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Abstract 

One of the assumptions made in classical scheduling theory is that a job is always executed by one machine at a time. Since this assumption 

is not always true, in this paper, a relatively new concept of job scheduling, namely parallel jobs, is considered, in which a job can be 

executed by one or more machine at the same time. While the analytical conditions can be easily stated for some simple models, a graph 

model approach is required when conflicts of processor usage are present. The main decisions and solving steps are: (i) converting the 

scheduling problem to graph model; (ii) dividing jobs into independent sets: in this phase, we propose a semi-definite relaxation-based 

algorithm in which we use graph coloring concept; (iii) sequencing the independent sets as a single-machine scheduling in which jobs in 

such a system are job sets formed by using a semi-definite relaxation solution and determining the problem as a schedule that minimizes the 

sum of the tardiness of jobs. In this regard, after grouping the jobs by a semi-definite programming relaxation-based algorithm, we used the 

rounding algorithm for graph coloring. We also proposed a variable neighborhood search algorithm for sequencing the obtained job sets in 

order to minimize the sum of the tardiness. Experimental results show that this methodology is interesting by obtaining good results. 
 

Keywords: Parallel jobs scheduling; Semidefinite relaxation; Tardiness; Graph coloring. 
 

1. Introduction 

The scheduling problem frequently arises in the 

manufacturing systems. This problem is the allocation of 

limited resources to perform a set of activities in a period 

of time. In this paper, we study the scheduling model of 

parallel jobs. It is assumed that a parallel job may use 

more than one machine at the same time. This relaxation 

departs from one of the classic scheduling assumptions. 

Parallel job scheduling has recently gained considerable 

attention (Sun et al., 2014). Many applications of 

parallelism are reported. This parallelism is expressed in a 

certain programming environment, and finally a parallel 

application is executed on some computing platform. In 

many applications, a network topology is considered, in 

which jobs can only be executed on particular machines. 

Only connected machines may execute a job together 

simultaneously for its processing time. Parallel machines 

with a specific network topology can be viewed as a graph 

where each node represents a machine and each edge 

represents the communication link between the two nodes. 

Another area of application for parallel job model is 

bandwidth and storage management. In fact, the study of 

computer architectures with parallel machines has 

prompted the design and analysis of good algorithms for 

parallel jobs scheduling. 

In order to clarify our specific goal in this paper, let us 

consider the following well-known problem. We are given 

m identical parallel machines and a set of n independent, 

parallel jobs j = 1… n. All jobs have an equal positive 

integer processing time, which we also call its length. Let 

T = {T1, T2 . . . Tn} be a set of n independent tasks and P = 

{P1, P2 . . . Pm} a set of m machines. During each time 

instant, each machine can be used by a single task at most. 

A schedule for each task is an allocation of one or more 

time intervals to one or more machines. Job j 

simultaneously requires mj ≤ m machines at each point in 

time for its processing. Positive integer mj is also known 

as the width of job j. Note that we assume that mj is part of 

the input. Any machine can process at most one job at a 

time. The objective is to find a feasible schedule; that is, 

the sum of the tardiness is to be minimized. We consider 

the non-preemptive variant of this problem in which tasks 

are independent.  

Our objective of this study is to give a combinatorial 

characterization of the properties of the system in which 

these schedules are allowed. At first, we present the 

problem by analyzing some simple cases. Then, we will 

use a graph model approach for a multi-machine task 

scheduling model with pre-specified machine allocation. 

The main decisions and solving steps are as follows, 

respectively.  

(i) Converting the scheduling problem to 

graph model, 

(ii) Dividing jobs into independent sets: in 

this phase, we propose a semi-definite 

relaxation in which we use graph coloring 

concept, and  

(iii) Sequencing the independent sets as a 

single-machine scheduling in which jobs in 

such a system are job sets formed by using a 

semi-definite relaxation solution and 

determining the problem as a schedule that 

minimizes the sum of the tardiness of jobs.  
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Since problem 1 || ∑Tj is NP-hard (Pinedo, 2008), so the 

use of a metaheuristic algorithm can be appropriate, and 

in this phase, for (ii), we propose an efficient 

metaheuristic algorithm. 

