2 1.1

Table 2

Setup times for models A and B.

Model Task 1 2 3 4 5 6 7 8 9

Setup times for

model A

1 0.43 0.35 0.14 0.33 0.71 0.37 0.53 0.24 0.22

2 0.15 0.59 0.71 0.70 0.61 0.56 0.54 0.79 0.71

3 0.64 0.56 0.19 0.45 0.15 0.30 0.49 0.15 0.51

4 0.06 0.67 0.58 0.79 0.79 0.40 0.43 0.07 0.23

5 0.30 0.07 0.18 0.02 0.54 0.48 0.54 0.02 0.56

6 0.35 0.67 0.24 0.49 0.10 0.38 0.07 0.44 0.35

7 0.39 0.25 0.55 0.46 0.61 0.46 0.72 0.64 0.77

8 0.39 0.36 0.58 0.75 0.03 0.11 0.17 0.23 0.39

9 0.33 0.58 0.55 0.50 0.14 0.09 0.01 0.26 0.46

Setup times for

model B

1 0.06 0.46 0.74 0.52 0.36 0.08 0.13 0.59 0.67

2 0.07 0.48 0.78 0.67 0.70 0.15 0.49 0.56 0.73

3 0.18 0.19 0.38 0.54 0.55 0.17 0.59 0.09 0.28

4 0.35 0.60 0.56 0.46 0.18 0.23 0.37 0.65 0.12

5 0.42 0.04 0.22 0.11 0.30 0.28 0.13 0.58 0.76

6 0.10 0.59 0.69 0.01 0.63 0.02 0.39 0.38 0.73

7 0.66 0.71 0.00 0.42 0.30 0.76 0.73 0.65 0.05

8 0.78 0.30 0.36 0.22 0.36 0.28 0.35 0.21 0.74

9 0.73 0.34 0.37 0.15 0.21 0.80 0.51 0.41 0.67

Moein Asadi-Zonouz and et al./ A Hybrid Unconscious Search Algorithm…

128

In a MMALB problem with tasks and models, the

required cycle time is computed by Eq. (2), and the

overall proportion of the number of units of each model

 is calculated by Eq. (3):

∑
 ()

∑

 ()

where is the planning horizon and is the demand for

model .

With regard to the consideration of learning effect in this

study, the modified version of mathematical programming

model which is presented by Vilarinho and Simaria

(2002) for mixed-model assembly line balancing problem

with parallel workstations and zoning constraints is shown

in Fig. 1. Due to consideration of learning effect in this

model, the operational times of tasks are calculated using

Eq. (1) and the constraints (9a) are modified. In the

following model is 1 if task assigned to workstation

 is 0 otherwise, is 1 if workstation can be replicated

is 0 otherwise. is the set of task pairs that must be

assigned to the same workstation (compatible tasks) and

 is the set of task pairs that cannot be performed on the

same workstation (incompatible tasks). is the set of

tasks that cannot be performed before task is completed.

 is the work station index that the last task is assigned,

is the total number of workstations including replicas,

is the idle time of workstation due to model and is

the total proportional idle time of workstation which

due to considering the impact of learning phenomenon is

calculated by Eq. (4) as follows:

 ∑ ∑

 ∑ ∑

 ()

where is the number of tasks that are assigned to workstation , is the position of task in workstation .

 ∑

∑ ∑(

∑

)

 ()
∑ ∑ (

)

 (5)

subject to :

∑

 (6)

∑

 ∑

 (7)

∑

 ∑

 () (8)

 () (9)

∑

 , ()-

(10a)

 ∑

 (10b)

 ∑

 (10c)

 (11a)

 , - (11b)

 , - (11c)

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 123-140

129

The objective function (5) minimizes the number of

workstations and balances the workload such that the first

term minimizes the index of the workstation to which the

last task is assigned, thus minimizing the number of

workstations. The second and the third term balance the

workload between the workstations and the workload

within the workstations. Constraints (6) ensure that each

task is assigned to only one workstation of the station

interval, constraints (7) ensure that no successor of a task

is assigned to an earlier station than that task. Constraints

(8) and (9) indicate compatibility zoning constraints and

incompatibility zoning constraints. The set of constraints

(10) ensure that each workstation time capacity is not

exceeded, the maximum number of replicas of a

workstation (MAXP) is not exceeded and only

workstations where the processing time of the tasks

assigned to it, for at least one model, exceeds a certain

proportion () of the cycle time can be duplicated (

is a very large positive integer). The set of constraints (11)

define the decision variables domains.

4. The proposed Unconscious Search Algorithm

Unconscious search algorithm is a metaheuristic based on

the theory of psychoanalysis proposed by Freud.

According to the theory of psychoanalysis, the human

psyche is made up of two main parts, the conscious and

unconscious. Consciousness is the subject’s immediate

apprehension of mental activity. The unconscious is a

domain out of reach of the consciousness and includes

one’s basic instincts, repressed feelings, and thoughts.

The theory of psychoanalysis maintains that mental

disorders are a consequence of an unbalanced relationship

between the conscious and the unconscious (Ardjmand et

al., 2014).

