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Abstract 

The wind turbine has grown out to be one of the most common Renewable Energy Sources (RES) around the world in recent 

years. This study was intended to position the Wind Turbine (WT) on a wind farm to achieve the highest performance 

possible in Electric Distribution Network (EDN). In this paper a new optimization algorithm namely Salp Swarm Algorithm 

(SSA) is applied to solve the problem of optimal integration of Distributed Generation (DG) based WT (location and sizing) 

in EDN. The proposed algorithm is applied on practical Algerian EDN in Constantine city 73-bus in presence single and 

multiple WT-DGs for reducing the total active power loss. The validity of the proposed algorithm is demonstrated by 

comparing the obtained results with those reported in literature using other optimization algorithms. A numerical simulation 

including comparative studies was presented to demonstrate the performance and applicability of the proposed algorithm.   

 

Keywords: Distributed Generation (DG); Wind Turbine (WT); Optimal Placement; Active Power Loss; Electric Distribution Network 
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1. Introduction 

Power systems have undergone major changes over the 

recent decades in the quest to provide reliable and 

economic electricity services in a way that benefits all 

associated parties. Achieving this goal involves the 

consideration of power industry regulations, and 

utilization of sustainable energies. Distributed Generation 

(DG) is expected to be a part of the solutions considered 

for the future (El-Khattam and Salama, 2004).  

Today, producing energy from wind has become 

widespread thanks to the technological developments 

(Malen and Marcus, 2017; Wang and Huang, 2016). It is 

transformed into electricity through Wind Turbines 

(WTs); however, there are other methods to generate 

electricity (Omer, 2008).  

The higher power losses in the transmission and 

distribution system also result in reducing efficiency of 

the existing system (Sultana et al., 2016; Mehigan et al., 

2018).  

The optimal site and size problems have a nonlinear 

nature. Therefore, the problem formulation of DG 

integration based WT source is modeled as a mixed 

integral nonlinear problem. Many researchers used 

multiples methods and algorithms: Probabilistic approach 

(Atwa and El-Saadany, 2011), Monte Carlo method 

(Marmidis et al., 2008), Genetic algorithm (Grady et al., 

2005), Particle swarm optimization algorithm (Hou et al., 

2015), Gaussian particle swarm optimization (Song et al., 

2018), Evaluative algorithm (González et al., 2010), 

Differential evolution algorithm (Biswas et al., 2017), 

Adaptive differential evolution algorithm (Ramli et al., 

2018), Ant colony optimization (Eroğlu and Seçkiner, 

2012), Greedy algorithm (Chen et al., 2013), Harmony 

search algorithm (Kayalvizhi and Vinod Kumar, 2018), 

Artificial algae algorithm (Beşkirli et al., 2018), Cuckoo 

search algorithm (Nadjemi et al., 2017), Modified 

artificial bee colony (Zare et al., 2017), Firefly 

Optimization algorithm (Hendrawati et al., 2019), Pattern 

search method (Shin and Kim, 2016), and Water cycle 

optimization algorithm (Rezk et al., 2019), Whale 

optimization algorithm (Settoul et al., 2019a ), and Moth-

Flame Optimization Algorithm (Settoul et al., 2019b ). 

In this paper, multiple WT-DG units are optimally 

integrated into practical EDN namely Constantine City 

73-bus system by determining their optimal sizing and 

bus location using a novel bio-inspired algorithm called 
*Corresponding author Email address: samir.settoul@umc.edu.dz 
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Salp Swarm Algorithm (SSA). To show the performance 

of the proposed algorithm the obtained results are 

compared with other powerful algorithms. 

2.  Problem Formulation and Constraints 

2.1. Objective Function 

In this work, the total active power losses are used as the 

principal Objective Function (OF) to be minimized 

(Settoul et al., 2019a, 2019b, 2019c; Hassan and Zellagui, 

2019; Lasmari et al., 2020): 
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2.2. Distribution line constraints 

Power conservation constraint: Equality constraints are 

represented by as follows (Settoul et al., 2019a, 2019b, 

2019c; Hassan and Zellagui, 2019; Lasmari et al., 2020): 
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Bus voltage limits: 
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2.3. WT-DG constraints  

Capacity limits: 
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Position of units:  
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Number of units: 
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Location of units: 
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3. Proposed Optimization Algorithm 

