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Abstract 

 

This paper addresses the multi-mode multi-skilled resource-constrained project scheduling problem. Activities of real world projects often 

require more than one skill to be accomplished. Besides, in many real-world situations, the resources are multi-skilled workforces. In 

presence of multi-skilled resources, it is required to determine the combination of workforces assigned to each activity. Hence, in this 

paper, a mixed-integer formulation called the MMSRCPSP is proposed to minimize the completion time of project. Since the MMSRCPSP 

is strongly NP-hard, a new genetic algorithm is developed to find optimal or near-optimal solutions in a reasonable computation time. The 

proposed genetic algorithm (PGA) employs two new strategies to explore the solution space in order to find diverse and high-quality 

individuals. Furthermore, the PGA uses a hybrid multi-attribute decision making (MADM) approach consisting of the Shannon’s entropy 

method and the VIKOR method to select the candidate individuals for reproduction. The effectiveness of the PGA is evaluated by 

conducting numerical experiments on several test instances. The outputs of the proposed algorithm is compared to the results obtained by 

the classical genetic algorithm, harmony search algorithm, and Neurogenetic algorithm. The results show the superiority of the PGA over 

the other three methods. To test the efficiency of the PGA in finding optimal solutions, the make-span of small size benchmark problems 

are compared to the optimal solutions obtained by the GAMS software. The outputs show that the proposed genetic algorithm has obtained 

optimal solutions for 70% of test problems. 
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1. Introduction 

A classical resource-constrained project scheduling 

problem (RCPSP) deals with scheduling a set of 

interrelated activities with respect to precedence relations 

and resource limitations (Hosseini et al., 2014; Naderi, 

2013). The RCPSP aims to schedule tasks such that the 

project completion time is minimized (Afshar-Nadjafi et 

al., 2012). Blazewicz et al. (1983) proved that the RCPSP 

belongs to the class of NP-Hard problems and it is 

difficult to solve it to optimality. The RCPSP and its 

extensions have been widely investigated in the literature 

(Hosseini et al., 2014). The multi-mode RCPSP 

(MRCPSP) is a variant of the standard RCPSP, where 

there are several modes for performing an activity and 

each activity can be executed in one out of multiple 

modes. The modes of activities will not change during 

their processing times. Each mode represents a certain 

combination of duration and resource requirements 

(Afruzi, et al., 2014). The multi-skilled RCPSP 

(MSRCPSP) is another extension which has been the 

subject of many studies in the literature. In the multi-

skilled RCPSP, resources are workforces that are able to 

perform at least one skill. Each activity may need one or 

more skills. In presence of multi-skilled workforces, it has 

to be determined that which workers should be assigned 

to each task (Maghsoudlou et al., 2017).  

In this paper, a multi-mode multi-skilled RCPSP 

(MMSRCPSP) model is proposed to minimize the project 

completion time. Thus, the make-span of the project is 

considered as the fitness value of a schedule. Considering 

multi-modal activities and multi-skilled human resources 

is a step forward to provide more realistic schedules for 

real-world projects. Since the standard RCPSP is an NP-

Hard problem, the MMSRCPSP belongs to the class of 

NP-hard problems as well. Due to the NP-Hard nature of 

RCPSP, finding optimal solutions by means of exact 

methods for large size problems, becomes 

computationally impractical. Hence, meta-heuristics are 

used to provide near optimal solutions within reasonable 

computation times (Agarwal et al., 2015). Therefore, we 

propose a genetic algorithm (GA) to tackle the 

MMSRCPSP. This method is called the proposed genetic 

algorithm (PGA) which uses a hybrid multi-attribute 

decision making (MADM) approach consisting of the 

Shannon’s entropy method and the VIKOR
1
 method to 

choose the best solutions as parents in order to produce 

high quality and diverse solutions for the next generation. 

                                                           
1. Vise Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) 
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Many researchers employ the tournament selection 

operator for their genetic algorithm to select candidate 

solutions for reproduction. The basic tournament selection 

operator chooses a number of individuals from the 

population. The chosen individuals compete with each 

other based on their fitness values to determine the 

winner. Therefore, the solution with the least fitness value 

always fails to win the competition. Thus, it can be 

concluded that the chance of selection for all solutions is 

not equal. This drawback may prevent the algorithm from 

finding diverse solutions (Miller and Goldberg, 1996). To 

tackle this issue, we propose a tournament selection 

operator which considers two criteria for each solution. 

These criteria are: (1) the fitness value of an individual, 

and (2) probability of selection. The probability of 

selection is a real random number which is generated on 

the interval [0, 1] for each individual. The higher the 

value of this random number, the greater the chance of the 

solution to be selected. The proposed tournament 

selection operator chooses several random chromosomes 

from the population. Hence, a decision matrix is created, 

where the rows and columns represent the solutions and 

criteria, respectively. Afterwards, the Shannon’s entropy 

(Lotfi and Fallahnejad, 2010) method, which is one of the 

most renowned approaches for discovering relative 

importance of criteria, is employed to determine the 

weights of criteria based on the characteristics of the 

chosen solutions in each iteration. Having determined the 

weights of criteria, the VIKOR method (Opricovic and 

Tzeng, 2004), as a compromise MADM method, is hired 

to select the best solution in terms of both criteria. This 

procedure gives opportunities to all individuals to be 

selected as parents. As another contribution, two novel 

strategies are proposed for the PGA that strengthen the 

ability of this method in exploring the solution space.  

Furthermore, we propose new crossover and mutation 

operators for the PGA that always generate feasible 

solutions. The effectiveness of the proposed method is 

evaluated in comparison to the harmony search (HS) 

algorithm, classical genetic algorithm, and a state-of-the-

art algorithm known as Neurogenetic method based on 

several test problems. The Taguchi method is employed to 

calibrate the input parameters of these three meta-

heuristics. The outputs of optimizers for small size 

problems are compared to the optimal solutions obtained 

by the GAMS software.  

The rest of the paper is organized as follows: Section 2 is 

devoted to previous studies on the multi-skilled RCPSP 

and the multi-skilled staff assignment problem (MSSAP). 

The description of the proposed model and its 

mathematical formulation come in Section 3. Section 4 is 

dedicated to a full explanation of the proposed algorithm. 

Section 5 provides the experimental results obtained by 

implementing the algorithms. Finally, Section 6 gives 

conclusions and suggests some research opportunities for 

further studies. 

2. Literature Review 

Models of the multi-skilled RCPSP (MSRCPSP) and the 

multi-skilled staff assignment problem (MSSAP) can be 

used in many industries such as software development 

industry, where employees have one or more skills such 

as designing, analysis, and programming. In software 

development field, employees with different skills work 

together so as to develop various products. The 

MSRCPSP can also be used to provide schedules for 

training operators of call centers. Trainers of a call center 

have different training skills. The MSRCPSP model can 

be applied to scheduling problems, where there are a 

group of staff members with specific skills required by 

activities (Bellenguez and Néron, 2007). Large number of 

studies exist in the realm of the MSRCPSP and the 

MSSAP. Hegazy et al. (2000) proposed some 

modifications to resource scheduling heuristics in order to 

decrease project delays occurred because of resource 

limitations. A linear programming model was proposed 

by Gomar et al. (2002) to allocate proper multi-skilled 

resources to activities of a construction project. 

Bellenguez and Néron (2005) presented a mathematical 

formulation for MSRCPSP, where workforces have 

different efficiencies in performing each of their skills. 

Corominas et al. (2005) proposed a multi-objective non-

linear mixed-integer model for the MSRCPSP. This 

model was solved as a minimum cost flow problem. Wu 

and Sun (2006) investigated the effect of learning on 

efficiency of staff members for the project scheduling 

problem and staff assignment problem. They developed a 

genetic algorithm to solve their proposed model. Kadrou 

and Najid (2006) formulated a multi-mode version of the 

MSRCPSP. Their formulation includes resource 

limitation, labor skills and multiple execution modes for 

activities. A Tabu search (TS) algorithm with a new 

neighborhood function based on a flow graph scheme was 

developed to solve the problem. Azaron et al. (2006) 

developed a new multi-objective model for the resource 

allocation problem in the PERT networks, where the 

durations of activities follow Erlang distribution. Gutjahr 

et al. (2008) presented a non-linear mixed-integer model 

for the project portfolio selection problem considering 

competence development of workforces. They developed 

two meta-heuristics based on the ant colony optimization 

(ACO) and genetic algorithm combined with a greedy 

method as well. A hybrid benders decomposition (HBD) 

method was used by Li and Womer (2009) to solve the 

MSRCPSP. The researchers also developed a cut-

generating scheme to eliminate resource conflicts. In 

another research by Li and Womer (2009), they modeled 

the manpower scheduling problem as a multi-purpose 

RCPSP to assign multi-skilled sailors to execute onboard 

activities. Valls et al. (2009) proposed a multi-skilled 

project scheduling model with deadlines for the start and 

the finish times of tasks. A genetic algorithm consisting of 

classical scheduling methods and local search algorithms 

were developed. A mixed-integer linear mathematical 

formulation was introduced by Heimerl and Kolisch 

(2010) to schedule multiple projects in presence of multi-

skilled manpower. Al-Anzi et al. (2010) developed a 
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weighted multi-skilled RCPSP model. They considered 

that workforces have different efficiencies in performing 

their skills. A construction heuristic and an adaptive large 

scale neighborhood search method were developed by 

Cordeau et al. (2010) to schedule multi-skilled human 

resources and tasks in Telecommunications Company. 

