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Abstract 

Owing to rising intentional events, supply chain disruptions have been considered by setting up a game between two players, namely, a 

designer and an interdictor contesting on minimizing and maximizing total cost, respectively. The previous studies have found the 

equilibrium solution by taking transportation, penalty and restoration cost into account. To contribute further, we examine how 

incorporation of inventory cost influences the players’ strategies. Assuming risk-averse feature of the designer and fully optimizing 

property of the interdictor with limited budget, the conditional-value-at-risk is employed to be involved in total cost. Using special order 

sets of type two and duality role, the linearized tri-level problem is solved by column-and-constraint generation and benders decomposition 

algorithms in terms of small-sized instances. In terms of larger-sized instances, we also contribute to prior studies by hybridizing 

corresponding algorithms with bio-geography based optimization method. Another non-trivial extension of our work is to define adapted 

stochastic measures based on the proposed mean-risk tri-level formulation. Borrowing instances from prior papers, the computational 

results indicate the managerial insights on players’ decisions, the model’s efficiency and performance of the algorithms. 
  

Keywords: Inventory-based protection problem; Tri-level Stackelberg game; Mean-risk formulation; Value of stochastic solution; 

Decomposition-based heuristic algorithm. 

 

1. Introduction 

Supply chain (SC) facilities are increasingly exposed to 

the massive intentional disruptions caused by malicious 

interdictors. From 2014 – 2016, the rate of intentional 

disruptions of the critical SC structures including 

agriculture, food, beverage, and pharmaceutical sectors 

alongside industrial and manufacturing materials have 

been doubled. To mitigate this, the designer of an SC 

structure should analyze the behavior and probable 

damages of a malicious interdictor by taking significant 

SC costs into account. The interdictor is a fully 

optimizing agent with a limited budget adopting his 

malicious strategies after analyzing and observing the 

decisions and precautions of the designer. Game theoretic 

approaches have been used to model this interactive 

environment (Yolmeh and Baykal-Gürsoy, 2017). The 

key point in a game between the designer and interdictor 

is to accurately consider and measure the prohibitive 

sources of SC costs. Another critical aspect of the game 

theory is related to the intractable computation for finding 

the equilibrium solution when the size of a problem 

grows. Here, the inventory term is added to the 

conventional cost components of the previous studies 

while the measurement is made through the risk-averse 

criterion. The efficiency of the proposed model is also 

assessed versus simpler counterparts. In terms of the 

solution methods, two decomposition algorithms are 

employed and further hybridized with a meta-heuristic 

algorithm to capture the corresponding intractability. 

In detail, the game theory of the SC protection problem is 

mostly handled via a bi-level or tri-level programming to 

model the leader (designer) – follower (interdictor) 

Stackelberg game. Scaparra and Church (2008) 

formulated a specific variant of the SC protection 

problem, namely the r-interdiction median model, through 

bi-level programming. Their purpose was to protect a set 

of facilities in a way that the most detrimental attack over 

r unprotected facilities led to a minimum SC cost. 

Khanduzi and Sangaiah (2019) developed a new bi-level 

supply chain protection problem for a bio-medical 

network. On one hand, the defender looked for finding 

optimal protection decision for medical suppliers and 

distribution centers, assigning clients to medical devices 

and determining the throughput quantity between 

facilities. On the other hand, the attacker focused on 

reducing service quality by maximizing the capacity of 

medical devices. The r-interdiction median Stackelberg 

game is also used to be formulated in the context of a tri-

level programming model using the min-max-min 

structure (Akbari-Jafarabadi et al., 2017; Liberatore et al., 

2012). In fact, the first, the second and the third level 
*Corresponding author Email address: m.seifbarghy@alzahra.ac.ir 
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problems were associated with the fortification, 

interdiction, and mitigation of the SC damages, 

respectively. In these r-interdiction median studies, the 

total SC cost includes the worst-case fixed, transportation 

and outsourcing expenditures.  

Here, to constitute the game, tri-level programming is 

considered in order to minimize the total cost before and 

after interdiction. The framework of our study is close to 

the studies of Bricha and Nourelfath (2013) and Jalali et 

al. (2018). Bricha and Nourelfath (2013) formed a two-

stage game between SC’s designer and interdictor to 

determine the level of protective and interdicting 

investment on facilities. They discretely dealt with the 

investment options on facilities by defining the protective 

and interdicting efforts associated with the designer and 

interdictor, respectively. In this way, the failure 

probability of a facility was in relation to the 

corresponding invested protective and interdicting efforts. 

Concerning the simple fixed-charge location problem, the 

location and distribution configurations were initially set. 

Then, a set of possible scenarios of the disrupted facilities 

were characterized. Under different realization of the 

scenarios, the designer and interdictor were looking for 

minimizing and maximizing the expected SC costs while 

weighing against associated protective and interdicting 

expenditures, respectively. The SC costs were made up of 

the expected fixed, transportation, restoration, and penalty 

expenditures. In the proposed simple fixed-charge 

location problem, the allocation pattern was based on the 

assignment of customers to the nearest open facility. They 

also assumed a fully optimizing interdictor in which one 

not only is interested in disturbing the facilities but also 

looks for optimizing his expenses. Using almost the same 

configuration except for the fully optimizing feature of 

the interdictor, Jalali et al. (2018) devised the game in the 

context of bi-level programming. They measured the 

damage cost in terms of the conditional value-at-risk 

(CVaR) instead of the prior expectation criterion. 

The aforementioned studies have failed to address the 

inventory costs with respect to the protection SC problem. 

In fact, in many cases when the ordering and holding 

expenditures of a product are not negligible, the inventory 

costs may make up a significant portion of the total SC 

cost (Chen et al., 2011). This fact can change the optimal 

transportation pattern of the classical location problem. 

This concern can even be exacerbated under serious SC 

disruptions (Shen and Li, 2016; Tang, 2006). 