The remainder of this paper is organized as follows: 

Section 2 gives the brief literature review of parallel jobs 

scheduling. Section 3 introduces the proposed graph-

based algorithm for dividing the jobs into independent 

sets. Section 4 presents a VNS-based algorithm used in 

the sequencing the job sets. Section 5 presents 

experimental design, and finally, Section 6 states our 

conclusions and further research studies.  

2. Literature Review 

In the last two decades, many results have appeared in the 

parallel machines scheduling literature. More recent 

results of this model include, among others, Emmons 

(1987), Kubiak et al. (1990), Herrmann and Lee (1993), 

Chen (1996), Almeida and Centeno (1998), Chen and 

Powell (1999), Birman and Mosheiov (2004), Esteve et 

al. (2006), and Bülbül et al. (2007). A last survey of these 

problems was published by Gordon et al. (2002), Lauff 

and Werner (2004), and Hoogeveen (2005). 

Due to a different application of parallel jobs in various 

contexts, recently, the model of parallel job scheduling 

has been also studied extensively, see e.g., (Drozdowski, 

1996; Du and Leung, 1989; Feldmann et al., 1998; 

Ludwig and Tiwari, 1994, Naroska and Schwiegelshohn, 

2002), and (Amoura et al., 1997; Blazewicz, et al., 1986; 

Chen and Miranda, 1999; Du and Leung, 1989; Feldmann 

et al., 1994; Jansen and Porkolab, 1999; Ludwig and 

Tiwari, 1994; Mu’alem and Feitelson, 1999; Turek et al., 

1992).  

In this regard, for the online scheduling of parallel jobs on 

m identical machines to minimize the makespan where 

jobs arrive over time, Chen and Vestjens (1997) proved a 

lower bound 1.347 on the case without preemption, and 

Johannes (2006) showed that 6/5 is a lower bound on the 

case where preemption is allowed, and he proved that a 

list scheduling algorithm has a competitive ratio of 2 for 

both cases. An online algorithm with competitive ratio 2 -

1/m was raised by Naroska and Schwiegelshohn (2002) 

for the model where the processing times of jobs are not 

known until they are finished. This algorithm is optimal 

since Shmoys et al. (1995) showed a lower bound 2 - 1/m 

on the competitive ratio of any online algorithm.  

These papers are just small samples of work in this area. 

Table1 contains, in a chronological order, other papers. 

 

Table1 

 Summarized literature review 

Year Author/s Comments 

1989 Du and Leung  complexity of scheduling  

1992 Wang and Cheng heuristic of scheduling  

1994 Babbar and Krueger online hard real-time scheduling, partitionable 

multiprocessors 

1994 Turek et al.  scheduling parallelizable tasks, minimize average response 

time  

1996 Drozdowski  real-time scheduling of linear speedup  

1996 Sgall  randomized online scheduling  

1997 Glasgow and Shachnai  Channel-based scheduling  

1998 Rapine et al. online scheduling of parallelizable jobs 

1998 Feitelson and Rudolph  metrics and benchmarking for parallel job scheduling  

1998 Feldmann et al.  optimal online scheduling, jobs arrive dynamically 

according to the dependencies  

1999 Krishnamurti and Gaur  approximation algorithm, hypercube parallel task  

1999 Kwon and Chwa.  parallel tasks with individual deadlines  

1999a Li   approximation algorithm, independent parallel tasks  

1999b Li list scheduling algorithm, precedence-constrained parallel 

tasks  

2000 Deng et al. preemptive scheduling on multiprocessors 
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2000 Jansen and Porkolab preemptive parallel task  