Gutjahr et al. (2010) proposed a multi-objective model for 

the project portfolio selection problem. They decomposed 

the main problem into a portfolio selection problem and a 

slave problem which involves allocating manpower to 

projects. Yaghoubi et al. (2011) modeled the resource 

allocation problem for dynamic PERT networks with 

limited capacity of concurrent projects. The proposed 

model assumes that activity durations follow exponential 

distribution and new projects follow a Poisson 

distribution. Firat and Hurkens (2012) proposed a flexible 

matching model (FMM) to determine the group of 

workforces assigned to activities and produce large 

number of schedules. In their formulation, the workforces 

can use all their skills when they are assigned to an 

activity. Kazemipoor et al. (2013) presented a goal 

programming formulation for the multi-skilled project 

portfolio scheduling problem. The researchers considered 

infinite number of modes for each task. A differential 

evolution (DE) algorithm was developed to solve the 

model. Myszkowski et al. (2013) proposed some 

heuristics for the multi-skilled RCPSP to be employed in 

evolutionary algorithms in order to increase their 

robustness. Myszkowski and Skowronski (2013) 

presented new crossover and mutation operators based on 

domain knowledge for the genetic algorithm. Mehmanchi 

and Shadrokh (2013) investigated the impact of learning 

and forgetting on efficiency of workforces. They 

proposed an exponential learning function to tackle 

dynamic competence of manpower. In another study, 

Kazemipoor et al. (2013) presented a mixed-integer 

mathematical formulation for the multi-mode multi-

skilled RCPSP. The researchers developed a scatter 

search (SS) algorithm and a Tabu search method as well. 

A two-phase algorithm consisting of genetic operators and 

a path relinking method was proposed by Tabrizi et al. 

(2014) to maximize the net present value (NPV). Correia 

and Gama (2014) proposed a cost-oriented formulation of 

MSRCPSP. A branch and price (B&P) method including 

a column generation approach was developed by Montoya 

et al. (2014) for MSRCPSP. Myszkowski et al. (2015) 

introduced a hybrid ant colony optimization consisting of 

priority rules and ant colony optimization. A teaching-

learning-based optimization method (TLBO) was hired by 

Zheng et al. (2015) to solve the MSRCPSP. Yaghoubi et 

al. (2015) proposed a multi-objective model for the 

resource allocation problem. The proposed model controls 

the resources assigned to servers in a multi-class dynamic 

PERT network. They also developed a simulated 

annealing (SA) algorithm to solve the model. Walter and 

Zimmerman (2016) introduced a mathematical 

formulation for scheduling and staffing concurrent 

projects, where workforces can be allocated to several 

projects. Almeida et al. (2016) utilized a parallel 

scheduling scheme for the multi-skilled RCPSP. 

Javanmard et al. (2016) integrated the multi-skilled 

project scheduling problem with the resource investment 

problem (RIP). To solve the proposed mixed-integer 

mathematical model, a genetic-based and a particle-

swarm-based algorithm were developed. A multi-

objective mixed-integer model was proposed by 

Maghsoudlou et al. (2016) for the multi-mode multi-

skilled RCPSP to optimize make-span, total costs and 

quality, simultaneously. A new multi-objective invasive 

weeds optimization algorithm (MOIWO) was developed 

to solve the proposed model. Maghsoudlou et al. (2017) 

presented a bi-objective formulation for the MSRCPSP. 

The objective functions of the model include 

minimization of totals costs and minimization of 

reworking risks of tasks. Three multi-objective cuckoo 

search algorithms were proposed to solve the model. A 

multi-project multi-skilled project scheduling model was 

proposed by Chen et al. (2017). They investigated the 

impact of learning and forgetting on efficiency of 

workers.  

According to the previous researches reviewed in this 

section, the multi-mode MSRCPSP has not been studied 

sufficiently. Hence, we propose a new formulation for 

multi-mode multi-skilled RCPSP called MMSRCPSP. 

Genetic algorithms are highly efficient for combinatorial 

optimization problems. Hence, due to high efficacy of 

genetic algorithms, a modified version of the genetic 

algorithm has been developed to solve the proposed 

model. To the best of the authors’ knowledge, this is the 

first time that an evolutionary algorithm based on the 

MADM methods is presented for the multi-skilled 

RCPSP. Therefore, it is interesting to investigate the 

impact of an MADM method on performance of an 

evolutionary algorithm in solving the MSRCPSP. 

3. Problem Formulation 

In this section, a multi-mode multi-skilled RCPSP model 

(MMSRCPSP) is proposed to: (1) determine start times of 

project activities, (2) determine the skills by which the 

resources contribute to activities, and (3) determine the 

modes by which the activities are performed. In this 

respect, a mixed-integer formulation is proposed to 

minimize the make-span of the project. In the following, 

the assumptions, sets, parameters, decision variables, and 

mathematical formulation are defined. 

 3.1. Assumptions 

 The project activities and the precedence 

relations between them have been depicted by 

the activity-on-node (AON) network. Let 

( , )G V E be the AON network, where V denotes 

the project activities and E  represents logical 

dependencies between tasks. 

 The activities are numbered as

0,1,2,..., 1j N  . The activities 0 and 1N   

are dummy activities which mark the start and 

the end of the project, respectively. Duration and 
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resource requirement of a dummy activity is 

zero. 

 It is assumed that there are finish-to-start (FS) 

precedence relations between tasks without lead 

and lag (FS=0). These relations shape a directed 

acyclic graph.  

 Each activity can be accomplished in one out of 

multiple modes. 

 It is not possible to change the assigned mode of 

an activity during its execution. 

 All resources are multi-skilled human resources. 

These workers are always available. 

 Each activity may need one or multiple skills. 

 Each activity may need one or more workers in 

each period to execute its required skills. 

 Standard durations of activities are non-negative 

integer numbers. 

 Each worker is able to perform one or more 

skills. 

 It is not possible to assign a worker to more than 

one skill of an activity at the same period. 

 All required skills of an activity must be started 

simultaneously. 

3.2. Sets 

:V
 

Set of activity nodes,  , 0,1,2,..., 1j j N   , 

:
 

Set of workforces,  , 1,2,...,s s S  , 

:
 

Set of skills,  , 1,2,...,k k K  , 

:
 

Set of time periods,  , 0,1,2,...,t t T  , 

:
 

Set of execution modes,  1,2,...,m M , 

:E
 

Set of finish-to-start precedence relations 

between activities, 

:jpred

 

Set of immediate predecessors of activity j , 

:jH

 

Set of skills required by activity j , 

:kg

 

Set of workforces who have skill k , 
 

3.3. Parameters 

:jmd  Duration of activity j  in mode m , 

:jkmr  
The required number of workers to perform skill 

k  of activity j  in mode m , 

:kb  
The number of available workforces who have 

skill k  , 

:sk  
1

0





 
, if workforce s  has skill k  

, Otherwise 

 

 

3.4. Decision Variables 

:jmtX  
1

0





, if activity j  is started in mode m  at period t  

, Otherwise 

:jmO  
1

0





, if activity j  is being performed in mode m   

, Otherwise 

:jmst
 

1

0





, if activity j  is started in mode m  by worker s  at period t  

, Otherwise 

:jmsk
 

1

0





, if workforce s  is performing skill k of activity j  in mode m  

, Otherwise 

:jkt  
1

0





, if the execution of skill k  of activity j  is in progress at period t  

, Otherwise 

:jST  Start time of activity j  

:jFT  Finish time of activity j  

:jkU  Start time of execution of skill k  for activity j  

:jkF  Finish time of execution of skill k  for activity j  

 

3.5. Problem Modeling 

( 1)
0 1

.
T M

N mt

t m

MinZ t X 
 

   

 

 (1) 

. .s t     
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1 0

1
M T

jmt

m t

X

 
   ; j  (2) 

