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Abstract 

Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, 

considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line 

balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid method based on 

unconscious search algorithm (USGA) is proposed to solve mixed-model assembly line balancing problem considering some realistic 

conditions such as parallel workstation, zoning constraints, sequence dependent setup times and learning effect. This method is a modified 

version of the unconscious search algorithm which applies the operators of genetic algorithm as the local search step. Performance of the 

proposed algorithm is tested on a set of test problems and compared with GA and ACOGA. The experimental results indicate that USGA 

outperforms GA and ACOGA. 

Keywords: Unconscious Search algorithm; Assembly line balancing problem; Learning Effect; Parallel workstation; Sequence-dependent 

setup times. 

1. Introduction 

The most important purpose of each organization can be 

defined as maximizing the benefits and revenues. Since 

time and resources have a strong effect on achieving this 

purpose, optimal use of time and resources is crucial. 

Moreover, due to the variety of products, simultaneous 

production of different models is significant and using of 

a mixed-model production system is essential. 

Mixed-model assembly lines are commonly used for their 

flexibility with respect to model changes, for reducing the 

final product inventories and for a continuous flow of 

materials (Yagmahan, 2011). In order to avoid the high 

cost of building and maintaining an assembly line for each 

model, mixed-model assembly line handled for the first 

time by Thomopoulos (1967), which has shown that 

single-model line balancing techniques are adaptable to 

mixed-model schedules. In a follow up work, 

Thomopoulos (1970) shown how mixed-model line 

balancing problems can be modified to yield smoother 

model assignments in continuous assembly stations.  

Mainly two types of balancing problems come up for 

mixed-model assembly lines: (1) design of a new 

assembly line for which the demand can be easily 

forecasted and (2) redesign of an existing assembly line 

when changes in the assembly process or in the product 

range occurs. The first type is discussed in this paper 

which is called as MMALBP-I and can be stated as 

follow: Given M models, the set of tasks associated with 

each model, the performance times of the tasks, and the 

set of precedence relations which specify the permissible 

orderings of the tasks for each model, the problem is to 

assign the tasks to an ordered sequence of stations such 

that the precedence relations of each model are satisfied 

(Gokcen & Erel, 1997). 

Before the 70s of the 20th century, most of the techniques 

applied to solve the ALBP required assigning each task to 

a single workstation and, consequently, the production 

rate was limited by the longest task time. This assumption 

could be relaxed by utilizing parallel workstations in such 

a way that two or more replicas of a workstation can 

perform the same set of tasks on different assemblies. The 

introduction of parallel workstations not only allowed for 

cycle times shorter than the longest task time and thus an 

increase in the production rate, but also provided greater 

flexibility in designing the assembly line (Buxey, 1974). 

When parallel workstations are introduced, the number of 

tasks performed by each worker increases, but this 

contradicts one of the main advantages of using an 

assembly line which is using of low-skilled labor that can 

be easily trained. Therefore, in order to maintain that 

advantage, it is necessary to control the process to create 

parallel workstations in such a way that workstations are 

replicated only when required (Vilarinho & Simaria, 

2002). 

In many real production lines, however, the sequence in 

which tasks are developed inside the workstation matters, 
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since sequence-dependent setup times between tasks are 

present. Andres showed that assembly line not only 

requires balancing, but also the scheduling of tasks 

assigned to every workstation must be defined due to the 

existence of sequence-dependent setup times (Andres et 

al., 2008). For example, sequence-dependent setup times 

must be considered when they are very low compared to 

operation times, or in robotic lines, or when components 

placed in distanced containers. So, if these kinds of setup 

times are considered, better solutions will be achieved for 

line balancing problems.  

In many realistic settings, the production facility (a 

machine, a worker) improves continuously with time. As 

a result, the production time of a given product is shorter 

if it is scheduled later, rather than earlier in the sequence. 

This phenomenon is called as “learning effect” by 

Mosheiov (2001) who has used it in some scheduling 

problem.  

It is known that a sequencing problem in MMAL falls 

into NP-hard class of combinatorial optimization 

problems and thus a large-sized problem may be 

computationally intractable (Hyun et al., 1998; Moradi & 

Zandieh, 2013). So the problem cannot be solved by 

ordinary methods and more efficient algorithms are 

needed to solve this kind of problems. The unconscious 

search algorithm which is proposed by Ardjmand and 

Amin-Naseri (2012), is based on psychoanalysis theory of 

Freud and mimics the process of treating the patient by 

the psychoanalytic. Since the US has been never used to 

tackle the balancing problem, in this study, a new method 

based on unconscious search algorithm hybridized with 

the operators of genetic algorithm (USGA) is proposed to 

solve the mixed-model assembly line balancing problem 

with setup times (MMALBPS) by considering some real 

world constraints. In the past researches, Sequence-

dependent setup time, parallel workstation, zoning 

constraints have been used in the mixed model assembly 

line balancing problem. In this study, in addition to the 

mentioned constraints the effect of learning phenomenon 

is considered in modeling the problem. 

The rest of this study is organized as follows. The 

literature of the mentioned areas is reviewed in section 2. 

In section 3, the definition of the problem is presented and 

considered conditions are described by examples. In 

section 4, the details of the proposed method is discussed 

step by step and with some examples. Computational 

results of applying the proposed hybrid USGA algorithm 

and two other algorithms from the literature to solve 

different test problems are illustrated in section 5. Finally, 

conclusion and future research directions are presented in 

section 6. 

2. Literature Review 
 

Metaheuristics has been frequently used to solve mixed-

model assembly line balancing problem. This section 

reviewed some of the recent researches which tackled 

simple, two-sided, and U-shaped assembly line balancing 

problems solved mostly by metaheuristics. 