The most challenging issue of modeling the inventory 

costs is associated with its nonlinear formulation (Zheng 

et al., 2019). Lagrangian relaxation and piece-wise 

linearization methods are among the common practices 

(Chen et al., 2011; Diabat and Theodorou, 2015). For 

instance, Zhang et al. (2016) used the special order sets of 

type two (SOS2) in order to linearize the inventory cost 

function. They showed that the maximum error of 

approximating the inventory function with respect to the 

SOS2 was below 2%. 

Concerning the protection of SC facilities under 

intentional disruptions, we incorporate the inventory 

costs, being approximated by SOS2, into the classical 

fixed-charge location problem. Thus, in our study, the 

total SC cost includes transportation, penalty, restoration, 

and inventory expenditures. Due to the inherent 

randomness of the SC costs as a result of the facilities’ 

vulnerabilities, the total cost is characterized with regard 

to a mean-risk formulation using the conditional-value-at-

risk. Previous studies such as Fan et al. (2020) also 

suggested the necessity to consider conditional-value-at-

risk with respect to the Stackelberg game. However, the 

mean-risk formulation, being regarded as a stochastic 

programming model, is generally known to be 

computationally challenging. Alternatively, there are 

simpler approaches such as the worst-case or robust 

programming approaches for capturing the uncertainty of 

a stochastic mean-risk formulation. Noyan (2012) defined 

two stochastic measures to justify the efficiency of her 

proposed single-level mean-risk formulation versus some 

simpler approaches. In this paper, we adapt the 

corresponding stochastic measures in terms of assessing 

the performance of the proposed tri-level mean-risk 

formulation. 

To solve the proposed multi-level SC protection problem, 

one should focus on the different previous methodologies 

such as meta-heuristic, heuristic, decomposition, and 

hybrid algorithms. Lin et al. (2019), Konak et al. (2015) 

and Kim et al. (2009) utilized meta-heuristic algorithms to 

deal with the bi-level models of protecting the railway and 

telecommunication networks. In terms of the heuristic 

approaches, Bricha & Nourelfath (2013, 2014, 2015) 

considered the backward induction heuristic method to 

solve the proposed two-stage game-theoretic models. The 

choice of Jalali et al. (2018) was the Benders 

decomposition (BD) algorithm in the case of small-sized 

instances. Meanwhile, in the context of a tri-level 

location-transportation problem, Zeng and Zhao (2013) 

theoretically proved that the column-and-constraint 

generation (CCG) method is less complex compared to 

the BD algorithm. In addition, An et al. (2014) 

demonstrated the effectiveness of CCG in terms of a bi-

level two stage robust programming. The results indicated 

that the generated cuts of CCG were always stronger than 

those generated by the BD algorithm. Meanwhile, Du et 

al. (2020) concluded that depending on the size of 

instance, either BD or CCG performed the best. 

Ghavamifar et al. (2018), Mahmoodjanloo et al. (2016), 

Jalali et al. (2018) and Setak et al. (2019) improved the 

performance of their decomposition algorithms over the 

multi-level problems with the aid of compromise 

programming, bio-geography based optimization and the 

genetic algorithm. 

A brief review of the relevant works in the literature and 

the place the current research takes in comparison with 

them is given in Table 1, where both CCG and BD 

algorithms are used to solve two small-sized instances. 

Then, to solve a medium-sized instance, a novel solution 

method is developed by hybridizing CCG, BD and BBO 

algorithms. 

In the rest of the paper, theoretical and practical 

implications of the current study are illuminated in 

Section 2. Section 3 elucidates the model formulation 
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whereas Section 4 discusses the solution methodologies. 

Section 5 assesses the efficiency of the proposed model 

formulation and solution algorithms. Finally, Section 6 

provides a brief conclusion and a number of directions for 

future research. 

 

Table 1 

Concise literature review 

Studies 
No of 

levels a 

Cost 

components b 

Location 

problem c 

Fully optimizing 

feature of interdictor d 

Optimization 

approach e 

Stochastic 

measures f 

Methodologies 
g 

Scaparra and Church 

(2008) 

2L T M - WC - H 

Kim et al. (2009) 

2L T FC - EC - H 

Liberatore et al. 

(2012) 

3L T,B M - WC - E,H 

Noyan (2012) 

1L F,T,B,I FC - MR + E 

Zeng and Zhao (2013)  

1L F,T,C FC - WC - E 

Bricha and Nourelfath 

(2013) 

2L F,T,R,B,P,A FC + EC - H 

An et al. (2014) 2L T,B M - WC + E,H 

Bricha and Nourelfath 

(2014) 

2L F,T,R,B,P,A,C FC + EC - H 

Bricha and Nourelfath 

(2015) 

2L F,T,R,B,P,A,C FC + EC - H 

Konak et al. (2015) 2L P,A M - WC - A,H 

Zhang et al. (2016) 1L F,T,B,I FC - EC - A,E 

Akbari-Jafarabadi et 

al. (2017) 

3L F,T,B M - WC - H 

Mahmoodjanloo et al. 

(2016) 

3L T,B,P M - WC - E,H 

Ghavamifar et al. 

(2018) 

2L F,T,B,I FC - EC - E,H 

Jalali et al. (2018) 

2L F,T,R,B,P,A FC - MR - A,E,H 

Our research 3L F,T,R,B,P,A,I FC + MR + A,E,H 

a 1L, 2L and 3L indicate a single-level, bi-level and tri-level programming, respectively. 
b F: Fixed, T: Transportation, B: Penalty, R: Restoration, P: Protection, A: Interdiction, C: Capacity acquisition, I: Inventory. 
c FC and M refer to the Fixed-charge and Median location problems, respectively. 
d It shows whether to consider the fully optimizing feature of the interdictor (+) or not (-). 
e Optimization approach includes Expected cost (EC), Worst-case (WC) and Mean-risk (MR) formulations.  
f +: Considering stochastic measures, -: Ignoring stochastic measures. 
g Methodologies are categorized in terms of Exact (E), Heuristic (H) and Approximation (A) approaches.  

 

2. Contributions and Practical Implications 

This paper can be distinguished from the relevant studies 

available in the literature in terms of three significant 

aspects. First, despite the aforementioned studies, the 

current research embeds the inventory cost and its 

linearized approximation into the SC protection 

framework under intentional disruptions. Second, 

conventional stochastic measures are adapted for this 

work to justify the proposed tri-level mean-risk 

formulation. Third, a unique solution methodology is 

developed by hybridizing CCG, BD and BBO algorithms. 