The Salp Swarm Algorithm (SSA) a new modern 

metaheuristic algorithm that was introduced in 2017 by 

Mirjalil (Mirjalili et al., 2017). The population of salps X 

consists of N agents with d-dimensions as described in the 

flowing equation: 
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In SSA, the position of the leader is updated according to 

the follows (Mirjalili et al., 2017; Faris et al., 2020): 
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The first coefficient c1 is introduced to make balance 

between the exploration and the exploitation (Mirjalili et 

al., 2017) is defined in flowing equation: 
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The follower salps update their positions based on 

Newton’s law of motion using the following equation 

(Mirjalili et al., 2017): 
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The pseudo-code of SSA is expressed in Algorithm 1 

(Faris et al., 2020). 
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Fig. 1. summarizes the above discussed elements forming 

a general mathematical optimization model of DGs in 

EDN. 

4. Optimization Results and Discussions 

4.1. Test System: 

The proposed SSA algorithm is applied using MATLAB 

in a PC has processor Intel Core i5 with 2.7 GHz and 8 

GB of RAM, the optimization process is done on a real 

practical EDN to evaluate the integration of WT-DG 

units. The case study is practical EDN of Constantine City 

(Algeria Company of Distribution) (Settoul et al., 2019b), 

this EDN constituted of 72 distribution lines with nominal 

voltage 10 kV, and the total loads are 2.9375 MW and 

1.6577 MVar. The single line diagram is represented in 

Figure 2. 

 
 

Fig. 2. Single line diagram of the EDN of Constantine city. 
 

The following three cases studies are deployed to verify 

the effectiveness of the SSA algorithm:  

 

 Case 1: EDN with one WT-DG,  

 Case 2: EDN with two WT-DGs, 

 Case 3: EDN with three WT-DGs. 

4.2. Performance of SSA algorithm: 

The convergence performance of the proposed SSA 

algorithm for optimal installation of WT- DG is illustrated 

in Figure 4.  

From this figure, the proposed algorithm does not 

converge quickly, but it always achieved the better results 

compared to other algorithms, in the other hand, in the 

three cases, the optimal solution is obtained after 70 

iterations from the first run. 

 

 
 

Fig. 3. Summary of the optimization process. 
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     (a) 

        

      (b)                                                                                                                

 

    (c) 

Fig. 4. The Convergence characteristics of various algorithms.  

a). 1 WT-DG, b). 2 WT-DGs, c). 3 WT-DGs, 

 

Figure 5 indicates the CPU time of each algorithm for the 

three cases studies, from the figure it clearly shows that 

the worst CPU time is for the ABC algorithm, while the 

best are recorded by GWO, but it can be said that SSA 

has a good CPU time in case three which has the second-

best CPU time after GWO, another observation that in the 

three cases the proposed SSA algorithm has close CPU 

time which means that it’s can deal with the augmentation 

in the number of WT-DGs with a short CPU time, unlike 

the other algorithms which in their cases the CPU time is 

augmented in case three. 

 
 

Fig. 5. CPU time of different algorithms in three cases studies. 

 
        (a) 

 
        (b) 

    

        (c) 

Fig. 6. Boxplot off different optimization algorithms. 

a). Before WT-DG, b). After 1 WT-DG, c). After 2 WT-DG, d). 

After 3 WT-DG 
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Figure 6 indicates the boxplot of PLoss (objective function) 

for different algorithm applied after 20 runs by using the 

same number of iterations to show the performance of 

each algorithm after this number of runs, the proposed 

SSA show a good performance for the three cases studies 

compared with the other algorithms. 

4.3. Optimization results 

The optimization results after installation of multiple WT-

DGs in EDN are tabulated in Table 1. 
 

Table 1 
Performance analysis of the proposed SSA algorithm. 

Parameters 
PLoss 

(kW) 
QLoss 

(kVar) 
Vmin (p.u.) 

@ Bus 

PWT-DG (kW) / 

QWT-DG (kVar) 

Bus 
Before 

WT-DG 
204.1259 101.3120 0.8779 @ 39 ----- 

1 WT-DG 85.0321 42.5802 0.9232 @ 73 
1075.6 /  

528.2 

(34) 

2 WT-DGs 43.5043 24.6370 0.9599 @ 51 

1087.6 / 514.4 

(34) 

572.4 / 251.1 

(62) 

3 WT-DGs 22.3059 12.1958 0.9801@ 39 

794.8 / 321.5 

(34) 

569.2 / 281.6 

(48) 

579.9 / 341.5 

(66) 

 

In the basic case before WT-DG installation, which is 

performed using the Newton-Raphson method. The PLoss 

is 204.1259 kW, and the QLoss in EDN is 101.3120 kVar. 