Haq et al. (2006) by using obtained solutions from the 

modified ranked positional weight method as initial 

population, presented a hybrid genetic algorithm to solve 

mixed-model assembly line balancing problem which 

minimizes the number of workstations. By minimizing the 

balance delay, the smoothness index between stations and 

the smoothness index within stations for a given cycle 

time, the mixed-model assembly line balancing problem 

has been solved using a multi-objective ant colony 

optimization approach (Yagmahan, 2011). Hamzadayi 

and Yildiz (2012) presented a priority-based genetic 

algorithm (PGA) for balancing mixed-model U-shape 

assembly line with parallel workstations and zoning 

constraints. Moreover, a simulated annealing based 

fitness evaluation approach (SABFEA) is developed to 

calculate the fitness function easier and more effectively. 

Simulated Annealing algorithm has been applied to solve 

the mixed-model U-line assembly line balancing problem 

with parallel workstations in a just-in-time (JIT) 

production system. Moreover, to increase the efficiency of 

the proposed approach, some policies for labor 

assignment have been set (Manavizadeh et al., 2013). 

Imperialist competition algorithm (ICA) is also applied 

for solving simple mixed-model assembly line and multi-

objective U-type assembly line problems (Moradi & 

Zandieh, 2013); (Nourmohammadi et al., 2013). In the 

study of Akpinar and Baykasoğlu (2014b), a multi colony 

hybrid bees algorithm is applied to solve the mixed-model 

assembly line balancing problem of type I with some 

particular features of the real world problems. Yuan et al. 

(2015) hybridized honey bee mating optimization 

algorithm with simulated annealing algorithm and 

proposed a hybrid approach for balancing Mixed-model 

two-sided assembly lines. Fattahi and Samouei (2016) 

presented a multi-objective PSO for mixed model 

assembly line balancing problem. The author considered 

the task times depended on the worker's skill level when 

the task must be executed manually. It means that if a 

high-skilled worker assigned to a task, the task time and 

the cycle time could be reduced. A modified particle 

swarm optimization algorithm with negative knowledge 

has been also proposed by Delice et al. (2017) for solving 

the mixed-model two-sided assembly line balancing 

problem. Gansterer and Hartl (2018) evaluated the 

performance of genetic algorithm (GA), tabu search (TS), 

and differential evolution (DE) for solving one- and two-

sided assembly line balancing problem. Authors also 

considered three types of constraints, namely zoning 

constraints, positional constraints, and synchronous 

constraints. Fattahi and Askari (2018) applied a Multi 

objective harmony search (MOHS) algorithm to solve 

mixed-model assembly line (MMAL) problem in a 

stochastic environment which aims to minimize total 

utility work cost, total idle cost, and total production rate 

variation cost, simultaneously. A discrete version of 

artificial fish swarm algorithm is developed by Zhong et 

al. (2019) to solve the two-sided assembly line balancing 

problem. The objective of the problem is to minimize the 

construction cost and the number of stations. Rabbani et 

al. (2019) after selecting and prioritizing customer orders 
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using ANP procedure, and validating the mathematical 

model by GAMS, used GA and PSO to solve mixed 

model two-sided assembly lines (MM2SAL) problem. 

The authors revealed that GAMS is an appropriate 

software for solving small sized problems, and for large 

sized problems the performance of GA is better than PSO. 

Yemane et al. (2020) to improve the productivity of 

production line, modeled assembly line balancing 

problem by combining manual line balancing techniques 

with computer simulation. To evaluate the performance of 

model, it has been applied to a case study in garment 

industry. 

In addition to the work of Andres which considered 

sequence dependent setup times in the assembly line 

balance problem, there are some other researches which 

solved assembly line balance problem with setups. Özcan 

and Toklu (2010) proposed a mixed integer program 

(MIP) to solve two-sided assembly line balance problem 

with setups (TALBPS). The proposed method minimizes 

the number of mated-stations as the primary objective and 

it minimizes the number of stations as a secondary 

objective for a given cycle time. Seyed-Alagheband et al. 

(2011) similar to the work of Andres, considered 

sequence dependent setup times for type II of general 

assembly line balancing problem where the challenge is to 

find the minimum cycle time for a predefined number of 

work stations. They developed a mathematical model and 

a novel simulated annealing (SA) algorithm to solve the 

problem and employed the Taguchi method as an 

optimization technique for tuning the parameters of 

proposed algorithm.  Yolmeh and Kianfar (2012) 

presented a hybrid genetic algorithm to solve setup 

assembly line balancing and scheduling problem 

(SUALBSP) and the operators and parameters of GA are 

calibrated via a multifactor analyze of variance 

(ANOVA). Akpinar and Baykasoğlu (2014a) formulated 

the sequence dependent setup times between tasks in 

type-I mixed-model assembly line balancing problem and 

developed a mixed-integer linear mathematical 

programming for this problem. Li et al. (2019) developed 

a linear programming model for the two-sided robotic 

assembly line balancing problem considering sequence-

dependent setup times and robot setup times. Moreover, a 

set of metaheuristics applied to solve the problem and the 

good performance of two variants of artificial bee colony 

algorithm and migrating bird optimization algorithm has 

been shown. 

The effect of learning phenomenon in production lines 

has been evaluated recently by some researchers. Cohen 

et al. (2006) showed that, under homogeneous learning 

and relatively smaller lot sizes, unequal allocation of work 

to stations is better than balanced allocation. Then, 

developed a non-linear programming model for solving 

the problem of determining optimal allocation of work to 

the stations of an assembly line. Toksarı et al. (2008) 

proved that the simple assembly line balancing problem 

and U-type line balancing problem with the consideration 

of learning effects remains polynomially solvable. Toksarı 

et al. (2010) introduced simultaneous effects of learning 

and linear deterioration into assembly line balancing 

problem and developed a mixed nonlinear integer 

programming model. Hamta et al. (2013) by considering 

the learning effect on worker(s) performance and 

sequence dependent setup times, proposed a new method 

based on the combination of particle swarm optimization 

(PSO) algorithm with variable neighborhood search 

(VNS) to solve the single-model assembly lie balancing 

problem.. In order to investigate the role of learning in the 

rebalancing of assembly lines with repetitive tasks, Lolli 

et al. (2017) proposed a cost-based stochastic balancing 

heuristic by using a time-dependent learning curve. Koltai 

and Kalló (2017) explored the effects of an exponential 

learning function on the operation of simple assembly 

lines and presented an algorithm to determine throughput-

time of a production run.  