Through the quick review of Table 1, the differences 

between the current work and the other studies are 

highlighted based on the key features of the literature. In 

particular, our research extends Bricha and Nourelfath 

(2013) in terms of deeming the inventory costs, mean-risk 

formulation, stochastic measures, and a new hybridized 

solution method. In addition, the current research is 

different from Jalali et al. (2018) due to the considerations 

of the inventory costs, fully optimization feature of the 

interdictor, stochastic measures, and the corresponding 

hybridized method. 
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In terms of the practical implications, the consideration of 

the inventory costs makes the current work capable of 

handling a wider scope of real cases of intentional 

disruptions. Specifically, this paper is applicable to 

disaster relief and management context. In designing an 

SC structure of emergency responses, the pre-positioning 

of the emergency supplies is a key factor of increasing the 

pre-preparedness over an extreme event like natural 

disasters (Rawls and Turnquist, 2010). A significant 

portion of the emergency supplies includes a range of 

different facilities embodying vital commodities such as 

food (e.g. meals-ready-to-eat), water, and medical kits. 

These commodities, in fact, require delicate inventory 

management. On the other hand, following natural 

disasters, the incidence rate of intentional disruptions is 

considerably increased (Berrebi and Ostwald, 2013; Paul 

and Bagchi, 2018). In this circumstance, one of the 

possible targets for an interdictor is to concentrate on 

hitting the emergency SC structures. Despite such 

susceptibility, most of the previous studies are not apt 

cases of protecting the emergency SC facilities under 

intentional disruption owing to the ignorance of the 

inventory terms. In this spirit, compared to previous 

studies, the proposed SC protection framework 

considering the inventory costs is more consistent with 

the disaster preparedness problem under intentional 

disruptions. 

 

3. Model Formulation 

 

In this section, we first focus on deriving the associated 

costs including, transportation, penalty, restoration and 

the approximated inventory costs. Then, the game-

theoretic mathematical formulation is proposed in terms 

of risk-averse tri-level programming. Henceforward, in 

our notations, the vectors and solutions of the decision 

variables are represented by the boldface and the bar sign 

symbols, respectively. 
 

3.1. Modeling the associated costs 
 

The basic framework involved in the proposed game-

theoretic SC inventory-protection formulation under 

intuitional facility disruptions is formed in the context of 

the fixed-charge location problem. There are pre-defined 

discrete sets of facilities   (indexed by  ) with infinite 

capacities and customers   (indexed by  ) with finite 

demands (  ). The un-capacitated facilities can be opened 

with the fixed cost of    while they can serve customers 

with the unit transportation cost of    . There are also a 

number of finite scenarios to demonstrate whether each 

facility is operative or failed under intentional disruptions. 

We denote   as the set of scenarios (indexed by  ) in 

which the failed and operative facilities within the 

scenario   are defined by the sets    and  ́ , respectively. 

For instance, the scenario           demonstrates that 

facilities    and    are operative while facility    is failed 

(e.g.  ́  [     ]    [  ]). Furthermore,   
  is an 

indicator showing operative (if equal to one) and failed (if 

equal to zero) facilities while   is the penalty cost of 

backordering a demand. The restoration cost of a failed 

facility is also set at   . 

Similar to Bricha and Nourelfath (2013), an existing SC 

structure is considered in which the location of the 

facilities has been previously determined by the simple 

classical fixed-charge location problem. Then, the 

allocation (   
 ) and the penalty decisions (  

 ) are 

considered as the scenario-dependent variables in which 

they are distinctively optimized in terms of a scenario. To 

incorporate the inventory costs, the popular economic 

order quantity approach is followed. The inventory costs 

can be formulated by specifying the ordering (  ), holding 

(  ) and purchasing costs (  ). Assuming a negligible lead 

time to procure goods, the inventory cost of each facility 

in a scenario can be derived by √∑           
 

    

∑        
 

    (Chen et al., 2011). In our study, this non-

linear inventory term is approximated by the linear SOS2 

approach proposed in Zhang et al. (2016). In what 

follows, the associated scenario-based costs are derived 

and aggregated by the term   . In the following linearized 

formulation,  ̅  [  ̅     ] is the solution vector of the 

opened facilities based on the simple classical fixed-

charge location problem. 
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Relation (1) is the summation of the inventory, 

transportation, penalty and restoration costs, respectively. 

In the approximated inventory costs, the term 

∑ √   
    

 
    is substituted for the non-linear term 

√∑      
 

    using the SOS2 approach. The SOS2 is a set 

of consecutive variables in which not more than two 

adjacent elements are non-zero. In terms of any scenario 

and facility, assume that  ∑      
 

    [   
   | | 

 ]. Then, 

∑      
 

    can be obtained by a convex combination of 

the corresponding two breakpoints (   
  and  | | 

 ) within 

the interval. This is exactly enforced by Relations (2), (3) 

where   is the index of the breakpoints and    
  is the 

relative     SOS2 variable. Additionally, Relations (4) 

and (5) revisit the assignment pattern based on the 

realization of a specific scenario. Finally, Relations (6) 

and (7) restrict the decision variables. 
 

3.2. The risk-averse game-theoretic tri-level programming 
 

Formulation (8) – (17) includes the Stackelberg game 

between the designer and interdictor being translated into 

tri-level programming of a designer-interdictor-designer’s 

model. We introduce the notations in advance to devise 

the game. It is assumed that the strategy of the designer 

(interdictor) is a combination of attributing different 

defensive (interdicting types) to any opened facility. Let 

  and   denote the sets of defensive and interdicting 

types indexed by   and  , respectively. In terms of each 

defensive (interdicting) type associated with a specific 

facility, there is an effort unit     (   ) with cost of    
  

(   
 ). In addition, the set of protection strategies is 

represented by   (indexed by  ) and the associated cost is 

given by   . The set  contains all permutations of using 

defensive types of fortifying facilities. For instance, a 

specific protection strategy               shows that 

the three opened facilities are fortified by the defensive 

types   ,    and   , respectively. This special strategy 

uses the efforts     
,     

 and     
to fortify the three 

opened facilities requiring the total protection cost of 

   
     

      

      

 . In the same vein, the set of 

malicious strategies of the interdictor is defined by   

(indexed by  ) with the associated cost of   . 