The bus voltage varies between 0.8779 p.u. and 1.0000 

p.u.  

After the installation of one WT-DG, the power losses in 

EDN are reduced to 85.0321 kW and 42.5802 kVar. The 

minimum voltage has become 0.9232 p.u. at bus number 

73 using the proposed SSA algorithm.  

In the case of installing two WT-DGs, the SSA identified 

buses 34 and 62, his has resulted the active and reactive 

power losses minimized to 43.5043 kW and 24.6370 

kVar, respectively.  

This observation is still valid for the last case studies with 

installation three WT-DGs when comparing the 

improvement in the PLoss, and QLoss which have become 

22.3059 kW and 12.1958 kVar, respectively. The 

minimum voltage has increased from 0.8779 p.u. to 

0.9801 p.u. 

Figure 7 indicates the bus voltage profiles for different 

case studies performed for EDN. The voltages of all the 

buses are within allowable limits, after single or multiple 

WT-DGs installations in EDN, and the best voltage 

profile is justifiably obtained compared with the basic 

case. 

 

(a) 

 

(b) 

Fig. 7. Bus voltages profile of EDN. 

a). Before WT-DG, b). After WT-DG. 
 

Figure 8 shows the line PLoss of every individual branch 

for each of the three case studies in the presence of one, 

two, and three WT-DGs in EDN. Analysis of results 

reveals that after the integration of WT-DG units, a 

significant minimization of the PLoss in all buses in EDN 

is observed.  
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        (a) 

 

      (b) 

Fig. 8. Active power loss of EDN. 

a). Before WT-DG, b). After WT-DG. 

 

Table 2 represents the optimal results achieved by the 

applied SSA algorithm and different optimization 

algorithms. 

As shown in Tables 2, ΔPLoss and ΔQLoss percentage 

obtained by using SSA algorithm are less than those 

obtained with the other algorithms in all case studies.   

 

In order to show the performance of the SSA algorithm, 

as pre-mentioned,  we compared it with ABC, DE, PSO, 

and GWO algorithms, in terms of active power loss 

minimization the compared algorithms minimize the 

power losses respectively by 57.9128 %, 57.8814 %, 

57.4119 %, and 57.8976 % as shown in Table 2 in the 

presence single WT-DG in EDN.  

 

This observation is still valid for the case installation of 

multiple WT-DGs units (two and three) while comparing 

the optimal results of applying the SSA with alternative 

algorithms. In all case studies, the proposed SSA 

algorithm performs outstandingly in minimizing the 

ΔPLoss and ΔQLoss reduction percentage and improving the 

voltage profile.  

 

Figure 9 indicates the graphical comparison of ΔPLoss and 

ΔQLoss percentage obtained by different algorithms of the 

three case studies. The analysis of the results shows the 

superiority of the proposed SSA algorithms in terms of 

both PLoss and QLoss for the different installation number of 

WT-DGs in EDN, the worst ΔPLoss is obtained by PSO 

while the worst ΔQLoss in case one is obtained by GWO 

and in case two is obtained by ABC, in case three the 

worst ΔPLoss is obtained by DE and the worst ΔQLoss is 

obtained by PSO algorithm. 
 

 

Table 2.  

Comparison of optimal results in the presence WT-DGs. 

 

 

Case  

Studies 

Algorithms 

Applied 

PLoss 

(kW) 

QLoss 

(kVar) 

Vmin 

(p.u.) 

ΔPLoss 

(%) 

ΔQLoss 

(%) 

1 WT-DG 

ABC 85.9109 43.3093 0.9232 57.9128 57.2516 

DE 85.9749 42.4925 0.9232 57.8814 57.0578 

PSO 86.9333 43.2700 0.9232 57.4119 57.2904 

GWO 85.9420 43.6966 0.9232 57.8976 56.8693 

SSA 85.0321 42.5802 0.9232 58.3433 57.9712 

2 WT-

DGs 

ABC 45.4574 26.2372 0.9644 77.7307 74.1026 

DE 44.1326 25.2010 0.9613 78.3797 75.1254 

PSO 46.1259 25.7852 0.9592 77.4032 74.5487 

GWO 44.5816 25.8226 0.9633 78.1598 74.5118 

SSA 43.5043 24.6370 0.9599 78.6875 75.6821 

3 WT-

DGs 

ABC 24.3498 13.6285 0.9823 88.0712 86.5480 

DE 25.2660 13.4288 0.9804 87.6223 86.7451 

PSO 25.0892 13.7100 0.9807 87.7090 86.4675 

GWO 23.7862 13.1634 0.9823 88.3473 87.0071 

SSA 22.3059 12.1958 0.9801 89.0725 87.9621 
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(a) 

 

 

(b) 

 

(c) 

Fig. 9. Comparison of SSA with other algorithms. 

a). 1 WT-DG, b). 2 WT-DG, c). 3 WT-DG. 