 3. Problem Definition and the Mathematical  

Programming Model 

Mixed-model assembly line balancing problem with 

setups (MMALBPS) which is studied in this paper 

consists of assigning a set of tasks for a set of models to 

an ordered sequence of workstations, such that the 

precedence constraints between tasks are maintained, the 

setup times between tasks for all models are considered, 

the number of workstations and variation of workload are 

minimized. In addition, some other real situations are 

considered in this study. 

Learning effect causes to reduction in processing times of 

activities in the workstations. For an example, by 

processing one job after the other the skills of the workers 

continuously improve, e.g. the ability to perform setups 

faster, to deal with the operations of the machines and 

software or to handle raw materials, components or 

similar operations of the jobs at a greater pace. So the 

processing time of tasks in each station will be calculated 

using learning curve introduced by Biskup (1999), in 

which the operation time of task   with a learning effect if 

assigned to position   is defined as: 

       
  (1) 

              

Where  (        ) is the learning effect when   is 

the learning rate. 

In the following, some examples are explained to describe 

other realistic considered constraints. Workstations can be 

expanded and used as parallel workstations, when the 

time of some tasks is higher than cycle time. There is 

another real condition in assigning tasks to workstations 

which is called zoning constraints. Sometimes a certain 

task should be assigned to a specific workstation or due to 

the some limitations, assigning a task to a workstation is 

impossible. So, a feasible solution is a task assignment 

that has considered mentioned constraints. These 

constraints and situations are explained by a real case of 

producing two models in a line. The combined precedence 

diagram and assignment of tasks to workstations are 

shown in Fig. 1 and Fig. 2.  
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Fig. 1. Feasible and infeasible assignment of precedence diagram 
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Fig. 2. Tasks ordering and workstations 
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Some constraints should be considered during the 

assignment of tasks to workstations in the diagram shown 

in Fig. 1. Task times in Fig. 1 are sum of the processing 

times of each model on the particular task. The processing 

times for the models A and B are shown in Table 1 where 

   and    indicate task times for models A and B. Since 

performing task 3 requires a special technology existed in 

workstation 1, task 3 must be executed in workstation 1. 

Moreover, due to the lack of some instruments, task 4 

cannot be performed in workstation 1. Therefore, the 

assignment in Fig.1.b is infeasible. For this model, cycle 

time is calculated as 7 minute (task times are in minutes). 

Obviously, process time of task 6 is higher than cycle 

time and existence of parallel workstation is crucial. So as 

it can be shown in Fig. 2, a worker is added to 

workstation 2 which can be considered as a parallel 

workstation. Ordering of tasks in workstation 1 is another 

remarkable point in Fig.2. Since there is no precedence 

between task 2 and task 3, two task ordering in this 

workstation is possible: *               +. 
According to the setup times between tasks for both 

models which are shown in Table 2, the time of each 

arrangement of tasks is calculated as follows: 

*       +                     

                        

*       +                     

                          

where          
      

                . 

According these calculations, performing of task 3 before 

task 2 will cause to time saving and it will provide better 

solution. Similarly performing task 8 before task 7 in 

workstation 3 causes better solution. Fig. 1. c shows an 

infeasible assignment of tasks that turns into a feasible 

assignment after consideration of learning effect due to 

the reduction of operation times of tasks. Moreover, 

learning effect causes less workstations in comparison to 

the solution of Fig. 1. a. As a result, a feasible solution 

should fulfill the capacity constraints, precedence 

constraints and zoning constraints and consider learning 

effect on processing times. Also, taking sequence 

dependent setup times into account among tasks of a 

workstation provides better solutions. 

Table 1  

Task times for model A and B. 

Task 1 2 3 4 5 6 7 8 9 

   1 0.3 1 1.7 0.6 4.5 0.0 2 1 

   0.8 0.5 1.2 1.9 0.9 4.1 1.5 1.2 1.1 

 

Table 2  

Setup times for models A and B. 

Model Task 1 2 3 4 5 6 7 8 9 

Setup times for 

model A 

1 0.43 0.35 0.14 0.33 0.71 0.37 0.53 0.24 0.22 

2 0.15 0.59 0.71 0.70 0.61 0.56 0.54 0.79 0.71 

3 0.64 0.56 0.19 0.45 0.15 0.30 0.49 0.15 0.51 

4 0.06 0.67 0.58 0.79 0.79 0.40 0.43 0.07 0.23 

5 0.30 0.07 0.18 0.02 0.54 0.48 0.54 0.02 0.56 

6 0.35 0.67 0.24 0.49 0.10 0.38 0.07 0.44 0.35 

7 0.39 0.25 0.55 0.46 0.61 0.46 0.72 0.64 0.77 

8 0.39 0.36 0.58 0.75 0.03 0.11 0.17 0.23 0.39 

9 0.33 0.58 0.55 0.50 0.14 0.09 0.01 0.26 0.46 

Setup times for 

model B 

1 0.06 0.46 0.74 0.52 0.36 0.08 0.13 0.59 0.67 

2 0.07 0.48 0.78 0.67 0.70 0.15 0.49 0.56 0.73 

3 0.18 0.19 0.38 0.54 0.55 0.17 0.59 0.09 0.28 

4 0.35 0.60 0.56 0.46 0.18 0.23 0.37 0.65 0.12 

5 0.42 0.04 0.22 0.11 0.30 0.28 0.13 0.58 0.76 

6 0.10 0.59 0.69 0.01 0.63 0.02 0.39 0.38 0.73 

7 0.66 0.71 0.00 0.42 0.30 0.76 0.73 0.65 0.05 

8 0.78 0.30 0.36 0.22 0.36 0.28 0.35 0.21 0.74 

9 0.73 0.34 0.37 0.15 0.21 0.80 0.51 0.41 0.67 
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In a MMALB problem with   tasks and   models, the 

required cycle time   is computed by Eq. (2), and the 

overall proportion of the number of units of each model 

   is calculated by Eq. (3): 

 

 
 

∑      
                                                                           ( ) 

   
  

∑      
        

                                                             ( ) 

where   is the planning horizon and    is the demand for 

model  . 