2000 Li and Pan  probabilistic analysis, precedence-constrained parallel tasks, 

multicomputers with contiguous processor allocation  

2001 Bischof and Mayr  online scheduling of parallel jobs with runtime restrictions 

2002 Jansen  malleable parallel tasks, asymptotic fully polynomial-time 

approximation scheme  

2002 Jansen and Porkolab  linear-time approximation schemes  

2002 Srinivasan et al. selection of partition sizes for moldable scheduling 

2003 Jansen and Porkolab  optimal preemptive schedules, Linear programming 

approaches  

2003 Ye and Zhang  online scheduling, parallel jobs with dependencies  

2004 Dutot et al.  approximation algorithms  

2005 Frachtenberg et al.  adaptive parallel job scheduling with flexible co-scheduling  

2006 Johannes parallel jobs with release dates, approximation algorithms 

for both the preemptive and the non-preemptive 

2007 Ye and Zhang 7-competitive online algorithm, improving the previous 

upper bound 

2010 Guo and Kang malleable parallel jobs, online algorithm with competitive 

ratio, optimal for two machines 

2011 Barbosa and Moreira batch of jobs with non-deterministic arrival times, 

minimizing the scheduling makespan, using direct acyclic 

graph for list scheduling 

2012 Ebrahimi Moghaddam and 

Bonyadi 

multiprocessor task scheduling, immune-based Genetic 

algorithm, a new coding scheme to reduce the search space 

2012 Damodaran and Vélez-

Gallego 

parallel batch processing machines with unequal job ready 

times, simulated annealing algorithm,  makespan  

2013 Brelsford et al. parallel job scheduling for extreme scale computing, hybrid 

centralized and distributed approach, improving the scaling 

behavior of scheduling time 

2013 Cheng et al. Parallel batching machines with arbitrary job sizes, 

improved ant colony optimization  

2014 Sun et al. online adaptive scheduling for multiple sets of parallel jobs, 

two-level algorithm scenario with a feedback-driven 

adaptive scheduler, minimizing the scheduling total 

response time and makespan 

2015 Bougeret et al. 5/2-approximation to multiple cluster scheduling problem 

corresponds to minimizing the makespan and 2-

approximation to a restricted problem  

According to the reviewed literature, the main novelty of 

this paper is the scheduling of parallel jobs using a novel 

hybrid algorithm composed of exact and heuristic 

algorithms. In this regard, after grouping the jobs by a 

semi-definite programming relaxation algorithm, we used 

the rounding algorithm for graph coloring. We also 

proposed a variable neighborhood search algorithm for 

sequencing the obtained job sets in order to minimize the 

sum of the tardiness. To the best of our knowledge, this 

study is the first research that combined graph model, 

semi-definite programming, rounding algorithm, and 

metaheuristic to scheduling problems. 

 

3. Grouping the Jobs  

3.1. Parallel jobs scheduling and related graph 

We now define the correspondence between scheduling 

systems and associated graphs. We focus, in particular, on 

the scheduling system in which job does not allow 

preemption and all tasks have a unit processing time, and 

the processing of each task requires the simultaneous 
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availability of a set of machines P(Tj ) ⊆ P during pj time 

units. We say that tasks Ti and Tj are in conflict if P(Ti) ∩ 

P(Tj ) ≠ ∅. A schedule is a set of values of starting times 

{tj, j = 1, 2, ... , n} to be associated with each task Tj , such 

that no two tasks use the same machine in the same 

interval time. Given a multi-machine task scheduling 

system, we can associate it with the so-called constraint 

graph as shown in the example in Figure 1: there is one 

vertex for each task and one edge between two vertices if 

and only if the corresponding tasks are in conflict. Note 

that if a processing time pj ∈ Z+ is associated with each 

task Tj , the resulting constraint graph has a weight wj = pj 

for each vertex j associated with task Tj . 

On the contrary, given a graph G = (V (G),E(G)), where 

V(G) denotes the node set and E(G) denotes the edge set, 

a multi-machine task scheduling system can be associated 

with it in the following way: the set of tasks corresponds 

to the set of vertices, the set of machines corresponds to 

the cliques of a minimum edge clique cover (ECC), and 

set Pi of machines associated with task Ti corresponds to 

the cliques of the minimum ECC covering vertex vi . We 

recall that clique C of G is a complete subgraph of G, and 

a minimum ECC of Gi is a collection of cliques of 

minimum size θ(G) that covers all edges of G. 