Freud found out there are a cause leads to imbalance

relationship between the conscious and unconscious

called “resistance”. The resistance prevents remembering

of an event happened in the past of the patient and now is

the cause of the mental disorders. In the psychoanalytic

psychotherapy proposed by Freud for curing the mental

disorders of patient, psychoanalyst has to reveal the

contents of the unconscious of the patient by surmounting

the resistance of the conscious. It leads to returning the

missed balance between the conscious and unconscious of

the patient and treating the mental disorders. For this

purpose the psychoanalyst asks the patient to talk about a

desired subject. Then psychoanalyst according to the

conversation of the patient, instructs a subject and asks

the patient to talk about the new subject. Thus the

psychoanalyst gets experiences about the patient’s mind

and could instruct better subjects to achieve the

unconscious. Since the resistance prevents revealing the

unconscious in this process, the psychoanalyst must

recognize the impact of resistance and surmounts it by

giving the patient the right subject and right direction to

follow in free association. The unconscious search

algorithm mimicked this process to propose a new method

for solving complex optimization problems.

The US has been used for some engineering problems

such as pressure vessel design (Ardjmand & Amin-

Naseri, 2012) and uncapacitated facility location problem

(Ardjmand et al., 2014), but has been never applied to

solve assembly line balancing problem. Since the original

versions of the US are continuous and inappropriate for

solving assembly line balancing problem, in this study, a

modified version of US hybridized by genetic algorithm

operators (USGA) is applied for MMALBS. The steps of

USGA is depicted by Fig. 3

Generate initial

random population

Instruct S1 using

replacement memory

Produce S2, S3, using
condensational memory and

select the best one as S*

Improve S* using Two pointed
crossover and Scrambled

Mutation

Is the stopping

criteria satisfied?
End

Update replacement and
condensational memory

Free Association

Updating the

psychoanalyst s

experiences

Instructing a starting

point by psychoanalyst

for patient s free

association

Free Association with

the starting point

YesNo

Improving the

starting point

US

GA

Fig. 3. Flowchart of USGA

The algorithm starts by generating a pre-defined number

of feasible solutions and arranging them based on their

values. Then, displacement memory which indicates

psychoanalyst’s experience and perception about the

unconscious of the patient, is filled according to generated

solutions. Now that psychoanalyst has gathered

information about the unconscious of the patient, he/she

can instruct a subject to say anything that comes to

patient’s mind which is equal to generating a new feasible

solution using displacement memory. Then, the patient

can talk freely about the mentioned subject which this

Moein Asadi-Zonouz and et al./ A Hybrid Unconscious Search Algorithm…

130

freely talking is termed as “free association”. Performing

a local search around the instructed solution is similar to

the free association of the patient. After improving the

instructed solution during search process, the direction of

conducted changes is traced and saved in condensational

memory. In order to overcome the resistance of patient’s

conscious mind, psychoanalyst uses condensational

memory and makes changes in generated solution to

create other feasible solution as a starting point for

patient’s free association. This process repeated for a pre-

defined number of iterations to reveal the unconscious of

patient by psychoanalyst. The application of US in

addressing MMALBPS is proposed in the next sub-

sections.

4.1. Generating the initial solutions

In any optimization problem a representation pattern that

is usually a vector of decision variables should be defined.

In balancing problems this pattern is usually considered as

an N-dimensional vector which is a permutation of tasks

number.

At first, the psychoanalyst asks the patient to talk freely

about a desired topic. In fact | | random initial

solutions (| | is the size of measurement matrix) are

generated which represent patient's associations.

According to precedence constraints, generating a random

order of tasks is impossible and a procedure that produces

random feasible solutions should be used. Assume that

there is a problem with N tasks and a precedence

matrix contains of binary numbers. In each step, the

columns by all zero amounts represent the tasks without

any priority, which means these tasks can be assigned to

workstations. If there are more than one task to be

assigned, one of them is chosen randomly and is removed

from the precedence matrix. This process continued until

all the tasks are assigned. Measurement matrix contains

the sorted set of | | feasible solutions and can be

formulated as follow:

 { | () () | |} (12)

After generating initial solutions, psychoanalyst has to

value each member of by use of “translation

function” which maps the value of the solution’s objective

function into a range () for (). The

applied translation function is a sigmoid function defined

as follow:

 ()

 . ()/
 ()

where and can change in each iteration and calculate

the proximity of solutions in to the optimum

solution.

As it was mentioned, the translation function is

designed to map the value of the worst and the best

member of into and (). Due to the

probability of changing the best and the worst members of

 , parameters and have to be calculated in each

iteration as follow:

 (.

/)

 () ()
 ()

 (
 () ()

 () ()
)(.

/) ()

where and denote the best and the worst

member of .

4.2. Solution quality measure

For quantifying the members of by translation

function, the algorithm has to use a fitness function which

measures each solution’s quality. The fitness function

which is indicated by Eq. (5) is used as the objective

function problem.