With regard to the consideration of learning effect in this 

study, the modified version of mathematical programming 

model which is presented by Vilarinho and Simaria 

(2002) for mixed-model assembly line balancing problem 

with parallel workstations and zoning constraints is shown 

in Fig. 1. Due to consideration of learning effect in this 

model, the operational times of tasks are calculated using 

Eq. (1) and the constraints (9a) are modified. In the 

following model     is 1 if task   assigned to workstation 

  is 0 otherwise,    is 1 if workstation   can be replicated 

is 0 otherwise.    is the set of task pairs that must be 

assigned to the same workstation (compatible tasks) and 

   is the set of task pairs that cannot be performed on the 

same workstation (incompatible tasks).    is the set of 

tasks that cannot be performed before task   is completed. 

  is the work station index that the last task is assigned,    

is the total number of workstations including replicas,     

is the idle time of workstation   due to model   and    is 

the total proportional idle time of workstation   which 

due to considering the impact of learning phenomenon is 

calculated by Eq. (4) as follows: 
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The objective function (5) minimizes the number of 

workstations and balances the workload such that the first 

term minimizes the index of the workstation to which the 

last task is assigned, thus minimizing the number of 

workstations. The second and the third term balance the 

workload between the workstations and the workload 

within the workstations. Constraints (6) ensure that each 

task is assigned to only one workstation of the station 

interval, constraints (7) ensure that no successor of a task 

is assigned to an earlier station than that task. Constraints 

(8) and (9) indicate compatibility zoning constraints and 

incompatibility zoning constraints. The set of constraints 

(10) ensure that each workstation time capacity is not 

exceeded, the maximum number of replicas of a 

workstation (MAXP) is not exceeded and only 

workstations where the processing time of the tasks 

assigned to it, for at least one model, exceeds a certain 

proportion (  ) of the cycle time can be duplicated (  

is a very large positive integer). The set of constraints (11) 

define the decision variables domains.  

4. The proposed Unconscious Search Algorithm 

Unconscious search algorithm is a metaheuristic based on 

the theory of psychoanalysis proposed by Freud. 

According to the theory of psychoanalysis, the human 

psyche is made up of two main parts, the conscious and 

unconscious. Consciousness is the subject’s immediate 

apprehension of mental activity. The unconscious is a 

domain out of reach of the consciousness and includes 

one’s basic instincts, repressed feelings, and thoughts. 

The theory of psychoanalysis maintains that mental 

disorders are a consequence of an unbalanced relationship 

between the conscious and the unconscious (Ardjmand et 

al., 2014). 

Freud found out there are a cause leads to imbalance 

relationship between the conscious and unconscious 

called “resistance”. The resistance prevents remembering 

of an event happened in the past of the patient and now is 

the cause of the mental disorders. In the psychoanalytic 

psychotherapy proposed by Freud for curing the mental 

disorders of patient, psychoanalyst has to reveal the 

contents of the unconscious of the patient by surmounting 

the resistance of the conscious. It leads to returning the 

missed balance between the conscious and unconscious of 

the patient and treating the mental disorders. For this 

purpose the psychoanalyst asks the patient to talk about a 

desired subject. Then psychoanalyst according to the 

conversation of the patient, instructs a subject and asks 

the patient to talk about the new subject. Thus the 

psychoanalyst gets experiences about the patient’s mind 

and could instruct better subjects to achieve the 

unconscious. Since the resistance prevents revealing the 

unconscious in this process, the psychoanalyst must 

recognize the impact of resistance and surmounts it by 

giving the patient the right subject and right direction to 

follow in free association. The unconscious search 

algorithm mimicked this process to propose a new method 

for solving complex optimization problems. 

The US has been used for some engineering problems 

such as pressure vessel design (Ardjmand & Amin-

Naseri, 2012) and uncapacitated facility location problem 

(Ardjmand et al., 2014), but has been never applied to 

solve assembly line balancing problem. Since the original 

versions of the US are continuous and inappropriate for 

solving assembly line balancing problem, in this study, a 

modified version of US hybridized by genetic algorithm 

operators (USGA) is applied for MMALBS. The steps of 

USGA is depicted by Fig. 3 

Generate initial 

random population

Instruct S1 using 

replacement memory

Produce S2, S3,   using 
condensational memory and 

select the best one as S*

Improve S* using Two pointed 
crossover and Scrambled 

Mutation

Is the stopping 

criteria satisfied?
End

Update replacement and 
condensational memory

Free Association

Updating the 

psychoanalyst s 

experiences

Instructing a starting 

point by psychoanalyst 

for patient s free 

association

Free Association with 

the starting point

YesNo

Improving the 

starting point

US

GA

Fig. 3. Flowchart of USGA 

The algorithm starts by generating a pre-defined number 

of feasible solutions and arranging them based on their 

values. Then, displacement memory which indicates 

psychoanalyst’s experience and perception about the 

unconscious of the patient, is filled according to generated 

solutions. Now that psychoanalyst has gathered 

information about the unconscious of the patient, he/she 

can instruct a subject to say anything that comes to 

patient’s mind which is equal to generating a new feasible 

solution using displacement memory. Then, the patient 

can talk freely about the mentioned subject which this 
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freely talking is termed as “free association”. Performing 

a local search around the instructed solution is similar to 

the free association of the patient. After improving the 

instructed solution during search process, the direction of 

conducted changes is traced and saved in condensational 

memory. In order to overcome the resistance of patient’s 

conscious mind, psychoanalyst uses condensational 

memory and makes changes in generated solution to 

create other feasible solution as a starting point for 

patient’s free association. This process repeated for a pre-

defined number of iterations to reveal the unconscious of 

patient by psychoanalyst. The application of US in 

addressing MMALBPS is proposed in the next sub-

sections. 