1 0 1 1 0

. . .
M T M M T

jmt jm jm j mt

m t m m t

t X d O t X 
    

       ;  ,j j E   (3) 

jmsk sk   ; , , ,j s k m     (4) 

jmt jmX O  ; , ,j m t    (5) 

jmst jmO   ; , , ,j m s t     (6) 

jmst jmO   ; , , ,j m s t     (7) 

.jkm jkt kr b    ; , ,jj k H t     (8) 

max ( )
j

j j
j pred

ST FT 


  
; j  (9) 

1 0

.
M T

jk jmt

m t

U t X

 
    ; , jj k H    (10) 

j jkST U  ; , jj k H    (11) 

( 1)NST T     (12) 

jk jkU U   ; , jj k k H     (13) 

jk jk jmF U d   ; , jj k H    (14) 

j j jFT ST d   ; j  (15) 

j jkFT F  ; , jj k H    (16) 

1 0

1
M T

jmst

m t


 

   ; ,j s   (17) 

1

1 0 1

1

jm

M N t

jmst

m j t t d





    

    ; ,s t   (18) 

jmst jmtX   ; , , ,j m s t     (19) 

1

1

K

jmst jmt jmsk

k

X 


   ; , , ,j m s t     (20) 

1

S

jmsk jmk jm

s

r .O


  ; , ,j m k    (21) 

,jmtX ,jmst ,jmsk ,jmO {0,1}jkt   ; , , , ,j s m k t      (22) 

,jST ,jFT ,jkU ,jkF 0Z   ; ,j k   (23) 

 

3.6. Model Description 

Equation (1) is the objective function of the MMSRCPSP 

which aims to minimize the completion time of project. 

Constraint (2) guarantees that each activity is performed 

in one mode and it starts exactly once. Constraint (3) 

takes care of precedence relations. Constraint (4) secures 

that workforces assigned to skill k  of activity j  are able 

to perform this skill. Constraint (5) implies the logical 

relation between jmtX  and jmO . Moreover, the logical 

relation between jmst  and jmO  is reflected in Constraint 

(6), while the relation between jmst  and jmO  is 
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preserved in Constraint (7). Constraint (8) satisfies 

resource limitations. Equation (9) determines the start 

time of activity j  . Equation (10) computes the start time 

of execution of each needed skill. Equation (11) indicates 

that start time of each task is equal to the start time of its 

skills. Constraint (12) implies that the project completion 

time must be less than the project planning horizon. 

Equation (13) ensures that all required skills of an activity 

start concurrently. The completion time of a required skill 

is computed in Equation (14), whereas the finish time of 

an activity is determined in Equation (15). Constraint (16) 

states the logical relation between jFT  and jkF . Constraint 

(17) secures that at most one start time is determined for 

workers allocated to an activity. Constraint (18) 

guarantees that workforces assigned to each mode of an 

activity will not change during the execution of the 

activity. Constraints (19) and (20) secure that workers 

allocated to an activity start their work at once. Constraint 

(21) forces that the number of workers assigned to a task 

is equal to the number of required workforces to execute 

the activity. Ultimately, Constraints (22) and (23) indicate 

the type of decision variables. 

4. Solution Approach 

4.1. Solution representation 
 

In this paper, each chromosome is represented as a 3 N  

vector, where N  is the number of positions in each row. 

Each position is associated to a project activity. The first 

row of each chromosome is devoted to a precedence-

feasible activity list. The first row which is known as 

schedule representation shows the priority structure 

between the project activities. Two of the most important 

schedule representations for the RCPSP are (Hartmann 

and Kolisch, 2000): (1) the random-key (RK) 

representation, and (2) the activity-list (AL) 

representation. According to various experimental tests 

conducted by Hartmann and Kolisch (2000), the 

procedures based on activity-list representations are 

superior to other approaches. Hence, we use the AL 

representations to encode a project schedule. An activity 

list is a sequence of activities which represents the relative 

priority of each activity in comparison to other tasks. 

Each AL is a vector , , ..., ,0 1 1( )N NU j j j j   in which the 

priority of the activity at the l th  position is higher than 

the priority of any activity at l th   position for which 

l l  . We assume that 0j  and 1Nj   belong to the 

activities 0 and 1N  , respectively. In a precedence-

feasible activity list, each activity is positioned after all its 

immediate predecessors (Ranjbar et al., 2008). The 

second row determines the processing modes of activities, 

while the third row shows the workforces assigned to each 

task. A sample chromosome is depicted in Figure 1. 

Suppose that activity “2” requires skills “1” and “4”. This 

activity needs two workers in each period to perform skill 

“1” and it needs one worker to execute skill “4” in each 

period. Based on Figure 1, the workers “2” and “4” are 

assigned to activity “2” to perform skill “1”, while the 

worker “1” is allocated to this activity to perform skill 

“4”. 

1 7685243
A feasible activity list 

(First Row)

1 1232212
Modes of activities 

(Second Row)

2 , 3 (3 , 5)43 , 551 , (2 , 4)14
Resource List

 (Third Row)

 
 

Fig.1. Example of chromosome representation 

 

4.2. The proposed genetic algorithm (PGA) 

In this section, a meta-heuristic algorithm is proposed to 

solve the MMSRCPSP. The structure of the proposed 

meta-heuristic is based on the genetic algorithm. The 

genetic algorithm has always been one of the most 

successful algorithm for optimization problems (Najafi 

and Salimi, 2018). For the proposed method, we present a 

novel tournament selection operator based on a hybrid 

MADM method to select the best parents for generating 

new individuals. Moreover, two new strategies are 

presented to explore the solution space more accurately. 

For the proposed algorithm, new crossover and mutation 

operators are designed to produce feasible solutions. 

Figure 2 shows the overall structure of the proposed 

algorithm. The details of the developed genetic algorithm 

are described as follows. 
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Algorithm: The proposed genetic algorithm (PGA) 

1. Initialization: 

1.1. Set the input parameters and generate a random initial population with size of Npop ; 

2. Evaluation: 
2.2. Evaluate individuals of initial population; 

3. Selection (Proposed tournament selection operator): 

3.1. Select several solutions randomly; 

3.2. Use Shannon’s entropy method to calculate weights of criteria described in Section 4.3; 

3.3. Employ the VIKOR method to prioritize the selected solutions; 

3.4. Keep the best ranked solution and repeat the selection procedure to choose another individual; 

4. Crossover: 

4.1. Apply crossover operator on chosen parents to produce offspring; 

5. Mutation: 
5.1. Apply mutation operator on the chosen individual; 

6. Combination: 

6.1. Merge the population with the individuals generated by crossover and mutation operators; 

7. Elitism: 

7.1. Select the best Npop  individuals of the combined population; 

8. Proposed strategies: 

8.1. Generate an integer random number ( IRN ) on the interval [1, 2]; 

8.2. if 1IRN   

8.3.     Use FPES described in Section 4.6 to explore solution space deeper; 

8.4. elseif 2IRN   

8.5.     Use SPES described in Section 4.7 to explore solution space deeper; 

8.6. endif 

9. Termination: 

9.1. Repeat the above procedure until the stopping criterion is met; 

Fig. 2. Structure of the proposed genetic algorithm 

 

4.3. Proposed tournament selection 

In this section, a new tournament selection operator is 

proposed to choose appropriate individuals for 

reproduction. The basic tournament selection operator 

selects a predefined number of random chromosomes of 

the population. The selected chromosomes compete with 

each other based on their fitness values. The solution with 

the best fitness value will be chosen as a parent. This 

procedure repeats to find another parent (Miller and 

Goldberg, 1996). The drawback of this method is that the 

chromosome with the least fitness value will never find a 

chance to be chosen. The selection procedure should 

consider equal opportunities for all individuals to be 

chosen as participants in the reproduction. The proposed 

tournament selection operator gives chance to all 

individuals to be selected as parents. Hence, the 

probability of finding diverse solutions is increased 

substantially. Based on the proposed method, several 

chromosomes are chosen randomly from the population. 

For the chosen chromosomes, we consider two criteria as 

follows: 

1. The fitness value of solutions. Since the make-span of 

the project is considered as the fitness value of each 

schedule, lower fitness values are preferred (negative 

criterion). 

2. For each selected chromosome, a real random number 

on the interval [0, 1] is generated. These random numbers 

indicate the probability of selection for reproduction. The 

higher the probability of a solution, the higher the chance 

of selection for reproduction (positive criterion). 