Additionally, the interdictor has a limited budget    for 

carrying out a malicious strategy. The decision variable 

associated with the designer (interdictor) is    (  ) 

expressing whether to choose p ( m ) or not (1 choose; 0 

otherwise). In this regard, the optimal protection 

(malicious) strategy of the final solution is denoted by 

          . Furthermore,        is the failure probability 

of facilities being calculated by 

∏ (
   

       
*    
∏ (  

   

       
*    

 . It is primarily 

proportional to the efforts of interdicting and protecting a 

specific facility based on a particular scenario realization. 

Notice that, this type of calculating the failure probability 

is called as the contest success function being exactly 

borrowed from the rent seeking theory (Heijnen and 

Schoonbeek, 2019). To incorporate the risk measure, let 

us also introduce   as the weight and   as the confidence 

level of the risk measure. The decision variables 

associated with the risk measure are value-at-risk under 

any p (  ) and excess value beyond the value-at-risk with 

respect to any p and s (  
 ). In what follows, we discuss 

the interactions between the designer and interdictor via 

the first-level (8) – (10), second-level (11) – (14) and 

third-level (15) – (17) problems. 

   
 

    ∑                     (8) 

s.t: ∑                                 (9) 

   {   }                             (10) 

   
 

      ∑                     (11) 

s.t: ∑                                  (12)  

∑           
                       

(13) 

   {   }                           (14) 

   
   

    ∑ ∑ ∑             
            ∑ ∑   [   

 

   
∑         

 
   ]                   (15) 

s.t:    
                                        (16)  

                     (17)  

Concerning Relation (8), the first-level problem 

minimizes the investment cost on protecting facilities as 

well as the maximum loss of the post intentional 

disruption. Doing so, the optimal protection decision is 

adopted by respecting to use exactly one strategy in 

Relation (9) and binary constraint in Relation (10). On the 

other hand, the interdictor focuses on maximizing the post 

disruption cost by adopting the most economic malicious 

strategy based on Relation (11). The interdictor is also 

forced to adopt a single malicious strategy and to respect 

the budget and binary constraints in Relations (12) – (14), 

respectively. The third-level problem measures the post 

disruption costs and determines the risk-based variables 

under specific protection and malicious strategies. 

Relation (15) minimizes the mean-risk cost (denoted as 

the post disruption cost). It includes the expected 
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scenario-based costs (  ) plus the CVaR cost under 

corresponding protection and malicious strategies. 

Relation (16) determines the value of the excess variables 

that are beyond the value-at-risk. Finally, Relation (17) 

marks the types of risk-based variables. 

 
 

4. Solution Procedure 

 

Prior to solving the model, it is reformulated by the 

procedure explained in Section 4.1. In Section 4.2, the 

CCG and BD algorithms are customized based on the 

reformulated model. To further enhance the solution 

method for tackling larger-sized instances, a hybrid 

algorithm is developed in Section 4.3 by embedding the 

decomposition algorithms with BBO. 
 

4.1. Reformulation 
 

The proposed mixed-integer non-linear tri-level 

programming is not solvable, in its current formulation, 

by the popular decomposition algorithms. To remedy this, 

the formulation is linearized and reduced to a mixed-

integer bi-level programming using the dual counterpart 

of the third-level problem. Let denote the second and the 

third-level programming as the sub-problem. For a given 

solution  ̄ to the first-level problem, the sub-problem is a 

max-min formulation. If the minimization part of the sub-

problem (associated with the third-level programming) is 

reformulated by its dual form, there is a max-max 

formulation which can be regarded as a coherent 

maximization model. To do so, let represent the vector of 

dual multipliers in Relation (16) by  . The resultant dual-

sub problem (e.g. dual third-level problem being merged 

into the second-level problem) is given next. Note that, 

Relations (15) – (17) are repeated for the sake of 

tractability. This leads us to 

 

   
   

∑ ∑ ∑             
          ∑ ∑   

 
           ∑            (18) 

s.t:   
  

 

   
∑                            (19) 

 ∑   
 

                  (20) 

   
                      (21) 

 ∑           ∑                 {   }              (15) – (17) 

 

Relation (18) is the sum of the dual terms of the third-

level programming minus the malicious cost of the 

second-level programming. Relations (19) and (20) are 

constructed based on the risk-based variables (   ) 

whereas Relation (21) enforces positive values of the dual 

multipliers. Relations (15) – (17) are also directly 

borrowed from the second-level programming. Now, 

there is a mixed-integer bi-level programming being 

composed of the master problem (Karamyar et al., 2018) 

and the resultant dual-sub problem which can be solved 

by the decomposition algorithms discussed in the next 

subsection. 

 

4.2. Decomposition algorithms 

 

The CCG is customized and implemented according to 

the steps of Fig. 1. 
  

Step 0) Initialization: 

 Set                  . 

 Set an initial feasible  ̄. 

Step 1) Sub-problem: 

 Solve the dual sub-problem. 

 Update        ̄   ̄  ̄   ̄     ̄   ∑    ̄    . 

 Create new risk-based variables     . 

Step 2) Master problem 

 Solve the following master problem. 

                 ∑                                                                                              (8) 

             s.t:     ∑    ̄ 
     ∑ ∑ ∑  ̄ 

 
          

          

         ∑ ∑  ̄ 
 

{(  
  

 

   
∑         

  
   )}           {     }                 (22) 

                   
          

              {     }                                         (23) 

                        
              

                 {     }             (24) 

                 ∑             {   }                                                       (11) – (12) 

 Update vector  ̄ and     . 

Step 3) Stopping criterion: 

 If 
     

  
  , then stop. Otherwise, repeat Steps (1) and (2). 