4.1. Generating the initial solutions 

In any optimization problem a representation pattern that 

is usually a vector of decision variables should be defined. 

In balancing problems this pattern is usually considered as 

an N-dimensional vector which is a permutation of tasks 

number.  

At first, the psychoanalyst asks the patient to talk freely 

about a desired topic. In fact |  | random initial 

solutions (|  | is the size of measurement matrix) are 

generated which represent patient's associations. 

According to precedence constraints, generating a random 

order of tasks is impossible and a procedure that produces 

random feasible solutions should be used. Assume that 

there is a problem with N tasks and a     precedence 

matrix contains of binary numbers. In each step, the 

columns by all zero amounts represent the tasks without 

any priority, which means these tasks can be assigned to 

workstations. If there are more than one task to be 

assigned, one of them is chosen randomly and is removed 

from the precedence matrix. This process continued until 

all the tasks are assigned. Measurement matrix contains 

the sorted set of |  | feasible solutions and can be 

formulated as follow: 

   { | (  )   (    )         |  |}    (12) 

After generating initial solutions, psychoanalyst has to 

value each member of    by use of “translation 

function” which maps the value of the solution’s objective 

function into a range (     ) for   (   ). The 

applied translation function is a sigmoid function defined 

as follow: 

    (  )

 
 

    . (  )/  
                                                             (  ) 

where   and   can change in each iteration and calculate 

the proximity of solutions in    to the optimum 

solution. 

As it was mentioned, the translation function     is 

designed to map the value of the worst and the best 

member of    into   and (   ). Due to the 

probability of changing the best and the worst members of 

  , parameters   and   have to be calculated in each 

iteration as follow: 

 

 

 (  .
   

 
/)

 (      )   (     )
                                                   (  ) 
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 (     )   (      )

 (      )   (     )
)(  .

 

   
/)                    (  ) 

where       and        denote the best and the worst 

member of   . 

4.2. Solution quality measure 

For quantifying the members of    by translation 

function, the algorithm has to use a fitness function which 

measures each solution’s quality. The fitness function 

which is indicated by Eq. (5) is used as the objective 

function problem.  

4.3. Updating the displacement memory 

By means of translation function, psychoanalyst 

quantifies the members of    based on their objective 

functions. Then he\she summarizes the information of 

  ’s members in displacement memory  . Because of 

the difference between the representation of solutions in 

balancing problem with other problems, updating of 

displacement memory is different and is modified by 

some changes. In a balancing problem with   tasks, 

displacement memory is a     matrix.   can be 

defined as follow: 

𝛱  *𝛱  𝛱 +        

(16) 

in which 

𝛱  {     
                        }     

(17) 

𝛱  {     
                        }     

(18) 

When the quality of the instructed subject by 

psychoanalyst for patient’s conversation is worse than the 
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worst member of   , the instructed solution is saved as a 

bad solution that leads to high level of resistance and a 

penalty is considered for this kind of solutions.    is 

related to this kind of solutions. In fact, displacement 

matrix consists of two     matrixes, one of them for 

members of   , and one of them for solutions that are 

worse than the worst member of   . The updating 

process of both matrixes are same and can be seen in 

Algorithm 1.  

Algorithm 1. The process of updating the displacement memory 

 Input: fitness function C( ), Solution   , worst member of 

measurement matrix       ,  

1 Begin 

2 For all members of measurement matrix 

3 For all tasks 

4 If  (  )   (      ) 
5    (  ( )   (   ))

    ( (  )) 

6 Else if  (  )   (      ) 
7    (  ( )   (   ))

    ( (  )) 

8 End 
9 End 
10 End 
11 End 

 Output: displacement memory П updated by    

In other word, displacement memory maps the sequence 

of tasks in all members of    in the last performed 

iterations    (Memory Size). For an example as it shown 

in Fig. 4, task 2 is performed after task 1 in the first 

member of   , so the second column of first row of the 

displacement memory is filled by    ( (  )).

  

P1 : The first member of MM P2 : The second member of MM

Displacement memory after updating by first member of MM Displacement memory after updating by second member of MM

 

Fig. 4. Process of updating the displacement memory 

 

4.4. Instructing a subject for conversations of patient 

After updating the displacement memory a new solution 

called    can be constructed by psychoanalyst in which 

the first possible task is selected randomly. Then, 

according to assigned tasks the set of tasks without 

precedence determined and by use of Eq. (19) probability 

of selecting the next task is calculated.  

    (  ( )   )

 

    

  .    
/
 

∑
    

  .    
/
 

 
   

                                                   (  ) 

where      is the probability function and   is a constant 

and is one the parameters of algorithm.  

4.5. Updating the condensational memory 

In order to overcome the resistance, psychoanalyst has to 

define the direction of the resistance for revealing the 

unconscious of the patient. In the algorithm, 

condensational memory    defines the direction of the 

resistance. Like displacement memory, condensational 
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memory is created by two     matrixes. One of them 

for solutions belong to   , and the other one for 

solutions with fitness function higher than the worst 

member of   . Condensational memory can be defined 

as follow: 

𝛱
 
 *𝛱 

  𝛱 
 +        

(20) 

in which 

𝛱 
  {  

 
  
                        }     

(21) 

𝛱 
  {  

 
  
                        }     

(22) 

Condensational memory is filled just in cases that a 

change is made by local search process on the instructed 

solution by the psychoanalyst. The process of updating 

the condensational memory is shown in Algorithm 2. 

Algorithm 2. The process of updating the condensational memory 

 Input: Improved solution     , Solution  , Sigmoid function    ( ), 

1 Begin 

2 For all tasks 

3 Task=    ( )  

4 Position=     (      ); 

5 If  (          )      (   ) 

6  
.         (   )/

   
.         (   )/

     . (    )/ 

7 end 

8 End 

9 End 

 Output: Condensational memory    updated by   

For more clarity, the process of updating the 

condensational memory is explained by an example in 

Fig. 5.  