Based on the description given above, a decision matrix is 

created, where the rows and columns indicate the chosen 

chromosomes and criteria, respectively. In the next step, 

the chromosomes are ranked based on a hybrid multi-

attribute decision making technique called the Entropy-

VIKOR. This hybrid MADM technique employs the 

Shannon’s entropy (Lotfi and Fallahnejad, 2010) method 

to determine the weights of criteria. Since different 

decision matrices are obtained in each iteration, the 

Shannon’s entropy method is utilized to determine the 

weights of criteria with respect to the chosen 

chromosomes. The advantage of Shannon’s entropy 

method is that the weights of criteria are calculated based 

on characteristics of alternatives rather than biased 

judgments. Thereafter, the VIKOR method (Opricovic 

and Tzeng, 2004) is used to prioritize the alternatives. The 

VIKOR method enables the proposed tournament 

selection operator to choose the best individual in terms of 

both criteria in each iteration.  

The Shannon’s entropy method is one of the renowned 

methods to acquire the weights of criteria and it consists 

of the following steps (Lotfi and Fallahnejad, 2010): 

Step 1. Create a decision matrix, where the rows and the 

columns represent the chromosomes and criteria, 

respectively. Suppose that the decision matrix has 

 1,...,    rows and  1,...,CR c CR  columns, 

respectively. The element in the intersection of 
th row 

and th
c column is denoted as ca .   
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Step 2. Normalize the decision matrix. This step deals 

with normalizing raw elements of decision matrix when 

elements have different measurement units and scales. 

Normalization process makes the variables comparable to 

each other. In this process, the elements of decision 

matrix measured on different scales are transformed into a 

common scale. The normalized decision matrix is 

obtained using the following formula (Lotfi and 

Fallahnejad, 2010): 

1

c
c

c

a

a


 











        1,2,...,c CR   

(24) 

Where, c is the normalized element in the intersection 

of 
th  row and th

c  column.  

Step 3. Compute the entropy of each criterion. The 

entropy of th
c  criterion is denoted as cEnt  calculated by 

Eq. 25 (Lotfi and Fallahnejad, 2010): 

 0

1

.c c cEnt Ent Ln


 


 


     1,2,...,c CR   (25) 

Where, 0Ent  denotes the entropy constant and can be 

computed by Eq. 26 [95]: 

1
0 ( ( ))Ent Ln     (26) 

Step 4. Compute the degree of diversification for each 

criterion. The degree of diversification for th
c  criterion is 

represented as c , which can be computed as follows 

(Lotfi and Fallahnejad, 2010): 

1c cEnt        1,2,...,c CR   (27) 

Step 5. Calculate the importance of each criterion using 

the following formula (Lotfi and Fallahnejad, 2010): 

1

c
c CR

c

c

w








       1,2,...,c CR   

  (28) 

 Where, cw  is the weight of th
c  criterion. Having 

obtained the normalized weights of criteria by the 

Shannon’s entropy method, the VIKOR method is applied 

to prioritize chromosomes based on their fitness value and 

corresponding probability of selection. The VIKOR 

method gives a compromise-ranking list based on the 

weights of criteria (Opricovic and Tzeng, 2004). 

According to this method, the alternatives are ranked 

based on the measure of closeness to the ideal solution. 

The VIKOR method consists of the following steps to 

rank the chromosomes (Opricovic and Tzeng, 2004; 

Opricovic and Tzeng, 2007): 

Step 1. Determine the best ( *
cf ) and the worst ( cf

 ) 

values of all criteria among solutions. *
cf  and cf

  are 

obtained by Eqs. 29 and 30, respectively if the th
c  metric 

represents a benefit (Opricovic and Tzeng, 2004): 

 
* maxc cf f


  1,2,...,  

 
1,2,...,c CR   (29) 

minc cf f


   1,2,...,  
 

1,2,...,c CR   (30) 

 

On the other hand, if the th
c  metric represents a cost,  

*
cf  and cf

  are acquired by Eqs. 31 and 32, respectively 

(Opricovic and Tzeng, 2004): 

 

 

 
* minc cf f


  1,2,...,  

 
1,2,...,c CR   (31) 

maxc cf f


   1,2,...,  
 

1,2,...,c CR   (32) 

 

Step 2. Calculate the maximum group utility (  ) and the  minimum individual regret of the opponent ( R ) values 

by the following formulas (Opricovic and Tzeng, 2004): 

 

 

   * *

1

/
CR

c c c c c

c

w f f f f  


    1,2,...,  

 (33) 

   * *max /c c c c c
c

R w f f f f 
       1,2,...,  

 (34) 
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Step 3. Compute the VIKOR index for each  alternative ( Q ) ( 1,...,   ) using Eq. 35 (Opricovic 

and Tzeng, 2004): 

 

        * * * *
/ 1 /Q R R R R                    1,2,...,  

  
 

(35) 

 

Where,   and (1 )  represent the weights for the 

strategies of maximum group utility and individual regret, 

respectively. In this paper,   is set to 0.5. In Eq. 35, 

*
,min    ,max    *

,minR R  and maxR R
 

.  

Step 4. Rank the alternatives (chromosomes) by sorting 

the values , R  and Q  in ascending order. Three ranking 

lists are obtained by sorting these values. 

Step 5. Propose the alternative with the minimum VIKOR 

index as a compromise solution. The solution with the 

least VIKOR index is the best-ranked solution if the 

following conditions are satisfied (Opricovic and Tzeng, 

2007): 

 

Condition 1. The first condition is known as “Acceptable 

advantage”: 
 

( ) ( )Q a Q a DQ         (36) 

Where, a and a are the first and second alternatives in 

the ranking list of .Q DQ  is computed using the 

following formula: 

 1/ 1DQ    (37) 

 
Condition 2. The second condition is called “Acceptance 

stability in decision-making”. To meet this condition, the 

alternative a  must have the best rank in ranking lists of 

  and R  as well. This compromise solution is consistent 

within a decision-making procedure. If one of the 

conditions is not met, a set of compromise solutions is 

presented as follows: 

1. When the second condition is not satisfied, the 

alternatives a  and a are proposed. 

2. When the first condition is not met, the alternatives 

 
, ,...,

P
a a a   are proposed. ( )P

a  is acquired by the 

following relation: 

( )( ) ( )P
Q a Q a DQ   (38) 

 

Suppose that the third, the fifth, the tenth, the fifteenth 

and the twentieth solutions have been chosen randomly 

from the population for tournament selection. Table 1 

shows the decision matrix and the normalized decision 

matrix, where the rows and columns represent the 

chromosomes and criteria, respectively. 

Table 1 

 The decision matrix and the normalized decision matrix of the example 

Solutions 
Decision matrix Normalized decision matrix 

First criterion (-) Second criterion (+) First criterion (-) Second criterion (+) 

3 59 0.4375 0.1578 0.1503 

5 65 0.5270 0.1738 0.1810 

10 71 0.6547 0.1898 0.2249 

15 87 0.7134 0.2326 0.2451 

20 92 0.5785 0.2460 0.1987 

Based on the normalized decision matrix, the weights of the first and the second criteria have been obtained as 1 0.5071w   

and 2 0.4929w  , respectively. Table 2 reports the weighted normalized decision matrix. 

Table 2 

 The weighted normalized decision matrix of the example 

Solutions 
Weighted normalized decision matrix 

First criterion (-) Second criterion (+) 

3 0.0800 0.0741 

5 0.0881 0.0892 

10 0.0962 0.1109 

15 0.1180 0.1208 

20 0.1247 0.0979 

Thereafter, the VIKOR method is used to rank the 

chromosomes. Table 3 shows the values of , R  and Q  

for all chromosomes. The results show that the tenth 

solution has achieved the best rank among all  

chromosomes. The tenth solution is selected as one of the 

parents for reproduction and other solutions will return to 

the population. This process continues to find another 

parent. The structure of the proposed tournament selection 

operator is depicted in Figure 3. 
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Table 3 

 The ranking of solutions 

  , R  and Q  values of solutions Ranking of solutions  

3 5 10 15 20 3 5 10 15 20 

  0.4929 0.4252 0.2893 0.4303 0.7481 4 2 1 3 5 

R  0.4929 0.3330 0.1844 0.4303 0.5071 4 2 1 3 5 
Q  0.6999 0.3784 0.0000 0.5346 1.0000 4 2 1 3 5 

 

 

 

Generate a random number (RN) 

on the interval [1 , Npop] to 

determine the number of solutions 

in the tournament.

Choose RN solutions from the 

population to participate in the 

tournament.

Create a decision matrix, where 

the rows and columns represent 

solutions and criteria, 

respectively.

Use Shannon’s entropy method to 
determine the weights of criteria.

Use the VIKOR method to 

prioritize solutions.

Select the best ranked solution for 

reproduction.

Have we selected enough 

solutions for reproduction?