4.3. Updating the displacement memory

By means of translation function, psychoanalyst

quantifies the members of based on their objective

functions. Then he\she summarizes the information of

 ’s members in displacement memory . Because of

the difference between the representation of solutions in

balancing problem with other problems, updating of

displacement memory is different and is modified by

some changes. In a balancing problem with tasks,

displacement memory is a matrix. can be

defined as follow:

𝛱 *𝛱 𝛱 +

(16)

in which

𝛱 {
 }

(17)

𝛱 {
 }

(18)

When the quality of the instructed subject by

psychoanalyst for patient’s conversation is worse than the

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 123-140

131

worst member of , the instructed solution is saved as a

bad solution that leads to high level of resistance and a

penalty is considered for this kind of solutions. is

related to this kind of solutions. In fact, displacement

matrix consists of two matrixes, one of them for

members of , and one of them for solutions that are

worse than the worst member of . The updating

process of both matrixes are same and can be seen in

Algorithm 1.

Algorithm 1. The process of updating the displacement memory

 Input: fitness function C(), Solution , worst member of

measurement matrix ,

1 Begin

2 For all members of measurement matrix

3 For all tasks

4 If () ()
5 (() ())

 (())

6 Else if () ()
7 (() ())

 (())

8 End
9 End
10 End
11 End

 Output: displacement memory П updated by

In other word, displacement memory maps the sequence

of tasks in all members of in the last performed

iterations (Memory Size). For an example as it shown

in Fig. 4, task 2 is performed after task 1 in the first

member of , so the second column of first row of the

displacement memory is filled by (()).

P1 : The first member of MM P2 : The second member of MM

Displacement memory after updating by first member of MM Displacement memory after updating by second member of MM

Fig. 4. Process of updating the displacement memory

4.4. Instructing a subject for conversations of patient

After updating the displacement memory a new solution

called can be constructed by psychoanalyst in which

the first possible task is selected randomly. Then,

according to assigned tasks the set of tasks without

precedence determined and by use of Eq. (19) probability

of selecting the next task is calculated.

 (())

 .
/

∑

 .
/

 ()

where is the probability function and is a constant

and is one the parameters of algorithm.

4.5. Updating the condensational memory

In order to overcome the resistance, psychoanalyst has to

define the direction of the resistance for revealing the

unconscious of the patient. In the algorithm,

condensational memory defines the direction of the

resistance. Like displacement memory, condensational

Moein Asadi-Zonouz and et al./ A Hybrid Unconscious Search Algorithm…

132

memory is created by two matrixes. One of them

for solutions belong to , and the other one for

solutions with fitness function higher than the worst

member of . Condensational memory can be defined

as follow:

𝛱

 *𝛱

 𝛱
 +

(20)

in which

𝛱
 {

 }

(21)

𝛱
 {

 }

(22)

Condensational memory is filled just in cases that a

change is made by local search process on the instructed

solution by the psychoanalyst. The process of updating

the condensational memory is shown in Algorithm 2.

Algorithm 2. The process of updating the condensational memory

 Input: Improved solution , Solution , Sigmoid function (),

1 Begin

2 For all tasks

3 Task= ()

4 Position= ();

5 If () ()

6
. ()/

. ()/

 . ()/

7 end

8 End

9 End

 Output: Condensational memory updated by

For more clarity, the process of updating the

condensational memory is explained by an example in

Fig. 5.

Condensational memory

Fig. 5. Process of updating the condensational memory

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 123-140

133

4.6. Generating more solutions by use of condensational

memory

After updating the condensational memory, in order to

overcome the resistance, psychoanalyst tries to give the

best starting point and direction to patient by instructing

solutions based on the condensational memory. By use of

the condensational memory the first instructed solution

is modified through the right direction in order to

overcome the resistance, and other solutions are

generated. This step due to existence of precedence

constraints is a little complex. In each step for assigning

the next task according to the last dedicated task, two set

of tasks are existed: feasible tasks and probable tasks.

Feasible tasks are tasks that considering precedence

diagram are possible to be assigned, and probable tasks

are defined by cells with positive amounts in the row of

the last dedicated task in the condensational memory

which means sequence of these tasks in the solution will

cause better results. If tasks existed in both feasible tasks

and probable tasks, one of them will be selected according

to the amounts of the mentioned row of the

condensational memory as follow: if the last assigned task

called , the values

 will be calculated for

positive amount of ’th row in the condensational

memory. Then, a random number will be generated.

For first amount that meet the condition (), the

task will be selected for next assignment. Otherwise,

when there is no intersection between feasible tasks and

probable tasks, there are two possible action. If the

assignment of the dedicated task in previous solution after

the task considered in this step be possible, the mentioned

task will be selected. Otherwise, one of the feasible tasks

will be selected randomly. After generation of

the best one is chosen and called as . The procedure of

producing solutions by use of condensational memory is

shown in Fig. 6 and an example of producing these

solutions is explained in Fig. 7.

Define Feasible

and Probable tasks

Probable ∩ Feasible

Selecting by their

probabilities

Is the used task

in the previous solution

possible?