Fig.1. Column-and-constraint generation algorithm 

 

The CCG is initialized by setting the lower-bound (LB), 

upper-bound (UB) and iteration counter (T). It is also 

required to set an initial feasible solution to the first-level 

programming, namely  ̄. Next, the dual sub-problem is 
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solved with respect to the incumbent protection strategy. 

Doing so, the iteration counter, optimal malicious 

strategy, and LB are updated. The subsequent step deals 

with the master problem. In each iteration, the first-level 

problem is solved with respect to the new constraints 

associated with Relations (22) – (23) and new risk-based 

decisions in Relation (24) stemming from the dual sub-

problem. Using the incumbent malicious strategy, the 

master problem iteratively updates the optimal protection 

strategy, risk-based decisions, and UB. When the relative 

gap between LB and UB reaches to a negligible amount
, the algorithm is stopped and the incumbent solutions are 

set as the optimal ones. 

Note that, in contrast to CCG, the master problem of the 

BD algorithm only iteratively constructs Relation (25) 

while ignoring Relations (22) – (24). 

 

     ∑    ̄ 
     ∑ ∑ ∑  ̄ 

 
          

          ∑ ∑  ̄ 
  

                {     }                        (25) 

 

4.3. A hybrid solution method 

 

The main reason for embedding a heuristic algorithm in 

the proposed decomposition approaches is to convert the 

extremely large sets of the protection and malicious 

strategies into workable sizes. Doing so, a population-

based algorithm inspiring from the distribution of species 

over space and time called the biogeography-based 

optimization (BBO) is employed. BBO mainly evolves 

the population of chromosomes by the migration and 

mutation operators. The migration operator is akin to the 

crossover operation taking the immigration and 

emigration rates of habitats (i.e. chromosomes) into 

account. The immigration and emigration rates of a 

chromosome are inversely (     
    

      
) and directly 

(   
    

      
) proportional to their fitness function (fit), 

respectively. The fitness function of a chromosome is, in 

fact, analogous to the suitability index of a habitat. The 

mutation operator, on the other hand, is to simulate 

cataclysmic changes of a habitat feature (i.e. genes). The 

mutation rate is also adjustable with respect to      
  

    
 where    shows the likelihood of a chromosome to 

be a solution to the problem (for detail discussion on 

computing the probability see Salehi and Masoumi 

(2019)). Notably, in order to normalize the fitness 

function and probability of chromosomes, they are 

divided by their maximum values namely,        and 

    , respectively. 

Now, there are two populations in the hybridized 

algorithm either of which with the size of Δ 

chromosomes. In the same vein of Konak et al. (2015) 

besides Jalali et al. (2018), one population is attributed to 

the designer’s decisions (PD) while the other one is to 

consider the interdictor’s decisions (PA). Each 

chromosome PD (     ) /PA (     ) is an array of 

defensive/interdicting type as size as the number of 

facilities. For instance, consider the representation of 

    [   ] |       demonstrating the first 

chromosome of the population PD (  ) related to a 

protection strategy. This representation indicates that the 

first and second available facilities are protected by the 

defensive types    and   , respectively. In this way, the 

mathematical model is reduced by considering the new 

protection and malicious sets (namely, the population of 

PD/PA instead of the set of P/M). Then, the reduced 

model is solved via CCG and/or BD. The selection of the 

solution algorithm is affected by         (entitled as the 

switch coefficient) which is iteratively updated in 

decreasing order. The initial value of the switch 

coefficient is also denoted by   . As the number of 

iterations increases, it is more probable that the solution 

method switches from BD to CCG. Notably, in addition to 

the final solution, the inner upper-level solutions of the 

corresponding algorithm are stored. To do so, the matrix 

 (  |  ) shows the stored upper-level objective value 

in terms of the protection strategy    and malicious 

strategy   . Taking the resultant matrix   into account, 

the fitness value of   /   is scored based on its ability to 

dominate other protection/malicious strategies under any 

malicious/protection chromosome. 

The dominance rule is as follows. Let    dominates     

(under given   ) if and only if the stored upper-level 

objective value    is lower than the corresponding value 

    (i.e.         (  |  )   (   |  )). Further, 

the dominant malicious chromosome is checked 

according to         (  |  )   (  |   ). 

The evolutions of the populations are accomplished via 

the migration and mutation operators. The roulette wheel 

selection and the multi-point preservative crossover 

(MPX) are also utilized within the migration operator. 

The algorithm is stopped when the required number of 

iterations (  ) is met. The pseudo code of Fig.2 clarifies 

the main skeleton of the proposed hybridized method and 

specifies the procedure of the related functions. 

 

Initialization: 

Randomly initialize PA and PD populations. 

Set            ,     . 

Main body: 

While         

      If              then run BD, else run CCG. 

      Store inner upper-level solutions and final solution in the matrix . 

      For any             calculate    (  )        . 

      Remove the worst Δ chromosomes from PD/PA. 
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      If       then 

            For any       call the BBO procedure. 

            (Repeat the same procedure for any      ). 

            Calculate BBO components:    
    

    
. 

            [
           

           

                                    
    (      )   

                       
                 (  ) 

                     

                        
   

      Else Stop While loop. 

End While. 

Related Function: 

Function    (  ) Function         

      Set             Set       

      Set            Set      

      For any             For any       

            For any                   For any       

            If    |     (  |  )                     If  (  | )   (  |  )         

            End For             End For 

      Set    (  )           Set            

      End for       End for 

End Function End Function 

Function Roulette wheel ( ) 

      For each chromosome (k) 

                  calculate the interval      (
∑   

   
   

∑   
   
   

 
∑   

 
   

∑   
   
   

*  

      End For 

                                         
End Function 

Function            

      Generate a binary array ( ) as size as the number of facilities 

      For any     

            If      then                    else                    

End Function 

Function Mutate ( ) 

                   

      Select a random gene of   namely,      gene 

      Select a random feasible value for the     gene denoted as val  

                       
End Function 

Fig. 2. Pseudo code of the hybrid method 

 

5. Computational Results 

 

The computational results begin with the introduction of 

the numerical instances in Section 5.1. Then, the impact 

of incorporating the inventory costs on the optimal 

protection and malicious configurations are assessed in 

Section 5.2. In Section 5.3, the next purpose is to justify 

the accuracy of approximating the inventory costs through 

SOS2. Section 5.4 measures the effectiveness of utilizing 

the mean-risk formulation while Section 5.5 compares the 

performance of the proposed decomposition algorithms 

over small-sized instances. In terms of medium-sized 

instances, the performance of the hybrid algorithm is 

evaluated in Section 5.6. The proposed algorithms are 

implemented using the ILOG Concert Technology for 

Java.  