Start

FinishYes
No

 
Fig. 3. Procedure of the proposed tournament selection 

4.4. Crossover operator 

The crossover operator uses two parents selected by the 

procedure described in Section 4.3. These parents are 

denoted as 1P  and 2P  to generate two offspring 

represented as 1CH  and 2CH . Having selected 1P  and 

2P , the following phases are required to produce 1CH  

and 2CH . 

 First Phase (Generating feasible activity lists) 

Two random integer numbers are generated on the 

interval [1, N] to select two activities from 1P  and 2P , 

respectively. The selected activities are denoted as 1SA  

and 2SA . To generate precedence feasible activity lists, 

the chosen activities can be placed anywhere between 

their nearest predecessor and nearest successor 

(Bouleimen and Lecocq, 2003). In this respect, the 

positions of the nearest predecessor and the nearest 

successor of the selected tasks are identified on activity 

lists of 1P  and 2P . The feasible activity list of 1CH  is 

created by locating 1SA  in a random position between its 

nearest predecessor and nearest successor on 2P . The 

feasible activity list of 2CH  is produced in a similar way. 

The 2SA is placed in a random position between its 

nearest predecessor and successor on 1P . Figure 4 shows 

activity lists of two solutions as 1P  and  2P . Let 1SA  

and 2SA  be “4” and “5”, respectively. The highlighted 

genes on 1P  show the positions between the nearest 

predecessor and the nearest successor of activity “5” . 

Similarly, the highlighted genes on 2P  depict the 

positions between the nearest predecessor and the nearest 

successor of activity “4”. An activity list is created for 

1CH  by placing the activity 4 anywhere within the 

highlighted genes on the second parent. The activity list 

of 2CH  is produced by locating the activity 5 within the 

highlighted genes on the first parent. Assume that the 

sixth position of 2P has been chosen for activity 4 to 

move. Besides, the activity 5 moves to the fifth gene of 

1P . Figure 4 demonstrates the precedence-feasible 

activity lists of 1CH  and 2CH . 
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2 6783415Activity List of P2

3 7864152Activity List of P1

3 7865412Activity List of CH2

2 6748315Activity List of CH1

 

Fig. 4. Generating feasible precedence activity lists for CH1 and CH2 

 Second Phase (Generating lists of assigned 

modes) 

The proposed crossover chooses a predetermined number 

of random activities. The modes assigned to selected 

activities on 1P  will be allocated to these activities on

2CH . The remaining activities on 2CH  take their 

execution modes from 2P . On the other hand, the 

execution modes of the selected activities on 2P  will be 

assigned to these tasks on 1CH . The remaining activities 

on 1CH  take their processing modes from 1P . Suppose 

that activities “2”, “3” and “4” have been chosen 

randomly to change their processing modes on 1CH  and 

2CH . The modes assigned to activities “2”, “3” and “4” 

on 1P  will be the modes of these tasks on 2CH . On the 

opposite side, the modes of selected activities on 2P will 

be the modes of these activities on 1CH . The procedure of 

determining the modes of activities on 1CH  and 2CH  is 

illustrated in Figure 5. 

1 3122243Assigned modes of P2

1 2344312Assigned modes of P1

3 7865412Activity List of CH2

1 4223231Assigned modes of CH1

3 7864152Activity List of P1

2 6783415Activity List of P2

2 6748315Activity List of CH1

1 1233442Assigned modes of CH2

 

Fig. 5. Determining modes of activities on the offspring 

 Third phase (Generating resource lists) 

The selected activities in the second phase are considered 

in this phase as well. The workforces allocated to selected 

tasks on 1P  will be assigned to these activities on 2CH . 

The remaining activities on 2CH  take their required 

workers from 2P . On the opposite side, the workforces 

assigned to selected activities on 2P  will be allocated to 

these tasks on 1CH . The remaining activities take their 

required workers from 1P . Figure 6 illustrates the third 

row of 1CH  and 2CH . 
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(1 , 2) 

, 5
(3 , 4)(2 , 5)1(2 , 3)(3 , 4)(1 , 5)4Resource List of P1

3 7864152Activity List of P1

(1 , 3) 5432 , 3532Resource List of P2

2 6783415Activity List of P2

(1 , 3) 1(3 , 4)5(2 , 5)2 , 3(3 , 4)(1 , 5)Resource List of CH1

2 6748315Activity List of CH1

(1 , 2), 

5
4352(2 , 3)34Resource List of CH2

3 7865412Activity List of CH2

 

Fig.6. Procedure used to generate resource lists of offspring 

4.5. Mutation operator 

Mutation is an operator used in the genetic algorithm that 

changes one or several genes of a chromosome to 

generate new individuals. This operator prevents the 

algorithm from converging to a local optima (Deb et al., 

2002). To use the mutation operator, a solution is selected 

randomly from the population as a candidate to be 

mutated. Since the solution representation in this paper 

consists of three parts, the proposed mutation operator in 

this paper generates a new individual in three phases. 

These phases are described as follows. 
 

 First Phase (Generating feasible activity lists) 
 

In this section, a heuristic is proposed to produce a 

feasible activity list from a candidate solution. This 

method selects a random activity from the activity list of 

the candidate solution at the initial step. Then, the 

positions of the nearest predecessor and the nearest 

successor of the selected activity are determined. These 

positions form a set called FP 2
. jFP  is a set consisting of 

the positions between the nearest predecessor and the 

nearest successor of the activity j . To determine the new 

position of the activity j , the length of the jFP  is 

multiplied by a real random number on the interval [0, 1]. 

The outcome will be rounded up which is called q . 

Thereafter, the q th  member of jFP  is chosen as the 

new position of the activity j . Figure 7 shows an activity-

on-node network of a sample project, where the activities 

0 and 9 are the dummy start and finish tasks, respectively. 

 

                                                           

2. Feasible positions (FP) 

0

1

2

3

4 7

6 9

5 8

 
Fig.7. AON network of the example 

Figure 8 shows an activity list for the project illustrated in 

Figure 7. Suppose that activity “4” has been chosen to 

change its position in order to generate a new precedence-

feasible activity list. Hence, the 4FP  will be{2,3,4,5,6} . 

For 0.93q  , we have 5 0.93 5    . Thus, the fifth 

member of the 4FP  determines the new position of 

activity “4”. The activity “4” takes the sixth position and a 

new precedence feasible activity list is created. Figure 8 

shows the new activity list.  
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1 7685243

1 7648523

A feasible activity list

A newly generated 

feasible activity list

The positions where activity “4” can be located.

 

Fig. 8. Procedure used to produce feasible activity list of mutant 

  Second phase(Generating lists of assigned modes) 

A new procedure is presented to determine the modes 

assigned to activities on a mutated solution. In this 

procedure, several activities are selected randomly from 

the candidate solution to change their corresponding 

execution modes. The new mode of the selected activity 

j  ( jNM ) on the mutated solution is determined using the 

following formula: 

()j jNM M CM rand         (39) 

Where, M denotes the number of available modes and 

jCM  represents the current mode of activity j on the 

candidate solution. ()rand is a random number from the 

interval [0,1]. Suppose that activities “1”, “4” and “5” 

have been selected randomly from the candidate solution 

to change their corresponding modes on the mutated 

solution. Figure 9 shows the assigned modes of the 

activities on the mutated solution

. 

2 4133421Assigned modes

1 7648523Feasible activity list

4 2 0.95 3     4 4 0.06 1     4 3 0.49 2    

3 4123121
Assigned modes on 

mutated solution

 

Fig. 9. Procedure used to determine modes of activities on mutant 

 Third phase (Generating resource lists) 

Several activities are chosen randomly to change their 

corresponding workforces. Due to the modes assigned to 

activities on mutated solution, the workers are altered. 

The workforces of chosen tasks will be substituted with 

other workers who are capable to perform required skills. 

4.6. First Proposed Exploring Strategy (FPES) 

The procedure initiates with generating a random number 

( RN ) on the interval [1, ]Npop . For RN  number of 

solutions in the population, a hierarchical neighborhood 

structure is generated. In this structure, for each solution, 

a specific number of neighboring solutions are generated. 

The mutation operator is used to produce neighboring 

solutions. Each hierarchical neighborhood structure 

consists of multiple levels. Suppose that the first and the 

tenth solutions have been selected from the population. 

Figure 10 shows the hierarchical neighborhood structures 

for these solutions. 
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Fig. 10. Hierarchical neighborhood structures for the first and the tenth solutions 

 

Neighboring solutions are compared to each other in 

terms of fitness value to determine the best individual. 

Then, the best neighboring solution is compared to the 

chromosome which belongs to the upper level. If the best 

neighboring individual has better fitness value, it wins the 

competition against the solution of the upper level. 