Choose

randomly from

feasible tasks

Choose

the task from

previous solution

Are all the tasks

assigned?

Start

Finish

Ø ≠

Ø Yes

No

YesNo

Fig. 6. Procedure of producing solutions by use of condensational memory

Moein Asadi-Zonouz and et al./ A Hybrid Unconscious Search Algorithm…

134

Our Solution :

Feasible Tasks (from precedence diagram) : {3,4}

Probable Tasks (from condensational memory) : {3,4,6}

Probable Tasks ∩ Feasible Tasks : {3,4}

Probability of choosing task 3 after task 5 :
0.32

0.32 + 0.41
= 0.45

Probability of choosing task 4 after task 5 :
0.41

0.32 + 0.41
= 0.55

Condensational memory

Fig. 7. Example of producing solutions by use of condensational memory

4.7. Free association by patient

 is the best instructed solution by psychoanalyst that

will be given to patient for free association. In the

algorithm, free association of the patient is like a local

search progress. Two point crossover and scramble

mutation are operators of ACO-GA algorithm which has

been presented for solving the balance problem (AkpıNar

et al., 2013). In this study these operators are used instead

of a local search for free association of the patient. More

explanations of these operators are available in original

paper.

The result of these two operators will be that is an

improved solution of and obviously () ().

If the quality of be better than the quality of the

worst member of , will be updated and

parameters and need to be recalculated by Eq. (14-

15). The process of generation of solutions using

displacement and condensational memory will be

repeated for a predefined number of iterations to reveal

the unconscious or equally to reach the best solution of

the problem.

5. Computational experiments

To demonstrate the efficiency and robustness of the

proposed USGA algorithm in addressing MMALBPS, its

results are compared with ACOGA, which has been

proposed by hybridizing operators of GA algorithm with

ACO (AkpıNar et al., 2013), and a simple GA with

proposed operators in ACOGA. For doing the comparison

a set of problems is used which main characteristics of

these problems are shown in Table 3. , and

 denote the number of tasks of the combined

precedence diagram, the number of models, and the cycle

time of assembly line that is used in the original paper.

Since by use of some of the original cycle times the

problem doesn’t need parallel workstations, in this study

cycle times are considered differently.

Table 3

Main characteristics of the test problems.

 Problem no. Problem name

Small

size

1 8 2 20 15 Bowman (1960)

2 8 3 20 15 Bowman (1960)

3 11 2 10 7 Gökċen and Erel (1998)

4 11 3 10 7 Gökċen and Erel (1998)

Medium

size

5 25 2 10 10 Vilarinho and Simaria (2002)

6 25 3 10 10 Vilarinho and Simaria (2002)

7 30 2 10 10 Akpınar and Bayhan (2011)

8 30 3 10 10 Akpınar and Bayhan (2011)

Large

size

9 35 2 60 32
Gunther, Johnson, and Peterson

(1983)

10 35 3 60 32 Gunther et al. (1983)

11 45 2 55 30 Kilbridge and Wester (1961)

12 45 3 55 30 Kilbridge and Wester (1961)

13 70 2 176 140 Tonge (1960)

14 70 3 176 140 Tonge (1960)

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 123-140

135

Original examples did not have setup times and for using

these examples for this study, setup times are considered

in three level like what AkpıNar et al. (2013) has done in

his paper as follows:

 For low variability, the matrix of setup times are

generated randomly according to a uniform discrete

distribution , ()-.

 For medium variability, the matrix of setup times are

generated randomly according to a uniform discrete

distribution , ()-.

 For high variability, the matrix of setup times are

generated randomly according to a uniform discrete

distribution , ()-.

All algorithms GA, ACOGA and USGA are coded in

MATLAB2018a and the computational results are

obtained by running algorithms 10 times over each test

problem with their three setup time variability levels on a

Windows 7 platform using Intel Core i7-2670, 2.20 Ghz

and 4 GB RAM system. The computational results are

shown separately in Tables 4, 5 and 6 based on the levels

of setup time variability. The comparison is conducted in

terms of total number of workstations concluding replicas

(), so the minimum, maximum and average of them are

presented in Tables 4, 5 and 6. Also, the average of

number of workstations (), the fitness function

calculated by Eq. (5), the weighted line efficiency ()

and the computational time () are shown in the

results tables. The formula of the weighted line efficiency

is given by Eq. (23), which takes into account not only the

task times but only the sequence dependent setup times

between tasks. Hence, the weighted line efficiency is

computed by considering idle times of the workstations

instead of considering the tasks times. It is noted that

maximizing line efficiency is equivalent to minimizing

the number of workstations (NWS) for a given cycle time

(AkpıNar et al., 2013).

 ∑*

 ∑

+

 ()

where is the overall proportion of the number of units

of model being assembled, is the idle time of

workstation due to model , and is the given cycle

time.