 

Condensational memory
 

Fig. 5. Process of updating the condensational memory 
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4.6. Generating more solutions by use of condensational 

memory 

After updating the condensational memory, in order to 

overcome the resistance, psychoanalyst tries to give the 

best starting point and direction to patient by instructing 

solutions based on the condensational memory. By use of 

the condensational memory the first instructed solution    

is modified through the right direction in order to 

overcome the resistance, and other solutions         are 

generated. This step due to existence of precedence 

constraints is a little complex. In each step for assigning 

the next task according to the last dedicated task, two set 

of tasks are existed: feasible tasks and probable tasks. 

Feasible tasks are tasks that considering precedence 

diagram are possible to be assigned, and probable tasks 

are defined by cells with positive amounts in the row of 

the last dedicated task in the condensational memory 

which means sequence of these tasks in the solution will 

cause better results. If tasks existed in both feasible tasks 

and probable tasks, one of them will be selected according 

to the amounts of the mentioned row of the 

condensational memory as follow: if the last assigned task 

called  , the values     
    

      

 will be calculated for 

positive amount of  ’th row in the condensational 

memory. Then, a random number   will be generated. 

For first amount that meet the condition    (     ), the 

task   will be selected for next assignment. Otherwise, 

when there is no intersection between feasible tasks and 

probable tasks, there are two possible action. If the 

assignment of the dedicated task in previous solution after 

the task considered in this step be possible, the mentioned 

task will be selected. Otherwise, one of the feasible tasks 

will be selected randomly. After generation of         

the best one is chosen and called as   . The procedure of 

producing solutions by use of condensational memory is 

shown in Fig. 6 and an example of producing these 

solutions is explained in Fig. 7. 

 

Define Feasible 

and Probable tasks

Probable ∩ Feasible 

Selecting by their 

probabilities 

Is the used task 

in the previous solution 

possible?

Choose 

randomly from 

feasible tasks

Choose 

the task from 

previous solution

Are all the tasks 

assigned?

Start

Finish

Ø ≠

Ø Yes

No

YesNo

 

Fig. 6. Procedure of producing solutions by use of condensational memory 
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Our Solution :

Feasible Tasks (from precedence diagram) : {3,4}

Probable Tasks (from condensational memory) : {3,4,6}

Probable Tasks ∩ Feasible Tasks : {3,4}

Probability of choosing task 3 after task 5 :
0.32

0.32 + 0.41
= 0.45

Probability of choosing task 4 after task 5 :
0.41

0.32 + 0.41
= 0.55

Condensational memory  

Fig. 7. Example of producing solutions by use of condensational memory 

4.7. Free association by patient 

   is the best instructed solution by psychoanalyst that 

will be given to patient for free association. In the 

algorithm, free association of the patient is like a local 

search progress. Two point crossover and scramble 

mutation are operators of ACO-GA algorithm which has 

been presented for solving the balance problem (AkpıNar 

et al., 2013). In this study these operators are used instead 

of a local search for free association of the patient. More 

explanations of these operators are available in original 

paper. 

The result of these two operators will be      that is an 

improved solution of    and obviously  (    )   (  ). 

If the quality of      be better than the quality of the 

worst member of   ,    will be updated and 

parameters   and   need to be recalculated by Eq. (14-

15). The process of generation of solutions using 

displacement and condensational memory will be 

repeated for a predefined number of iterations to reveal 

the unconscious or equally to reach the best solution of 

the problem. 

5. Computational experiments 

To demonstrate the efficiency and robustness of the 

proposed USGA algorithm in addressing MMALBPS, its 

results are compared with ACOGA, which has been 

proposed by hybridizing operators of GA algorithm with 

ACO (AkpıNar et al., 2013), and a simple GA with 

proposed operators in ACOGA. For doing the comparison 

a set of problems is used which main characteristics of 

these problems are shown in Table 3.  ,   and  

          denote the number of tasks of the combined 

precedence diagram, the number of models, and the cycle 

time of assembly line that is used in the original paper. 

Since by use of some of the original cycle times the 

problem doesn’t need parallel workstations, in this study 

cycle times are considered differently.  

Table 3  

Main characteristics of the test problems. 

 Problem no.                 Problem name 

Small 

size 

1 8 2 20 15 Bowman (1960) 

2 8 3 20 15 Bowman (1960) 

3 11 2 10 7 Gökċen and Erel (1998) 

4 11 3 10 7 Gökċen and Erel (1998) 

Medium 

size 

5 25 2 10 10 Vilarinho and Simaria (2002) 

6 25 3 10 10 Vilarinho and Simaria (2002) 

7 30 2 10 10 Akpınar and Bayhan (2011) 

8 30 3 10 10 Akpınar and Bayhan (2011) 

Large 

size 

9 35 2 60 32 
Gunther, Johnson, and Peterson 

(1983) 

10 35 3 60 32 Gunther et al. (1983) 

11 45 2 55 30 Kilbridge and Wester (1961) 

12 45 3 55 30 Kilbridge and Wester (1961) 

13 70 2 176 140 Tonge (1960) 

14 70 3 176 140 Tonge (1960) 
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Original examples did not have setup times and for using 

these examples for this study, setup times are considered 

in three level like what AkpıNar et al. (2013) has done in 

his paper as follows: 

 For low variability, the matrix of setup times are 

generated randomly according to a uniform discrete 

distribution  ,       (     )-. 

 For medium variability, the matrix of setup times are 

generated randomly according to a uniform discrete 

distribution  ,      (     )-. 

 For high variability, the matrix of setup times are 

generated randomly according to a uniform discrete 

distribution  ,       (     )-. 