Otherwise, the best neighboring solution will be the 

winner with a probability Pr(Pr 0,1 )   . This approach 

helps to explore the solution space to find diverse 

chromosomes. The number of levels ( NL ) and the 

number of solutions in each level ( NSL ) are two of the 

most significant parameters that affect the quality of 

exploring the solution space. These comparisons are 

performed from the lowest level to the first level, 

continuously. Figure 11 illustrates the tournament held 

between the neighboring solutions of the tenth solution of 

the population. As shown in Figure 11, the S10.1.1.1 has 

won the competition against S10. Thus, the S10.1.1.1 will 

take the place of S10 in the population and it will be 

transferred to the next iteration as a member of 

population. 

S10.1.1.1

S10.1.1.2

S10.1.1.1

S10.1.1

S10.1.1.1

S10.1.2.1

S10.1.2.2

S10.1.2.2

S10.1.2

S10.1.2

S10.2.1.1

S10.2.1.2

S10.2.1.2

S10.2.1

S10.2.1.2

S10.2.2.1

S10.2.2.2

S10.2.2.2

S10.2.2

S10.2.2.2

S10.1.1.1

S10.2.2.2

S10.1

S10.2

S10.1.1.1

S10.2

S10.1.1.1

S10

S10.1.1.1

 
Fig. 11. Tournament held between neighboring solutions of the tenth solution 

The higher the values of NL and NSL , the higher the 

chance of finding high quality and diverse solutions. 

However, higher values of NL and NSL will increase the 

computational time, significantly. Hence, it is crucial to 

set these parameters in such a way that not only diverse 

and high quality solutions are found, but also the 

computational time is not substantially increased. 

4.7. Second Proposed Exploring Strategy (SPES) 

This heuristic requires NL ( 1NL  ) and NSL  parameters 

as well. At the initial step, for each solution in the 

population, we generate NSL  neighboring solutions using 

the mutation operator. The newly generated solutions are 

compared to each other to determine the individual with 

the best fitness value. If the fitness values of both 

neighboring solutions are the same, one of them is chosen 

randomly. The next neighboring solutions for the next 
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level are generated from the chosen solution in the upper 

level. This procedure continues for a predefined number 

of levels ( NL ). Having reached the NL th  level, the 

process stops and the chosen solutions of all levels are 

compared to each other in order to detect the best 

individual. In case of prevailing the current solution in the 

population, the best neighboring solution will replace the 

current one in the population. Let 4NL   and 2NSL  . 

Figure 12 depicts this procedure for the tenth solution of 

the population. 

S10

S10.1 S10.2S10.2

S10.2.1 S10.2.2S10.2.1

S10.2.1.1 S10.2.1.2S10.2.1.1

Level 1

Level 4

Level 3

Level 2

S10.2 is the winner.

S10.2.1 is the winner.

S10.2.1.1 is the winner.

 

Fig.12. Competitions between solutions in SPES 

As illustrated in Figure 13, the S10.2.1.1 has not only won 

the competition against its predecessors, but also it defeats 

the S10 as well. Thus, the S10.2.1.1 will take the place of 

the S10 in the population. 

S10

S10.2

S10.2.1

S10.2.1.1

S10.2.1.1

S10.2.1.1

 
Fig.13. Ultimate winner in SPES 

5. Experimental Results 

We calibrate the parameters of the MMSRCPSP in 

Section 5.1, while the input parameters of algorithms are 

tuned via the Taguchi method in Section 5.2. As 

mentioned previous sections, the proposed algorithm is 

compared with the harmony search method (Mehdizadeh 

and Kivi, 2014), classical genetic algorithm (Hassanpour 

et al., 2017), and the state-of-the-art neurogenetic 

algorithm (Agarwal et al., 2015). The performance 

measures used to compare the algorithms are described in 

Section 5.3. In Section 5.4, the algorithms are compared 

to each other in terms of performance measures. All 

optimizers were coded in the MATLAB R2015b software 

and run on a personal computer with a 2.33 GHz Intel 

Quad Core CPU and 4-GB RAM. 

5.1. Tuning parameters of MMSRCPSP 

To evaluate the effectiveness of the algorithms, 40 test 

instances have been generated using ProGen software. 

Since there are no specific test problems for the 

MMSRCPSP, the chosen test problems have to be tuned 

by adding some additional data. Table 4 shows the 

required data for test problems. 

 

Table 4 

 The values of parameters  

Parameters Value 

The number of required skills ( K ) for the whole project [3,10]U  

The required number of skills by an activity [1, ]U K  
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The required number of workers to perform each skill in a 

determined mode 
[1,3]U  

The available number capable workforces to perform skill k  [1,5]U  

We classify test problems into small size and large size instances. Test problems 1 to 20 are projects with 30 non-dummy 

activities considered as small size benchmark instances, while test problems 21 to 40 are projects with 120 non-dummy 

activities considered as large size benchmark problems. Table 5 shows the characteristics of test problems. 

Table 5 

 Characteristics of test instances 

Problem No. N M S K Problem No. N M S K 

1 32 4 10 3 21 122 6 13 7 

2 32 4 10 3 22 122 6 13 7 

3 32 4 10 3 23 122 6 13 7 

4 32 4 10 3 24 122 7 13 7 

5 32 4 10 3 25 122 7 13 7 

6 32 4 10 4 26 122 7 14 8 

7 32 4 10 4 27 122 7 14 8 

8 32 4 10 4 28 122 7 14 8 

9 32 5 10 4 29 122 7 15 8 

10 32 5 12 4 30 122 7 15 8 

11 32 5 12 5 31 122 7 15 9 

12 32 5 12 5 32 122 8 15 9 

13 32 5 12 5 33 122 8 15 9 

14 32 6 12 5 34 122 8 15 9 

15 32 6 13 5 35 122 8 15 9 

16 32 6 13 6 36 122 8 16 10 

17 32 6 13 6 37 122 8 16 10 

18 32 6 13 6 38 122 9 16 10 

19 32 6 13 6 39 122 9 16 10 

20 32 6 13 6 40 122 9 16 10 

 

5.2. Parameter tuning of algorithms 

Since the performance of an algorithm depends 

excessively on the value of its input parameters, it is 

crucial to utilize an effective tool to find an appropriate 

set of values for parameters. In this paper, we use the 

Taguchi method as one of the design of experiments 

(DOE) techniques to set the parameters of algorithms. 

Based on the Taguchi method, there are two types of 

factors affecting a process: (1) control factors, and (2) 

noise factors. Control factors can be set by the designer 

during experimentations, while noise factors are 

uncontrollable factors that affect the performance of a  

 

process by causing variability. The aim of the Taguchi 

method is to find the best possible setting of control 

factors in order to minimize the effects of noise factors 

(Afruzi, et al., 2014). To tune control factors, the Taguchi 

method presents a set of experiments based on Orthogonal 

Arrays (OA). The Taguchi method proposes a statistic 

called signal-to-noise (S/N) ratio to assess the 

performance of a process. “Signal” and “Noise” represent 

mean response variable and standard deviation, 

respectively. In this respect, the higher the values of 

signal-to-noise ratio, the better the performance of a 

process (Afruzi, et al., 2014). There are three main types 

of signal to noise ratios: (1) smaller is better, (2) larger is 

better, and (3) nominal is better. In this study, we use 

“smaller is better” signal-to-noise ratio due to our 

response variable. The S/N ratio for “smaller is better” 

type of response variables can be calculated using Eq. 40 

(Afruzi, et al., 2014): 

 2

/ 10 log
S Y

S N
n

 
     
  

 
(40) 

 

Where, Y  and n  represent the response variable and the 

number of orthogonal arrays, respectively. In the 

following, the large size test problems generated by the 

ProGen software has been used to conduct the Taguchi 

experiments. Table 6 shows five levels considered for 

parameters of algorithms as control factors. 