As it can be seen from Tables 4, 5 and 6, almost all

algorithms have same performance in case of small size

problems, however, in 1 of 4 problems the minimum

number of workstations obtained by USGA is lower than

the values obtained by GA and ACOGA. In case of

medium and large size problems in almost all instances

except just one (problem 10 with medium variability),

USGA outperforms GA and ACOGA, and the obtained

solutions have better fitness function and lower number of

workstations. For more details, the performance of USGA

(the minimum number of the total workstations) is

superior to GA and ACOGA in 60% (6 of 10 problems) in

case of low variability setup times, 50% (5 of 10

problems) in case of medium variability setup times, and

80% (8 of 10 problems) in case of high variability setup

times. For better perception, Fig. 8 shows the minimum

number of total workstations of large size problems with

high level of setup time variability. It must be noted that,

the obtained fitness function and weighted line efficiency

by USGA is higher than values obtained by GA and

ACOGA. The calculated weighted line efficiencies of

large size problems with high level of setup time

variability are shown is Fig. 9. Also it is clear that USGA

has slower speed in comparison to pure GA, due to extra

computational functions, but has lower computational

time in comparison to ACOGA. According to these

results, the performance of USGA obviously is superior to

pure GA and ACOGA.

Fig. 8. The minimum number of workstations for large size

problems with high level of setup time variability

Fig. 9. The weighted line efficiency of large size problems with

high level of setup time variability

Moein Asadi-Zonouz and et al./ A Hybrid Unconscious Search Algorithm…

136

 Table 4

 Computational results with low variability of setup times

Problem no.

 GA ACOGA USGA

 F WE CPU F WE CPU F WE CPU

 Avg Min Max Avg Min Max Avg Min Max

Small

size

1 9 9 9 7 10.40 0.68 1.89 9 9 9 7 10.40 0.68 1.72 9 9 9 7 10.40 0.68 0.15

2 10 10 10 7 11.44 0.73 1.90 10 10 10 7 11.44 0.73 1.75 10 10 10 7 11.44 0.73 0.22

3 11 11 11 8 12.18 0.84 2.19 12.8 12 14 8.8 13.96 0.73 2.11 10.6 10 13 7.5 11.75 0.86 0.54

4 10.5 10 11 7.5 11.95 0.82 2.12 12.6 11 13 8.8 14.05 0.69 2.14 10.2 10 11 7.2 11.64 0.82 0.70

Medium

size

5 19.3 19 20 14.1 20.54 0.83 3.25 21.1 21 22 15.9 22.31 0.78 3.94 19.1 19 20 13.8 20.32 0.84 5.05

6 19.6 19 20 14.6 21.08 0.78 3.25 21 20 22 15.8 22.49 0.71 3.89 19.2 19 20 14.1 20.68 0.81 3.80

7 20.7 20 21 16.2 21.90 0.82 5.42 22.4 21 23 17.6 23.61 0.75 6.88 19.9 19 20 15.4 21.10 0.86 6.50

8 21.8 21 23 17.6 23.30 0.71 5.58 23 22 24 18.4 24.50 0.66 6.93 20.9 20 21 16.6 22.40 0.74 6.57

Large

size

9 23.6 23 24 16.9 25.62 0.85 6.07 25.9 23 27 18.8 27.77 0.79 8.48 23.7 23 24 17.1 25.63 0.85 7.41

10 24 23 25 17.3 25.49 0.78 6.41 25.8 24 27 18.7 27.29 0.73 7.92 23.7 23 24 17 25.19 0.77 7.29

11 29.4 29 30 22.9 30.64 0.82 7.92 31.2 31 32 25.1 32.45 0.78 10.88 28.7 28 29 22.5 29.94 0.85 9.82

12 30.4 30 31 23.7 31.90 0.77 7.75 31.4 30 32 25.2 32.91 0.74 10.92 29.1 29 30 23.1 30.61 0.79 9.61

13 47.6 47 49 37.7 65.42 0.83 12.10 53 52 54 42.3 55.98 0.76 18.59 47.4 46 48 38.5 50.61 0.86 17.00

14 48.2 47 50 37.2 49.72 0.80 12.00 52.4 51 53 42.4 53.92 0.73 18.75 47.4 46 48 37.7 48.92 0.83 15.80

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 123-140

137

 Table 5

 Computational results with Medium variability of setup times

Problem no.

 GA ACOGA USGA

 F WE CPU F WE CPU F WE CPU

 Avg Min Max Avg Min Max Avg Min Max

Small

size

1 9 9 9 7 10.40 0.68 1.89 9 9 9 7 10.40 0.68 1.73 9 9 9 7 10.40 0.68 0.17

2 10 10 10 7 11.44 0.73 1.88 10 10 10 7 11.44 0.73 1.73 10 10 10 7 11.44 0.73 1.88

3 12.3 12 13 8.3 13.45 0.77 2.12 13 11 14 9.1 14.18 0.74 2.15 12 11 13 8.3 13.17 0.77 0.56

4 12.5 12 13 8.5 13.94 0.70 2.15 13.1 13 14 9.1 14.55 0.66 2.12 11.4 11 13 8.2 12.85 0.75 0.56