All algorithms GA, ACOGA and USGA are coded in 

MATLAB2018a and the computational results are 

obtained by running algorithms 10 times over each test 

problem with their three setup time variability levels on a 

Windows 7 platform using Intel Core i7-2670, 2.20 Ghz 

and 4 GB RAM system. The computational results are 

shown separately in Tables 4, 5 and 6 based on the levels 

of setup time variability. The comparison is conducted in 

terms of total number of workstations concluding replicas 

(  ), so the minimum, maximum and average of them are 

presented in Tables 4, 5 and 6. Also, the average of 

number of workstations (        ), the fitness function 

calculated by Eq. (5), the weighted line efficiency (  ) 

and the computational time (   ) are shown in the 

results tables. The formula of the weighted line efficiency 

is given by Eq. (23), which takes into account not only the 

task times but only the sequence dependent setup times 

between tasks. Hence, the weighted line efficiency is 

computed by considering idle times of the workstations 

instead of considering the tasks times. It is noted that 

maximizing line efficiency is equivalent to minimizing 

the number of workstations (NWS) for a given cycle time 

(AkpıNar et al., 2013).  

  

 ∑*  

    ∑       
 
   

   
+

 

   

                                 (  ) 

where    is the overall proportion of the number of units 

of model   being assembled,        is the idle time of 

workstation   due to model  , and   is the given cycle 

time. 

As it can be seen from Tables 4, 5 and 6, almost all 

algorithms have same performance in case of small size 

problems, however, in 1 of 4 problems the minimum 

number of workstations obtained by USGA is lower than 

the values obtained by GA and ACOGA. In case of 

medium and large size problems in almost all instances 

except just one (problem 10 with medium variability), 

USGA outperforms GA and ACOGA, and the obtained 

solutions have better fitness function and lower number of 

workstations. For more details, the performance of USGA 

(the minimum number of the total workstations) is 

superior to GA and ACOGA in 60% (6 of 10 problems) in 

case of low variability setup times, 50% (5 of 10 

problems) in case of medium variability setup times, and 

80% (8 of 10 problems) in case of high variability setup 

times. For better perception, Fig. 8 shows the minimum 

number of total workstations of large size problems with 

high level of setup time variability. It must be noted that, 

the obtained fitness function and weighted line efficiency 

by USGA is higher than values obtained by GA and 

ACOGA. The calculated weighted line efficiencies of 

large size problems with high level of setup time 

variability are shown is Fig. 9.  Also it is clear that USGA 

has slower speed in comparison to pure GA, due to extra 

computational functions, but has lower computational 

time in comparison to ACOGA. According to these 

results, the performance of USGA obviously is superior to 

pure GA and ACOGA.  

 

Fig. 8. The minimum number of workstations for large size 

problems with high level of setup time variability 

   

Fig. 9. The weighted line efficiency of large size problems with 

high level of setup time variability 
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            Table 4  

          Computational results with low variability of setup times 

Problem no. 

 GA  ACOGA  USGA 

         F WE CPU          F WE CPU          F WE CPU 

 Avg Min Max      Avg Min Max      Avg Min Max     

Small 

size 

1  9 9 9 7 10.40 0.68 1.89  9 9 9 7 10.40 0.68 1.72  9 9 9 7 10.40 0.68 0.15 

2  10 10 10 7 11.44 0.73 1.90  10 10 10 7 11.44 0.73 1.75  10 10 10 7 11.44 0.73 0.22 

3  11 11 11 8 12.18 0.84 2.19  12.8 12 14 8.8 13.96 0.73 2.11  10.6 10 13 7.5 11.75 0.86 0.54 

4  10.5 10 11 7.5 11.95 0.82 2.12  12.6 11 13 8.8 14.05 0.69 2.14  10.2 10 11 7.2 11.64 0.82 0.70 

Medium 

size 

5  19.3 19 20 14.1 20.54 0.83 3.25  21.1 21 22 15.9 22.31 0.78 3.94  19.1 19 20 13.8 20.32 0.84 5.05 

6  19.6 19 20 14.6 21.08 0.78 3.25  21 20 22 15.8 22.49 0.71 3.89  19.2 19 20 14.1 20.68 0.81 3.80 

7  20.7 20 21 16.2 21.90 0.82 5.42  22.4 21 23 17.6 23.61 0.75 6.88  19.9 19 20 15.4 21.10 0.86 6.50 

8  21.8 21 23 17.6 23.30 0.71 5.58  23 22 24 18.4 24.50 0.66 6.93  20.9 20 21 16.6 22.40 0.74 6.57 

Large 

size 

9  23.6 23 24 16.9 25.62 0.85 6.07  25.9 23 27 18.8 27.77 0.79 8.48  23.7 23 24 17.1 25.63 0.85 7.41 

10  24 23 25 17.3 25.49 0.78 6.41  25.8 24 27 18.7 27.29 0.73 7.92  23.7 23 24 17 25.19 0.77 7.29 

11  29.4 29 30 22.9 30.64 0.82 7.92  31.2 31 32 25.1 32.45 0.78 10.88  28.7 28 29 22.5 29.94 0.85 9.82 

12  30.4 30 31 23.7 31.90 0.77 7.75  31.4 30 32 25.2 32.91 0.74 10.92  29.1 29 30 23.1 30.61 0.79 9.61 

13  47.6 47 49 37.7 65.42 0.83 12.10  53 52 54 42.3 55.98 0.76 18.59  47.4 46 48 38.5 50.61 0.86 17.00 

14  48.2 47 50 37.2 49.72 0.80 12.00  52.4 51 53 42.4 53.92 0.73 18.75  47.4 46 48 37.7 48.92 0.83 15.80 
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           Table 5  

           Computational results with Medium variability of setup times 

Problem no. 