 

5.1. Instances 

 

The computational results are based on two categories of 

instances. In this regard, two small-sized instances are 

adopted from Bricha and Nourelfath (2013) and Bricha 

and Nourelfath (2014) being denoted as S1 and S2, 

respectively. There is also a medium-sized instance 

(denoted by M1) being borrowed from Jalali et al. (2018). 

The key point in the size of the instances is their relation 

to the number of potential facilities. In fact, an increase in 

the potential facilities is analogous to an exponential 

growth of the number of scenarios. In this way, S1, S2, 

and M1 include 3, 5 and 10 potential facilities, 

respectively. The relevant data of these instances are 

summarized in Table A1 of Appendix A. 

 

5.2. The managerial insight on the impact of considering 

the inventory costs 

 

In this section, we demonstrate how the configuration of 

an SC protection problem may be influenced by the 

inventory costs. Without loss of generality, we focus on 

the S1 instance by setting                    . 

Substituting the optimal solution of a free-inventory case 

into the proposed inventory-based formulation, the 

corresponding output is consequently compared with a 
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local optimum solution to the inventory-based S1 

instance. Notice that, for the sake of comparison, instead 

of finding the optimal solution of the approximated 

version, a local optimum point is obtained via a trial and 

error method. 

The results of Table 2 show that the inventory-based 

setting has a lower total cost compared to its free-

inventory counterpart. The significant portion of such a 

priority is due to the inventory cost. The inventory cost of 

the inventory-based setting is 54,540 units lower than the 

one in the free-inventory case. However, the sum of 

expected transportation, penalty and restoration costs of 

the inventory-based setting exceeds the ones of the free-

inventory one. Although the fixed protection and 

interdiction costs are the same for these two cases, the 

configurations of the malicious strategies are not similar. 

According to the content given in Appendix A, the second 

(  ) and the third (  ) levels of the interdicting types are 

associated with 250 and 150 effort units, respectively. In 

the inventory-based setting, the higher the interdicting 

effort (i.e.   ) is imposed on the first facility while in the 

free-inventory case,    is exerted on the second facility. 

This primarily stems from the changes in the 

transportation pattern of the facilities as a result of 

involving the inventory costs leading to the variations on 

the percent of satisfied demands by facilities. 

 

Table 2 

Comparing the free-inventory and inventory-based responses of S1 instance 

Solution 

type 

Resulted 

strategies 
Fixed Investment costs Expected costs 

CVaR cost Total cost 

          Protection Interdiction Transportation Penalty Restoration Inventory 

Free-

inventory 
              466200 14100 3,993,380 5,326,677 10,854 82,806,470 1,301,601,000 1,394,205,000 

Inventory-

based 
              466200 14100 4,045,294 5,326,677 10,712 82,751,930 1,301,539,000 1,394,140,000 

 

Concerning the free-inventory and the inventory-based 

cases, Fig. 3 compares the percent of satisfied demands 

over all possible failure scenarios. In this regard, the most 

considerable variation occurs within the first scenario 

(  ). Under the inventory-based setting 1s , Facilities 1 and 

2 serve 26% higher and lower demands than the ones in 

the free-inventory setting, respectively. On the other hand, 

   is the most likely scenario with the occurrence 

probability equal to 0.44 using the related formula 

described in Section 3. Due to this significant occurrence 

probability, the fully optimizing interdictor focuses on 

strengthening the malicious effort level of Facility 1 to 

disrupt the functionality of the SC structure at most. In 

order to afford the interdicting budget, the interdictor has 

to reduce the effort level of Facility 2 and exert the 

highest available effort unit on Facility 1 (i.e.   ). 

Accordingly,      changes from        (associated with 

the free-inventory setting) to        (in relation to the 

inventory-based case).  

 

 
 

Fig. 3. Fraction of demand served by each facility concerning free-inventory (a) and inventory-based (b) cases 

 

 

5.3. Accuracy of SOS2 approximation 
 

To justify how well SOS2 estimates the expected 

inventory costs, the approximate costs are compared 

versus the actual in terms of all 1024 scenario solutions in 

the M1 instance. Based on the resultant allocation 

solution, the actual costs are, in fact, the direct square 

roots of the inventory costs. In Fig 4, the actual values are 

represented over the ideal continuous line while the 

approximate values are the scatter points. By computing 

the relative difference between the actual and approximate 

values, the mean (6.82%) and the maximum (12.976%) 

results advocate the accuracy of the SOS2 approximation. 
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Fig.4. Approximate versus exact inventory costs 

 

5.4. Stochastic measures 

 

The proposed model formulation captures the 

vulnerability of facilities by means of one of the most 

well-known stochastic approaches, namely the scenario-

based mean-risk programming. Nevertheless, this 

approach is not the unique solution for capturing the 

stochastic parameters and can be substituted by other 

alternatives such as the worst-case and the robust 

programming. The value of perfect information and the 

value of stochastic solution are well-known measures to 

judge whether it is worthy to utilize stochastic scenario-

based programming versus other alternatives (Jalali et al., 

2016). Noyan (2012) defined these measures based on a 

single-level mean-risk formulation. The mean-risk value 

of the perfect information (MRVPI) specifies the 

difference between the mean-risk solution to the scenario-

based approach (MRS) and the mean-risk solution to the 

wait-and-see approach (MRWS). In this paper, the 

corresponding stochastic measures are adapted based on 

the proposed tri-level programming model with respect to 

the pseudo code of Fig 5. 