Medium

size

5 20.4 20 21 15.2 21.64 0.79 3.27 21.5 20 22 16.4 22.72 0.77 3.88 19.7 19 21 14.2 20.92 0.82 4.50

6 21.3 20 22 16.4 22.79 0.73 3.29 21.9 21 23 16.8 23.39 0.69 4.00 20 20 20 14.9 21.48 0.76 5.58

7 21.8 21 23 17.5 23.01 0.79 5.68 23.7 23 24 18.7 24.91 0.71 6.96 21.5 21 22 16.9 22.71 0.78 6.83

8 22.3 22 23 18.1 23.80 0.70 5.50 24 22 25 19.1 25.50 0.63 6.94 21.7 21 22 17.5 23.20 0.72 6.63

Large

size

9 24.1 23 25 17.3 26.08 0.84 6.15 25.7 24 27 18.5 27.50 0.80 7.95 23.8 23 24 17 25.80 0.85 7.46

10 24.1 23 25 17.2 25.59 0.78 6.20 26.4 24 27 19.3 27.89 0.72 7.90 24 24 24 17 25.48 0.74 7.03

11 30.5 30 31 24.5 31.75 0.81 8.20 32 31 33 25.4 33.23 0.76 10.78 29.4 29 30 23 30.64 0.84 9.87

12 32 31 33 26.1 33.51 0.75 8.86 32.5 32 34 25.7 34.01 0.70 10.50 29.6 29 30 23.3 31.10 0.78 12.63

13 49.2 48 51 38.1 68.98 0.81 12.18 52.7 50 54 42.5 55.70 0.77 18.68 47.3 47 48 38 50.50 0.84 16.02

14 48.8 47 50 37.6 50.32 0.79 12.24 53 52 54 42.7 54.52 0.73 18.81 47.7 47 48 38.2 49.22 0.80 15.83

Moein Asadi-Zonouz and et al./ A Hybrid Unconscious Search Algorithm…

138

 Table 6

 Computational results with High variability of setup times

Problem no.

 GA ACOGA USGA

 F WE CPU F WE CPU F WE CPU

 Avg Min Max Avg Min Max Avg Min Max

Small

size

1 9 9 9 7 10.40 0.68 1.88 9 9 9 7 10.40 0.68 1.72 9 9 9 7 10.40 0.68 0.17

2 10 10 10 7 11.44 0.73 1.89 10.1 10 11 7 11.54 0.72 1.73 10 10 10 7 11.44 0.73 1.89

3 12.3 12 13 8.3 13.45 0.77 2.11 13.1 12 14 9.1 14.28 0.71 2.14 12.2 12 13 8.2 13.33 0.77 0.77

4 13 13 13 9 14.45 0.68 2.26 13.1 13 14 9.1 14.55 0.66 2.14 12.6 12 13 8.6 14.04 0.72 0.58

Medium

size

5 20.7 20 21 15.7 21.93 0.80 3.38 22.1 21 23 17 23.32 0.75 3.86 19.6 19 20 14.7 20.83 0.83 4.98

6 22 21 23 17.3 23.50 0.71 3.33 22.7 22 23 17.8 24.20 0.67 3.96 21 20 22 15.8 22.49 0.74 4.88

7 22.2 22 23 17.9 23.42 0.74 5.59 24.3 23 26 19.3 25.51 0.70 7.04 21.8 21 22 17.3 23.01 0.77 6.47

8 23.2 23 24 19 24.71 0.67 5.56 25 24 26 20 26.50 0.62 6.97 22.7 22 23 18.5 24.20 0.69 6.68

Large

size

9 24.5 24 25 17.5 26.47 0.83 6.14 26.4 24 28 19.2 28.31 0.78 7.97 23.9 23 24 17 25.88 0.85 7.36

10 24.8 24 25 17.8 26.29 0.76 6.28 27.1 25 28 19.6 28.59 0.70 7.97 24.3 23 25 17.4 25.79 0.79 7.25

11 30.6 29 31 24.5 31.85 0.82 9.70 31.7 30 34 24.7 32.93 0.77 11.12 29.9 29 30 23 31.13 0.83 9.93

12 32.9 32 34 26.9 34.41 0.75 10.24 32.9 32 34 26.4 34.41 0.70 10.57 30.2 30 31 23.7 31.70 0.77 10.93

13 49.9 49 52 38.4 55.64 0.84 12.29 52.7 52 54 42.5 55.69 0.77 18.58 49.5 48 51 39 54.46 0.86 16.08

14 50.6 49 53 38.8 52.12 0.82 12.28 52.8 50 54 42.7 54.32 0.73 18.60 50.7 49 51 39.5 52.22 0.82 15.91

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 123-140

139

6. Conclusion

This study tried to hybridize unconscious search

algorithm with GA for solving mixed-model assembly

line balancing problem. Also some realistic conditions

have been considered such as zoning constraints, parallel

workstations, sequence dependent setup times, and effect

of learning phenomenon on operational times of tasks.

The performance of the proposed algorithm (USGA) has

been compared with the hybrid ACOGA and pure GA

over 14 problems with three different levels of sequence

dependent setup times. The experimental results reveal

that the performance of USGA outperforms ACOGA and

GA, and the results are more efficient solutions especially

in large size problems.