 

 

 

 

 

 

 



Journal of Optimization in Industrial Engineering Vol.12, Issue 2, Summer & Autumn 2019, 155- 178 

 

171 

 

 Table 6  

 Parameters and levels for Taguchi trials 

 Parameter Levels 
Symbo

ls 
Parameters 

Algorithm

s 
Level 

5 

Level 

4 

Level 

3 

Level 

2 

Level 

1 

0.85 0.80 0.75 0.70 0.65 cp  Crossover rate 

PGA 

0.30 0.25 0.20 0.15 0.10 mp  Mutation rate 

300 200 100 50 20 Npop  Number of solutions in population 

500 400 300 200 100 MaxIt  Maximum number of iterations 

6 5 4 3 2 NL  Number of levels 

6 5 4 3 2 NSL  Number of solutions in each level 

300 200 100 50 20 HMS  Harmony memory size 

HS 
500 400 300 200 100 MaxIt  Maximum number of iterations 

0.95 0.90 0.85 0.80 0.75 HMCR  Harmony Memory Consideration Rate 

0.90 0.70 0.50 0.30 0.10 PAR  Pitch Adjustment Rate 

0.85 0.80 0.75 0.70 0.65 cp  Crossover rate 

GA 
0.30 0.25 0.20 0.15 0.10 mp  Mutation rate 

300 200 100 50 20 Npop  Number of solutions in population 

500 400 300 200 100 MaxIt  Maximum number of iterations 

0.85 0.80 0.75 0.70 0.65 cp  Crossover rate 

Neurogenetic 

0.30 0.25 0.20 0.15 0.10 mp  Mutation rate 

300 200 100 50 20 Npop  Number of solutions in population 

500 400 300 200 100 MaxIt  Maximum number of iterations 

6 5 4 3 2 NOI  Number of inter-leavings 

Five test instances are chosen randomly and each test 

problem is run for three times. Consequently, 15 results 

are obtained for each experiment. The best obtained result 

among three runs is considered as the result of each test 

problem. The project completion time of each test 

instance is transformed into the relative percentage 

deviation (RPD). Eq. 41 can be used to compute the RPD 

(Gao, et al., 2013): 

 

100 0 100sol sol

sol

Best Method
RPD RPD

Best


     

(41) 

 

In the above equation, solBest  is the best objective 

function value among all acquired values. solMethod  is 

the objective function value obtained by an algorithm. 

The Minitiab 13 software has been used to depict /S N  

plots of algorithms. Figure 14 illustrates the 

corresponding /S N  plots of all three algorithms. Based 

on the Figure 14, the optimal levels of parameters have 

been depicted in Table 7. 

 

Table 7 

 Optimal values for input parameters of algorithms 
Algorithms Optimal levels 

PGA 
0 65c .p  , 0 30m .p  , 300Npop  , 500MaxIt  ,

6NL  , 6NSL   

HS 300HMS  , 500MaxIt  , 0 90HMCR . , 0 30PAR .  

GA 0 85c .p  , 0 30m .p  , 300Npop  , 500MaxIt   

Neurogenetic 
0 65c .p  , 0 30m .p  , 300Npop  , 500MaxIt  , 

6NOI   
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Fig. 14. S/N ratio plots for the PGA, HS, GA, and Neurogenetic 

 

 

 

Table 8 

 Comparisons between algorithms for small size problems in terms of ARPD, SDRPD, RPD* and WRPD  

Prob. 

No 

Performance Measures 

ARPD SDRPD RPD* WRPD 

PGA HS GA NeuroGA* PGA HS GA NeuroGA* PGA HS GA NeuroGA* PGA HS GA NeuroGA* 

1 0.00 11.60 0.00 
0.00 0.00 10.00 0.00 

0.00 0.00 0.83 0.00 
0.00 0.00 27.75 0.00 

0.00 

2 0.00 8.30 15.09 7.45 0.00 4.68 8.29 4.30 0.00 1.55 1.19 4.44 0.00 13.67 21.51 13.85 

3 0.00 13.28 11.74 0.00 0.00 6.57 12.05 0.00 0.00 7.05 1.16 0.00 0.00 24.13 28.38 0.00 

4 0.00 16.05 14.42 9.84 0.00 8.48 3.69 4.41 0.00 3.16 9.08 5.52 0.00 25.78 18.71 14.13 

5 0.00 0.00 16.18 8.20 0.00 0.00 10.38 2.51 0.00 0.00 5.56 6.53 0.00 0.00 31.74 11.92 

6 0.00 18.18 0.00 
0.00 0.00 8.79 0.00 

0.00 0.00 7.57 0.00 
0.00 0.00 24.70 0.00 

0.00 

7 5.41 0.00 16.46 7.93 1.74 0.00 3.76 3.86 3.23 0.00 12.15 3.41 7.54 0.00 21.86 12.26 

8 0.00 16.59 0.00 
0.80 0.00 8.56 0.00 

0.37 0.00 8.00 0.00 
0.45 0.00 28.44 0.00 

1.28 

9 4.43 19.58 14.20 11.17 2.75 10.88 9.45 3.65 1.61 4.27 0.56 6.48 8.54 31.74 23.77 14.68 

10 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

0.00 

11 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 

0.00 

12 0.00 18.89 21.82 12.37 0.00 13.27 12.88 4.84 0.00 0.19 0.99 5.30 0.00 29.46 32.29 16.06 

13 6.88 0.00 16.14 0.00 3.73 0.00 11.35 0.00 0.36 0.00 1.72 0.00 9.56 0.00 28.00 0.00 

14 0.00 14.98 0.00 
10.81 0.00 9.92 0.00 

5.53 0.00 1.69 0.00 
5.80 0.00 26.43 0.00 

18.40 

15 2.36 14.76 0.00 
0.00 1.57 5.16 0.00 

0.00 0.67 7.68 0.00 
0.00 4.70 19.55 0.00 

0.00 

16 6.21 0.00 0.00 
8.16 3.16 0.00 0.00 

5.35 1.43 0.00 0.00 
3.51 9.50 0.00 0.00 

15.57 

17 4.19 0.00 15.99 11.64 2.41 0.00 10.30 3.93 0.43 0.00 0.47 6.50 6.24 0.00 26.07 15.69 

18 0.00 20.07 13.90 0.00 0.00 9.17 9.34 0.00 0.00 5.52 7.58 0.00 0.00 27.27 29.74 0.00 

19 0.00 0.00 14.53 11.84 0.00 0.00 11.82 4.38 0.00 0.00 3.76 5.62 0.00 0.00 32.84 15.61 

20 0.00 23.27 0.00 
0.00 0.00 11.66 0.00 

0.00 0.00 2.97 0.00 
0.00 0.00 32.97 0.00 

0.00 
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5.3. Performance measures 

We have considered several performance measures to 

compare algorithms. These performance measures are: (1) 

the average of RPD (ARPD), (2) the standard deviation of 

RPD (SDRPD), (3) the best RPD (RPD
*
), (4) the worst 

RPD (WRPD), and (5) computation time (CPU time). The 

smaller the values of these metrics, the better the 

performance of the algorithms.  

5.4. Comparative results 

As stated in previous sections, four meta-heuristic 

algorithms are compared based on the ARPD, SDRPD, 

RPD
*
 and WRPD. Tables 8 and 9 report the outcomes in 

terms of four performance measures for small size and 

large size problems, respectively. As reported in Tables 8 

and 9, the PGA has prevailed other methods significantly. 

In terms of the ARPD, the PGA outperformed other 

methods in most of scenarios. The SDRPD results from 

the PGA are far better than the outputs from the HS, GA 

and Neurogenetic. As for RPD
*
, the PGA has reached the 

best values in most of test problems. Based on WRPD 

values, the superiority of PGA is remarkable in both small 

and large size problems. 

 

Table 9  

Comparisons between algorithms for large size problems in terms of ARPD, SDRPD, RPD* and WRPD  

Prob

. No 

Performance Measures 

ARPD SDRPD RPD* WRPD 

PG

A 
HS GA 

NeuroGA
* 

PG

A 
HS GA 

NeuroGA
* 

PG

A 
HS GA 

NeuroGA
* 

PG

A 
HS GA 

NeuroGA
* 

21 0.00 0.00 
13.6

8 
12.38 0.00 0.00 

11.4

7 
3.55 0.00 0.00 1.28 8.69 0.00 0.00 

31.9

6 
16.19 

22 0.00 
25.4

9 

17.3

5 
0.00 0.00 9.77 

11.2

6 
0.00 0.00 

12.2

8 
5.32 0.00 0.00 

36.7

5 

30.1

0 
0.00 

23 0.00 0.00 
21.5

0 
0.00 0.00 0.00 

14.2

6 
0.00 0.00 0.00 0.51 0.00 0.00 0.00 

36.1

2 
0.00 

24 6.16 
19.3

4 
0.00 21.15 1.49 8.86 0.00 1.91 4.20 9.26 0.00 19.29 7.46 

27.8

5 
0.00 23.84 

25 0.00 
12.7

2 
0.00 0.00 0.00 

14.1

2 
0.00 0.00 0.00 0.22 0.00 0.00 0.00 

35.0

0 
0.00 0.00 

26 4.70 0.00 0.00 0.00 2.99 0.00 0.00 0.00 0.91 0.00 0.00 0.00 8.97 0.00 0.00 0.00 