4.4. Impact of load demand variation 

Figure 10 shows the voltage profile under different load 

demand level before and after WT-DG installations, the 

load has a linear variation between 60% and 120%, and to 

show the improvement according to the allowable voltage 

limits. The minimum and maximum voltages limits are 

plotted with dashed red lines which are 0.9 and 1.1 p.u., 

respectively.  

 

 
         (a) 

 
         (b) 

 
       (c) 

 
        (d) 

Fig. 10. Voltage profile under different load variation. 

a). Before WT-DG, b). After 1 WT-DG, c). After 2 WT-DGs,  

d). After 3 WT-DGs. 
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In Figure 10. a. it clearly shows that is the voltage before 

WT-DG is less than the minimum limit in busses between 

30 and 42, and also between 47 and 51. After WT-DG 

integration, the bus voltage is improved and become 

between the allowed limits, by taking a look at Figure 9. 

b., it observed that one WT-DG installation improved the 

voltage and affect the busses between 30 and 42. But two 

and three WT-DG as shown in Figures 9.c. and 9.d, 

respectively are affecting almost all busses, another 

observation that three WT-DG makes voltage profiles for 

different loads close to each other and almost flat. 

Figure 11 shows the total PLoss and QLoss with the same 

linear variation of load demand between 60% and 120%, 

the figure reveals that after integration of WT-DG reduces 

PLoss and QLoss for different load level, that means that 

locations and sizes obtained are optimal to integrate WT-

DG, it is logical that the number of WT-DG integrated 

has a positive effect on PLoss and QLoss due to the WT-DG 

powers injected in different buses in EDN. 

For example in the installation of three WT-DG units with 

120% of load demand, the value of PLoss reduced to 38 

kW which were more than 300 kW this reduction 

represents 87 %, while QLoss reduced from 150 kVar to 20 

kVar which represent 86 %, the previous values reveal 

that WT-DG injected in the locations and sizes obtained 

by the proposed SSA algorithm can deal with load 

demand variation. 

 

 

          (a) 

 

        (b) 

Fig. 11. The power losses variation under different load demand. 

a). PLoss, b). QLoss. 

5. Conclusion 

In this paper, the SSA algorithm was used to obtain the 

optimal location and size of single and multiple WT-DGs 

units in practical EDN based total active power loss 

reduction.  

The results obtained were satisfying as they demonstrated 

that the proposed algorithm provided improved results 

than other existing algorithms through better prediction of 

the best location of WT-DG units. The SSA algorithm 

reduced the active and reactive power losses and the 

voltage profile is ameliorated in all buses with the WT-

DG installations in EDN.  

It can be concluded that the SSA algorithm is a robust and 

reliable technique for solving the optimization objective 

function problems in power systems.  

In future, authors are planning to include a specified WT-

DG cost value, different load models, and optimal number 

of WT-DGs to connect in a large practical electric 

distribution network. 
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Nomenclature 
 

A. EDN parameters  

Nbus  Number of buses 

Rij Resistance of distribution line 

Vi Bus voltage 

Pij, Qij Active and reactive powers in line  

PG, QG Total active and reactive power of 

generator 

PD, QD Total active and reactive power of 

load 

PLoss, 

QLoss 

Total active and reactive power 

losses 

Vmin, Vmax Minimum and maximum bus 

voltage 

ΔVmax Maximum voltage drops  

Sij Apparent power in distribution line  

Smax Maximum of apparent power 

B. WT-DG  

PWT-DG
min 

,  

QWT-DG
min 

Minimum powers output limits of 

WT-DG  

PWT-DG
max Maximum powers output limits of 

,  

QWT-DG
max 

WT-DG  

P WT-DG,  

QWT-DG 
Powers outputs of WT-DG  

C. SSA algorithm  

Xi
1 Leader’s position  

Fi Place of food source 

c1 First balance coefficient 

c2 , c3 Random numbers  

ubi, lbi Upper and lower bounds 

t Current iteration 

Tmax Maximum number of iterations 

Xi
k Position of salp  

N 
Number of salp particles 
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