For future studies, the pure unconscious search algorithm

can be applied for other complex optimization problems.

Also as a future research direction, the proposed hybrid

USGA algorithm is a good choice for solving other types

of assembly line balancing problems such as two-sided

and U-type assembly line balancing problems.

References

Akpınar, S., & Bayhan, G. M. (2011). A hybrid genetic

algorithm for mixed model assembly line balancing

problem with parallel workstations and zoning

constraints. Engineering Applications of Artificial

Intelligence, 24(3), 449-457.

AkpıNar, S., Bayhan, G. M., & Baykasoglu, A. (2013).

Hybridizing ant colony optimization via genetic

algorithm for mixed-model assembly line balancing

problem with sequence dependent setup times

between tasks. Applied Soft Computing, 13(1), 574-

589.

Akpinar, Ş., & Baykasoğlu, A. (2014a). Modeling and

solving mixed-model assembly line balancing

problem with setups. Part I: A mixed integer linear

programming model. Journal of Manufacturing

Systems, 33(1), 177-187.

Akpinar, Ş., & Baykasoğlu, A. (2014b). Modeling and

solving mixed-model assembly line balancing

problem with setups. Part II: A multiple colony

hybrid bees algorithm. Journal of Manufacturing

Systems, 33(4), 445-461.

Andres, C., Miralles, C., & Pastor, R. (2008). Balancing

and scheduling tasks in assembly lines with

sequence-dependent setup times. European Journal

of Operational Research, 187(3), 1212-1223.

Ardjmand, E., & Amin-Naseri, M. R. (2012).

Unconscious search-a new structured search

algorithm for solving continuous engineering

optimization problems based on the theory of

psychoanalysis. In Advances in swarm intelligence

(pp. 233-242): Springer.

Ardjmand, E., Park, N., Weckman, G., & Amin-Naseri,

M. R. (2014). The discrete Unconscious search and

its application to uncapacitated facility location

problem. Computers & industrial engineering, 73,

32-40.

Biskup, D. (1999). Single-machine scheduling with

learning considerations. European Journal of

Operational Research, 115(1), 173-178.

Bowman, E. H. (1960). Assembly-line balancing by linear

programming. Operations Research, 8(3), 385-389.

Buxey, G. (1974). Assembly line balancing with multiple

stations. Management science, 20(6), 1010-1021.

Cohen, Y., Vitner, G., & Sarin, S. C. (2006). Optimal

allocation of work in assembly lines for lots with

homogenous learning. European Journal of

Operational Research, 168(3), 922-931.

Delice, Y., Aydoğan, E. K., Özcan, U., & İlkay, M. S.

(2017). A modified particle swarm optimization

algorithm to mixed-model two-sided assembly line

balancing. Journal of Intelligent Manufacturing,

28(1), 23-36.

Fattahi, P., & Askari, A. (2018). A Multi-objective

mixed-model assembly line sequencing problem

with stochastic operation time. Journal of

Optimization in Industrial Engineering, 11(1), 157-

167.

Fattahi, P., & Samouei, P. (2016). A Multi-Objective

Particle Swarm Optimization for Mixed-Model

Assembly Line Balancing with Different Skilled

Workers. Journal of Optimization in Industrial

Engineering, 9(20), 9-18.

Gansterer, M., & Hartl, R. F. (2018). One-and two-sided

assembly line balancing problems with real-world

constraints. International Journal of Production

Research, 56(8), 3025-3042.

Gokcen, H., & Erel, E. (1997). A goal programming

approach to mixed-model assembly line balancing

problem. International Journal of Production

Economics, 48(2), 177-185.

Gökċen, H., & Erel, E. (1998). Binary integer formulation

for mixed-model assembly line balancing problem.

Computers & industrial engineering, 34(2), 451-461.

Gunther, R. E., Johnson, G. D., & Peterson, R. S. (1983).

Currently practiced formulations for the assembly

line balance problem. Journal of Operations

Management, 3(4), 209-221.

Hamta, N., Ghomi, S. F., Jolai, F., & Shirazi, M. A.

(2013). A hybrid PSO algorithm for a multi-

objective assembly line balancing problem with

flexible operation times, sequence-dependent setup

times and learning effect. International Journal of

Production Economics, 141(1), 99-111.

Hamzadayi, A., & Yildiz, G. (2012). A genetic algorithm

based approach for simultaneously balancing and

sequencing of mixed-model U-lines with parallel

workstations and zoning constraints. Computers &

industrial engineering, 62(1), 206-215.

Haq, A. N., Rengarajan, K., & Jayaprakash, J. (2006). A

hybrid genetic algorithm approach to mixed-model

assembly line balancing. The International Journal

of Advanced Manufacturing Technology, 28(3-4),

337-341.

Moein Asadi-Zonouz and et al./ A Hybrid Unconscious Search Algorithm…

140

Hyun, C. J., Kim, Y., & Kim, Y. K. (1998). A genetic

algorithm for multiple objective sequencing

problems in mixed model assembly lines. Computers

& Operations Research, 25(7), 675-690.