27 3.72 0.00 0.00 0.00 3.13 0.00 0.00 0.00 0.85 0.00 0.00 0.00 9.08 0.00 0.00 0.00 

28 7.12 0.00 
21.0

2 
0.00 3.09 0.00 

12.4

7 
0.00 2.69 0.00 4.10 0.00 9.86 0.00 

33.7

5 
0.00 

29 0.00 
17.3

8 
0.00 17.64 0.00 

11.6

3 
0.00 4.99 0.00 8.95 0.00 10.95 0.00 

36.1

2 
0.00 22.81 

30 0.00 
17.8

0 

19.4

7 
0.00 0.00 

11.8

9 

10.8

9 
0.00 0.00 3.50 

10.2

4 
0.00 0.00 

33.8

7 

32.2

2 
0.00 

31 0.00 
23.6

8 

16.6

9 
18.66 0.00 

10.1

7 
7.24 6.06 0.00 

11.2

6 
7.55 10.37 0.00 

34.6

5 

26.7

4 
23.96 

32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

33 5.44 
19.7

2 
0.00 20.75 3.61 

11.5

4 
0.00 3.41 1.44 4.88 0.00 16.69 9.38 

33.1

5 
0.00 24.01 

34 0.00 
16.4

9 

20.5

5 
0.00 0.00 8.41 

12.8

6 
0.00 0.00 7.03 0.54 0.00 0.00 

29.4

3 

35.1

5 
0.00 

35 4.53 0.00 
24.6

6 
18.98 3.01 0.00 

11.1

3 
4.53 1.20 0.00 5.85 12.67 8.84 0.00 

35.5

1 
23.42 

36 6.42 0.00 
18.1

7 
13.08 3.68 0.00 

11.6

7 
3.32 2.05 0.00 4.44 10.77 9.97 0.00 

35.0

3 
17.89 

37 5.11 
12.0

7 

22.2

9 
12.91 1.31 

11.8

2 
6.06 2.37 3.78 2.00 

14.1

0 
10.85 7.26 

32.1

0 

29.9

1 
15.94 

38 0.00 
19.0

5 

17.2

3 
18.47 0.00 

12.5

2 

14.9

8 
4.59 0.00 4.37 2.40 11.68 0.00 

36.6

2 

36.4

2 
21.84 

39 0.00 
18.4

6 
0.00 16.42 0.00 

15.6

3 
0.00 4.04 0.00 1.44 0.00 11.98 0.00 

36.7

3 
0.00 21.76 

40 0.00 0.00 
19.1

8 
0.00 0.00 0.00 

10.5

8 
0.00 0.00 0.00 7.91 0.00 0.00 0.00 

31.4

2 
0.00 

NeuroGA* denotes the Neurogenetic algorithm 

 

To test the performance of the PGA, the results obtained 

by PGA is compared to the outputs of the GAMS 

software version 24.1.2 in small scale problems. Table 10 

indicates the comparison of results obtained by meta-

heuristics and the exact solutions. The objective function 

values and the gap between the meta-heuristic and the 

optimal solutions are shown in Table 10. It is noteworthy 

that the GAMS software has achieved the optimal 

solutions in around 1500 seconds. The relative gap 

between the optimal solutions acquired by GAMS and 

three meta-heuristics are computed using Eq. 42 

(Baniamerian et al., 2017): 

 

alg *

*

OFV OFV
GAP

OFV


  

(42) 

 

 

Where, alg
OFV  is the objective function value obtained 

by the algorithm, while *
OFV  denotes the optimal 

objective function value obtained by GAMS. As indicated 

in Table 10, the PGA has found the optimal or near 

optimal solution for almost all test instances. 
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 Table 10 

 Comparison of meta-heuristics and GAMS in small size instances 

Prob. No 
Algorithms GAP 

PGA HS GA NeuroGA GAMS GAPPGA GAPHS GAPGA GAPNeuroGA 

1 77 79 77 77 77 0.000 0.026 0.000 0.000 

2 97 102 99 98 97 0.000 0.052 0.021 0.010 

3 102 111 105 102 102 0.000 0.088 0.029 0.000 

4 92 96 100 94 92 0.000 0.043 0.087 0.021 

5 102 102 108 105 102 0.000 0.000 0.059 0.029 

6 106 110 106 106 106 0.000 0.038 0.000 0.000 

7 107 99 113 110 99 0.081 0.000 0.141 0.111 

8 101 106 101 102 101 0.000 0.050 0.000 0.009 

9 92 95 89 94 87 0.057 0.092 0.023 0.080 

10 109 109 109 109 109 0.000 0.000 0.000 0.000 

11 93 93 93 93 93 0.000 0.000 0.000 0.000 

12 101 103 106 102 101 0.000 0.020 0.050 0.009 

13 111 109 113 109 109 0.018 0.000 0.037 0.000 

14 87 90 87 89 87 0.000 0.034 0.000 0.022 

15 94 99 92 92 92 0.022 0.076 0.000 0.000 

16 101 98 98 104 98 0.031 0.000 0.000 0.061 

17 95 94 97 96 94 0.011 0.000 0.032 0.021 

18 80 85 87 80 80 0.000 0.063 0.088 0.000 

19 106 106 110 109 106 0.000 0.000 0.038 0.028 

20 78 83 78 78 78 0.000 0.064 0.000 0.000 

 

 

Figure 15 illustrates the mean of ARPD, SDRPD, RPD
*
 

and WRPD obtained by three algorithms for all problems. 

As shown in Figure 15, the PGA prevailed other methods 

in terms of all performance measures. 

To validate the proposed genetic algorithm statistically, 

multiple statistical experiments are implemented by 

means of a multifactor analysis of variance (ANOVA). 

These experiments are conducted to detect that whether 

the observed differences are statistically significant or not. 

The null hypothesis assumes that there is no significant 

difference between the outputs of algorithms in terms of 

ARPD. We have checked the hypotheses in terms of 

homoscedasticity, independence and normality using a 

residual analysis. The results showed no bias. The 

ANOVA tests are conducted at a 95% confidence interval. 

The null hypothesis is rejected if 0 05P Value .  . Tables 

11 and 12 report the ANOVA test results in terms of 

ARPDs for small and large size problems, respectively. 

The outputs demonstrate that the performances of 

algorithms are statistically different. 

 

 
Fig. 15. Evaluating four performance measures of meta-heuristics 
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Table 11 

 The ANOVA test results for small size problems 

Source SS df MS F Prob>F 

Columns 838.94 3 279.64 6.36 0.0007 

Error 3341.74 76 43.97   

Total 4180.68 79    

 

Table 12 

 The ANOVA test results for large size problems 

Source SS df MS F Prob>F 

Columns 1033.57 3 344.522 4.84 0.0039 

Error 5412.33 76 71.215   

Total 6445.90 79    

Figure 16 illustrates the plots for mean values and Tukey 

intervals at a 95% confidence interval for both small and 

large scale problems. Based on Figure 16,  

the interval bars for the proposed genetic algorithm show 

better central tendency and variability in comparison to 

other methods. 
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Fig. 16. Means and interval plots for small and large scale test instances in terms of RPD 

 

Figures 17 and 18 compare the computation times (CPU 

times) of algorithms for small and large size problems, 

respectively. These figures show that the HS is the fastest 

method among all algorithms.  

 
Fig. 17. CPU times of algorithms for small size problems 
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Fig. 18. CPU times of algorithms for large size problems 

 

6. Conclusions and Future Studies 

A multi-mode multi-skilled resource-constrained project 

scheduling problem (MMSRCPSP) was introduced in this 

paper in which the objective was to minimize the project 

completion time. We proposed a mathematical 

formulation for MMSRCPSP. Due to complexity of 

MMSRCPSP, a new genetic algorithm known as PGA 

was proposed to schedule project activities, efficiently. 

The proposed method produces promising outputs as it 

finds optimal solutions obtained by GAMS software. The 

most remarkable feature of PGA is its capability to 

explore solution space which is due to two strategies 

proposed to find high-quality individuals. Moreover, the 

PGA utilizes a hybrid MADM method consisting of 

Shannon's entropy approach and the VIKOR method to 

choose the best individuals for reproduction. This 

important feature remains the same as the size of problem 

increases. The proposed genetic algorithm is compared to 

harmony search algorithm and classical genetic algorithm 

in terms of various performance measures. The 

experimental results show that the PGA is superior to 

other methods in terms of most of performance measures. 

Using this hybrid MADM method in other meta-heuristics 

can be an interesting subject for further studies. Other 

constraints can be added to the proposed model to make it 

as close as possible to real-world cases such as 

considering generalized precedence relations between 

tasks or considering preemptive activities.  
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