In detail, MRS is related to the main formulation 

developed in this study, including Relations (8) – (17). On 

the other hand, the wait-and-see approach assumes that an 

exact forecasting system could determine which scenario 

will be realized in the future. Doing so, it distinctively 

solves the scenario-based model in terms of every single 

scenario. Then, the set of resultant solutions is aggregated 

through the mean-risk function. The mean-risk value of 

the stochastic solution (MRVSS) also compares the 

resultant solution to MRS with the mean-risk solution to 

the alternative worst-case programming (MRWC). The 

worst-case (or robust programming) considers a set of 

scenarios of interest (SI) instead of necessarily 

enumerating all scenarios (Peng et al., 2011). SI, in fact, 

includes the scenarios of the maximum k simultaneous 

failed facilities, namely    [   |∑      
       ]. 

After solving the worst-case counterpart of the 

formulation, the resulted upper-level solution ( ̄  ) is 

stored. Considering  ̄  , the lower-level problem is 

solved and aggregated through the mean-risk function. In 

what follows, the necessary steps of computing the 

stochastic measures are summarized. 
 

 

MRVPI calculation: 

For     | |   

        [        |   ]
       
→     [

     ∑         ∑         ∑ ∑       
      

                                                                     
  

End For 

                             
  

 
               

∑   
 
               

   

        

      ∑                  
   

      { }

[  
 

   
∑        

   |              ]  

                  

MRVSS calculation: 

  Consider new third-level programming based on the robust optimization 

     
   

       [ |  ∑ ∑             
             ]                                            (26) 

        [               ]
         
→            ̄  

        [        |   ̄  ]
         
→             ̄  

                 
 

Fig. 5. Pseudo code of adapted stochastic measures 
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In Table 3, the stochastic measures are evaluated in terms 

of different values of the risk parameters. The results 

show that an increase in the value of  and θ reduces the 

difference between MRS and MRWS. For instance, 

consider  = 0.9. When comparing θ = 1 and θ = 50, it can 

be observed that the fraction of MRVPI/MRS is reduced 

from 31.65% to 11.60%. Furthermore, the positive values 

of MRVSS indicate that the adopted scenario-based mean-

risk approach leads to the more desirable solutions in 

comparison with the less cumbersome worst-case method. 
 

Table 3 

Stochastic measures 

   MRS (    ) MRWS (    ) MRVPI (    ) MRVPI/MRS MRWC (    ) MRVSS (    ) MRVSS/MRS 

0.8 1 627.05 417.16 209.90 33.47% 628.21 1.16 0.18% 

10 4498.93 3794.66 704.27 15.65% 4505.45 6.52 0.14% 

50 21707.30 18805.90 2901.40 13.37% 21737.60 30.30 0.14% 

0.9 1 682.33 466.36 215.97 31.65% 703.34 21.00 3.08% 

10 5080.00 4343.30 736.70 14.50% 5200.00 120.00 2.37% 

50 24800.00 21923.70 2876.30 11.60% 24900.00 29.70 0.12% 
 

5.5. Convergence performance of the decomposition 

algorithms 

 

Here, the computational performances of the three 

algorithms are compared together under different 

combinations of the risk parameters in S1 and S2 

instances. Algorithm1 belongs to the linearized single-

level version of the main problem solved by the standard 

CPLEX approach. Algorithm2 uses BD while Algorithm3 

solves the problem by CCG. The computational results in 

Table 4 prove the superior performance of the CCG over 

the other algorithms. It can be observed that the risk-

neutral case is significantly a less challenging problem 

than the risk-averse cases when the problem size is 

increased. For instance, consider Algorithm2. Under S1, 

the CPU times of all the risk-neutral and risk-averse cases 

are close and below 10s. Nevertheless, under S2, the 

minimum CPU time of the risk-averse cases (573s) is 

significantly greater than the risk-neutral counterpart 

(80.557s). It is obvious that both Algorithms 2 and 3 are 

better than Algorithm1 implying the significant 

importance of utilizing the decomposition algorithms to 

solve the multi-level stochastic programming. For the 

sake of comparison, the convergence plots of Algorithms 

2 and 3 within the given CPU times are provided in Fig 6. 

Both algorithms are converged in 10 seconds when they 

solve the S1 instance. Conversely, BD is unable to 

converge in 300 seconds over S2 while CCG reaches 

convergence after 275.48 seconds. This advocates the fact 

that the generated constraints of CCG are much stronger 

than the Benders-cut.  

 

Table 4 

Execution time of Algorithm1, Algorithm2 and Algorithm3 over small-sized instances 

Instance 
Risk parameters CPU (s) 

   Algorithm1 Algorithm2 Algorithm3 

S1 

0 - 114.00 8.84 8.94 

1 0.7 121.31 9.36 9.46 

0.8 127.50 9.69 9.18 

0.9 124.02 8.95 9.19 

5 0.7 149.61 9.17 9.21 

0.8 137.23 9.07 9.20 

0.9 118.10 9.16 8.99 

10 0.7 169.72 8.86 9.21 

0.8 142.59 9.19 8.97 

0.9 158.90 10.21 9.20 

S2 

0 - 960.18 80.56 86.97 

1 0.7 2460.16 656.80 201.00 

0.8 2100.53 573.00 164.64 

0.9 1620.80 580.14 153.67 

5 0.7 2160.89 672.10 279.70 

0.8 1920.23 619.40 161.50 

0.9 1740.02 632.52 139.42 

10 0.7 2460.07 691.87 187.80 

0.8 1440.97 645.07 150.57 

0.9 1380.73 592.05 275.48 
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Fig. 6. LB/UB convergence over a limited time (a, b) 10s and (c, d) 300s under =0.9, θ=10. 