Kilbridge, M. D., & Wester, L. (1961). A heuristic

method of assembly line balancing. Journal of

Industrial Engineering, 12(4), 292-298.

Koltai, T., & Kalló, N. (2017). Analysis of the effect of

learning on the throughput-time in simple assembly

lines. Computers & industrial engineering, 111, 507-

515.

Li, Z., Janardhanan, M. N., Tang, Q., & Ponnambalam, S.

(2019). Model and metaheuristics for robotic two-

sided assembly line balancing problems with setup

times. Swarm and Evolutionary Computation, 50,

100567.

Lolli, F., Balugani, E., Gamberini, R., & Rimini, B.

(2017). Stochastic assembly line balancing with

learning effects. IFAC-PapersOnLine, 50(1), 5706-

5711.

Manavizadeh, N., Hosseini, N.-s., Rabbani, M., & Jolai,

F. (2013). A Simulated Annealing algorithm for a

mixed model assembly U-line balancing type-I

problem considering human efficiency and Just-In-

Time approach. Computers & industrial engineering,

64(2), 669-685.

Moradi, H., & Zandieh, M. (2013). An imperialist

competitive algorithm for a mixed-model assembly

line sequencing problem. Journal of Manufacturing

Systems, 32(1), 46-54.

Mosheiov, G. (2001). Scheduling problems with a

learning effect. European Journal of Operational

Research, 132(3), 687-693.

Nourmohammadi, A., Zandieh, M., & Tavakkoli-

Moghaddam, R. (2013). An imperialist competitive

algorithm for multi-objective U-type assembly line

design. Journal of Computational Science, 4(5), 393-

400.

Özcan, U., & Toklu, B. (2010). Balancing two-sided

assembly lines with sequence-dependent setup times.

International Journal of Production Research,

48(18), 5363-5383.

Rabbani, M., Aliabadi, L., & Farrokhi-Asl, H. (2019). A

Multi-Objective Mixed Model Two-Sided Assembly

Line Sequencing Problem in a Make–to-Order

Environment with Customer Order Prioritization.

Journal of Optimization in Industrial Engineering,

12(2), 1-20.

Seyed-Alagheband, S., Ghomi, S. F., & Zandieh, M.

(2011). A simulated annealing algorithm for

balancing the assembly line type II problem with

sequence-dependent setup times between tasks.

International Journal of Production Research, 49(3),

805-825.

Thomopoulos, N. T. (1967). Line balancing-sequencing

for mixed-model assembly. Management science,

14(2), B-59-B-75.

Thomopoulos, N. T. (1970). Mixed model line balancing

with smoothed station assignments. Management

science, 16(9), 593-603.

Toksarı, M. D., İşleyen, S. K., Güner, E., & Baykoç, Ö. F.

(2008). Simple and U-type assembly line balancing

problems with a learning effect. Applied

Mathematical Modelling, 32(12), 2954-2961.

Toksarı, M. D., İşleyen, S. K., Güner, E., & Baykoç, Ö. F.

(2010). Assembly line balancing problem with

deterioration tasks and learning effect. Expert

systems with Applications, 37(2), 1223-1228.

Tonge, F. M. (1960). A heuristic program for assembly

line balancing.

Vilarinho, P. M., & Simaria, A. S. (2002). A two-stage

heuristic method for balancing mixed-model

assembly lines with parallel workstations.

International Journal of Production Research, 40(6),

1405-1420.

Yagmahan, B. (2011). Mixed-model assembly line

balancing using a multi-objective ant colony

optimization approach. Expert systems with

Applications, 38(10), 12453-12461.

Yemane, A., Gebremicheal, G., Hailemicheal, M., &

Meraha, T. (2020). Productivity Improvement

through Line Balancing by Using Simulation

Modeling. Journal of Optimization in Industrial

Engineering, 13(1), 153-165.

Yolmeh, A., & Kianfar, F. (2012). An efficient hybrid

genetic algorithm to solve assembly line balancing

problem with sequence-dependent setup times.

Computers & industrial engineering, 62(4), 936-945.

Yuan, B., Zhang, C., Shao, X., & Jiang, Z. (2015). An

effective hybrid honey bee mating optimization

algorithm for balancing mixed-model two-sided

assembly lines. Computers & Operations Research,

53, 32-41.

Zhong, Y., Deng, Z., & Xu, K. (2019). An effective

artificial fish swarm optimization algorithm for two-

sided assembly line balancing problems. Computers

& Industrial Engineering, 138, 106121.

This article can be cited: Asadi-Zonouz, M. Khalili, M. & Tayebi, H. (2021).

A Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing

Problem with SDST, Parallel Workstation and Learning Effect.

Journal of Optimization in Industrial Engineering. 13 (2), 123-140.

http://www.qjie.ir/article_673184.html
DOI: 10.22094/JOIE.2020.579974.1605

http://www.qjie.ir/article_673184.html