 GA  ACOGA  USGA 

         F WE CPU          F WE CPU          F WE CPU 

 Avg Min Max      Avg Min Max      Avg Min Max     

Small 

size 

1  9 9 9 7 10.40 0.68 1.89  9 9 9 7 10.40 0.68 1.73  9 9 9 7 10.40 0.68 0.17 

2  10 10 10 7 11.44 0.73 1.88  10 10 10 7 11.44 0.73 1.73  10 10 10 7 11.44 0.73 1.88 

3  12.3 12 13 8.3 13.45 0.77 2.12  13 11 14 9.1 14.18 0.74 2.15  12 11 13 8.3 13.17 0.77 0.56 

4  12.5 12 13 8.5 13.94 0.70 2.15  13.1 13 14 9.1 14.55 0.66 2.12  11.4 11 13 8.2 12.85 0.75 0.56 

Medium 

size 

5  20.4 20 21 15.2 21.64 0.79 3.27  21.5 20 22 16.4 22.72 0.77 3.88  19.7 19 21 14.2 20.92 0.82 4.50 

6  21.3 20 22 16.4 22.79 0.73 3.29  21.9 21 23 16.8 23.39 0.69 4.00  20 20 20 14.9 21.48 0.76 5.58 

7  21.8 21 23 17.5 23.01 0.79 5.68  23.7 23 24 18.7 24.91 0.71 6.96  21.5 21 22 16.9 22.71 0.78 6.83 

8  22.3 22 23 18.1 23.80 0.70 5.50  24 22 25 19.1 25.50 0.63 6.94  21.7 21 22 17.5 23.20 0.72 6.63 

Large 

size 

9  24.1 23 25 17.3 26.08 0.84 6.15  25.7 24 27 18.5 27.50 0.80 7.95  23.8 23 24 17 25.80 0.85 7.46 

10  24.1 23 25 17.2 25.59 0.78 6.20  26.4 24 27 19.3 27.89 0.72 7.90  24 24 24 17 25.48 0.74 7.03 

11  30.5 30 31 24.5 31.75 0.81 8.20  32 31 33 25.4 33.23 0.76 10.78  29.4 29 30 23 30.64 0.84 9.87 

12  32 31 33 26.1 33.51 0.75 8.86  32.5 32 34 25.7 34.01 0.70 10.50  29.6 29 30 23.3 31.10 0.78 12.63 

13  49.2 48 51 38.1 68.98 0.81 12.18  52.7 50 54 42.5 55.70 0.77 18.68  47.3 47 48 38 50.50 0.84 16.02 

14  48.8 47 50 37.6 50.32 0.79 12.24  53 52 54 42.7 54.52 0.73 18.81  47.7 47 48 38.2 49.22 0.80 15.83 
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           Table 6  

           Computational results with High variability of setup times 

Problem no. 

 GA  ACOGA  USGA 

         F WE CPU          F WE CPU          F WE CPU 

 Avg Min Max      Avg Min Max      Avg Min Max     

Small 

size 

1  9 9 9 7 10.40 0.68 1.88  9 9 9 7 10.40 0.68 1.72  9 9 9 7 10.40 0.68 0.17 

2  10 10 10 7 11.44 0.73 1.89  10.1 10 11 7 11.54 0.72 1.73  10 10 10 7 11.44 0.73 1.89 

3  12.3 12 13 8.3 13.45 0.77 2.11  13.1 12 14 9.1 14.28 0.71 2.14  12.2 12 13 8.2 13.33 0.77 0.77 

4  13 13 13 9 14.45 0.68 2.26  13.1 13 14 9.1 14.55 0.66 2.14  12.6 12 13 8.6 14.04 0.72 0.58 

Medium 

size 

5  20.7 20 21 15.7 21.93 0.80 3.38  22.1 21 23 17 23.32 0.75 3.86  19.6 19 20 14.7 20.83 0.83 4.98 

6  22 21 23 17.3 23.50 0.71 3.33  22.7 22 23 17.8 24.20 0.67 3.96  21 20 22 15.8 22.49 0.74 4.88 

7  22.2 22 23 17.9 23.42 0.74 5.59  24.3 23 26 19.3 25.51 0.70 7.04  21.8 21 22 17.3 23.01 0.77 6.47 

8  23.2 23 24 19 24.71 0.67 5.56  25 24 26 20 26.50 0.62 6.97  22.7 22 23 18.5 24.20 0.69 6.68 

Large 

size 

9  24.5 24 25 17.5 26.47 0.83 6.14  26.4 24 28 19.2 28.31 0.78 7.97  23.9 23 24 17 25.88 0.85 7.36 

10  24.8 24 25 17.8 26.29 0.76 6.28  27.1 25 28 19.6 28.59 0.70 7.97  24.3 23 25 17.4 25.79 0.79 7.25 

11  30.6 29 31 24.5 31.85 0.82 9.70  31.7 30 34 24.7 32.93 0.77 11.12  29.9 29 30 23 31.13 0.83 9.93 

12  32.9 32 34 26.9 34.41 0.75 10.24  32.9 32 34 26.4 34.41 0.70 10.57  30.2 30 31 23.7 31.70 0.77 10.93 

13  49.9 49 52 38.4 55.64 0.84 12.29  52.7 52 54 42.5 55.69 0.77 18.58  49.5 48 51 39 54.46 0.86 16.08 

14  50.6 49 53 38.8 52.12 0.82 12.28  52.8 50 54 42.7 54.32 0.73 18.60  50.7 49 51 39.5 52.22 0.82 15.91 
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6. Conclusion 

This study tried to hybridize unconscious search 

algorithm with GA for solving mixed-model assembly 

line balancing problem. Also some realistic conditions 

have been considered such as zoning constraints, parallel 

workstations, sequence dependent setup times, and effect 

of learning phenomenon on operational times of tasks. 

The performance of the proposed algorithm (USGA) has 

been compared with the hybrid ACOGA and pure GA 

over 14 problems with three different levels of sequence 

dependent setup times. The experimental results reveal 

that the performance of USGA outperforms ACOGA and 

GA, and the results are more efficient solutions especially 

in large size problems.  

For future studies, the pure unconscious search algorithm 

can be applied for other complex optimization problems. 

Also as a future research direction, the proposed hybrid 

USGA algorithm is a good choice for solving other types 

of assembly line balancing problems such as two-sided 

and U-type assembly line balancing problems. 
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