 

 

5.6. Hybrid optimization 

 

The hybrid optimization is implemented on the M1 

instance with respect to the different configurations of the 

population size, initial value of the switch coefficient (  ) 

and the risk parameters. The associated parameters are set 

as  [      ] ,    [       ] and       .The results 

in Table 5 show that the hybrid algorithm provides higher 

quality solutions in terms of the greater values of   . At 

the same time, the algorithm demands less computational 

time based on the lower value of   . In fact, as the value 

of    increases, the chance of selecting BD rises. On the 

other hand, the lower value of    is analogous to the 

higher chance of CCG to be selected. Adopting from the 

results of the small-sized instances, CCG performs faster 

than BD with a lower number of iterations

Table 5 

 Numerical results for M1 instance using the hybrid method under 189000AC    

Δ    θ   Cost (    ) CPU time (s) 

40 0.2 0 - 1.9740 1864 

1 0.75 6.0694 1948 

0.9 6.9078 1925 

0.95 7.4783 1936 

5 0.75 22.4510 1914 

0.9 26.6430 1879 

0.95 29.4957 1902 
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10 0.75 42.9280 1909 

0.9 51.3120 1895 

0.95 57.0174 1909 

0.6 0 - 1.8478 2480 

1 0.75 5.8126 2604 

0.9 6.6317 2604 

0.95 7.2127 2487 

5 0.75 21.6716 2549 

0.9 25.7672 2483 

0.95 28.6724 2610 

10 0.75 41.4954 2538 

0.9 49.6867 2616 

0.95 55.4970 2619 

100 0.2 0 - 1.7594 4878 

1 0.75 5.6311 4932 

0.9 6.4389 4937 

0.95 7.0289 4920 

5 0.75 21.1177 4881 

0.9 25.1567 4916 

0.95 28.1068 4938 

10 0.75 40.4760 4938 

0.9 48.5540 4884 

0.95 54.4541 4964 

0.6 0 - 1.7121 5596 

1 0.75 5.5323 5673 

0.9 6.3188 5708 

0.95 6.9310 5641 

5 0.75 20.8132 5622 

0.9 24.7455 5757 

0.95 27.8065 5640 

10 0.75 39.9143 5656 

0.9 47.7789 5734 

0.95 53.9008 5750 
 

BD searches more inner solutions compared to CCG since 

it requires a greater number of iterations. Hence, the 

greater values of    results in the higher quality solutions 

whereas the lower values of    provides solutions with 

less computational time. Without loss of generality, we 

compare the results when        and        under 

    ,    , and      . Although the resulted cost 

associated with        (i.e.            ) is less than 

its counterpart (i.e.           ), the corresponding 

processing time demands 725 extra seconds to be 

completed. Notice that, we have ignored the results 

associated with a higher amount of    such as (      ), 

since the required CPU time exceeded our pre-defined 

threshold, namely 6,000 seconds. 

Another noticeable observation is in relation to the impact 

of the population size. The higher amount of   requires 

more computational time resulting in a better objective 

value. In fact, any observation related to      requires 

lower CPU time but more prohibitive cost compared to 

the corresponding result associated with     . In the 

context of the computational times with respect to the 

different configurations of the risk parameters, no specific 

conclusion can be made except for the risk-neutral and 

risk-averse cases. In other words, concerning any value of 

      and   , the risk-neutral cases (where    ) 

perform faster than the risk-averse cases (where    ). 

This is due to the extra complexity being required to 

derive the risk-dependent variables in terms of the risk-

averse cases. However, one cannot claim that a specific 

risk-averse case (e.g.     ) demands more/less CPU 

time than another one (e.g.    ). Similarly, the 

fluctuations of the confidence level do not significantly 

influence the processing time. Let us compare the CPU 

times associate with       and        under 

      and       . When    , the resulted CPU 

time of       (i.e. 5757s) is greater than the required 

CPU time of        (i.e. 5622s). Meanwhile under the 

same configuration with regard to θ = 10, the case related 

to       is completed 16s faster than the case of 

      . 

Fig 7 shows the performance of the hybrid method over 

27 iterations of a specific case related to the M1 instance 

in details. The turbulent behavior stems from the gradual 

exploration of the new protection and malicious strategies 

over the search process of the hybrid method. In fact, the 

curve descends/ascends by exploring a new non-

dominated protection/malicious strategy with respect to 

PD/PA, respectively. Precisely, at the beginning, the 

interaction between the protection and malicious 

strategies leads to a cost equal to         . In the next 

iteration, the hybrid algorithm generates and adds a new 

malicious strategy into the PA list causing a more 

prohibitive cost equal to         . In the seventh 

iteration (when the CPU time is around 466 seconds), the 

introduction of a prominent new protection strategy is 

responsible for bouncing back the cost to         . 

This trend remains volatile until the algorithm proceeds to 

         after 1,948 seconds. Note that we use trial and 

error approach to tune parameters of algorithms in the 

same vein of SnyderKonak et al. (2015) and Jalali et al. 

(2018). Future research can improve algorithms by using 

statistical methods such as Taguchi method (Gan and 

Safaei, 2016; Rizvi and Wajahat, 2019; Sadeghi et al., 

2018). 
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Fig.7. Detail performance of the hybrid method over M1 instance when                        

 

6. Conclusion 

 

This paper developed a risk-averse supply chain (SC) 

protection problem to include inventory decisions. To 

solve the proposed problem, two algorithms, the column-

and-constraint generation (CCG) and the Benders 

decomposition (BD) algorithms, were used. To improve 

the efficiency of algorithms, we hybridized them with a 

bio-geography based algorithm. The drawn managerial 

insight showed that inventory costs could revisit 

protection or malicious strategies by changing the fraction 

of demand served by the facilities. The adapted stochastic 

measures elucidated that the mean-risk formulation was 

more appropriate for capturing the vulnerability of 

facilities compared to the less cumbersome formulations 

such as worst-case programming. CCG also performed 

faster than BD algorithm due to the generation of the 

stronger cuts. The results of the hybrid approach 

demonstrated that the mixture of CCG and BD algorithms 

could preserve both aspects associated with the execution 

time and quality of the solutions. Moreover, the volatility 

associated with the convergence curve of the hybrid 

method was caused by the close contest between the 

designer and the interdictor. To extend the current study 

further, one can relax the assumption of considering an 

existing SC structure of opened facilities using the 

classical fixed-charge location problem. Doing so, a 

specific framework should be developed to optimize 

location, allocation, penalty, protection and malicious 

decisions simultaneously under the consideration of the 

inventory costs. 

 

Appendix A. (Input data) 

Table A1. Input data of S1, S2 and M1 instances 

Instance Sets and parameters 
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