In this example, as it can be seen, a minimum ECC is 

composed of the five cliques corresponding to the five 

edges of the graph. We can associate with this graph the 

scheduling system with five machines {P1, P2, P3, P4, P5} 

(corresponding to the cliques of the minimum ECC) and 

five tasks {T1, T2, T3, T4, T5} (corresponding to the five 

vertices), such that P(T1) = {P1, P2}, P(T2) = {P2, P3}, 

P(T3) = {P1, P4}, P(T4) = {P4 }, and P(T5) = {P3, P5}. 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig. 1. A scheduling system and the associated constraint graph 

 

An independent set of G is a subset S ⊆ V(G) of vertices, 

no two of which are adjacent. A coloring of the vertices of 

G is a partition {Sj} of the vertices of G, such that each set 

Sj is an independent set. In the particular case of unit 

processing times, a minimum coloring on the graph 

corresponds to a schedule of minimum length where the 

set of tasks executed in the same time instant is associated 

with vertices in the same color class (Dell’Olmo and Gentili 

2006). We are interested in classes of graphs for which 

such a coloring implies a scheduling without idle times. 

We now state more formally this correspondence between 

graph and scheduling systems.  

3.2. Graph coloring 

In graph theory, a k-coloring for G is a function f: V   [k], 

such that f(u)   f(v) for all (u, v) ∈ E. Clearly, finding a k-

coloring of a graph is equivalent to the problem of 

partitioning the vertices into k or fewer independent sets. 

Note that for a given k-colorable graph G= (V, E), finding 

a k-coloring for G is NP-hard for k ≥ 3. In this paper, for 

graph coloring, a semi-definite programming relaxation 

approach is used. 

3.3. Semi-definite programming relaxation 

In our problem, for a given k-coloring of the graph, the 

semi-definite programming (SDP) relaxation assigns a 

unit vector to each vertex of a graph G = (V,E) to color it, 

such that certain separation properties are satisfied for 

vectors corresponding to each pair of adjacent vertices. 

Vector
n

iv   assigned to vortex i∈V is the vector 

corresponding to the color class of i. Recall that the dot 

product between the two vectors increases as they get 

closer to each other. Therefore, to maximize the distance 

between the edges, we want to minimize quantity max (i,j) 

∈ E vi.vj. 

It is known that for any integer k < n + 1, there exist k unit 

vectors in Rn, such that their pairwise inner products are 

−1/ (k−1). Moreover, given that k-coloring of graph 

G=(V,E), we can assign one of these k vectors to each 

color class, such that 〈vi, vj〉=t =-1/(k-1), ∀ (i, j) ∈ E where 

vi is the vector assigned to vertex i ∈ V (see Lemma 4.1 in 

Karger et al. (1998) for details). The relaxation considered 

by Karger et al. (1998) is as in the following SDP. 

P5 5  

P4 4 3 

P3 5 

2 

P2 

1 

P1 3 

5 
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In fact, this problem is an SDP and the optimum value of 

k is called the vector chromatic number of G. To see this, 

consider matrix W=(wij)∈S (n+1)(n+1) with wij=vi.vj and 

wi,n+1=wn+1,i=0 for all i, j∈{1, .. . ,n} , wn+1,n+1=t . Then, 

problem (P1) has the linear constraints and linear 

objective function of the elements of W, which is positive 

semi-definite. 

Lemma 1: Let t* be the optimal value of (P1). If G is k-

colorable, then t* ≤ -1/ (k-1). 

Lemma 2: Let t* be the optimal value of (P1). If G 

contains a k-clique, then t* ≥ -1/ (k-1). 

Note that if t* = -1/ (k-1), function θ(G) = 1- (1/t*) = k* 

(this function is known as the Lovasz theta function). 

Problem (P1) is essentially equivalent to the below semi-

definite programming: 

( 2)       

. :       ( , ) ,

           1   ,

           ,       

i j

ii

n

P Minimize t

S t A X t i j E

A X i V

X S i V

   

   

  

 (2) 

where Aii = eiei
T, Aij = eiej

T, and ei is the unit vector with 

its ith element equal to 1 (a unit vector is a vector of 

length 1, sometimes also called a direction vector). 

Clearly, a solution to (P1) can be obtained via Cholesky 

decomposition of any solution to (P2). 

Suppose that we found a feasible solution to the SDP. 

How do we convert it to a valid coloring? Any rounding 

scheme will probably miscolor some edges. We use 

rounding that gives us a large independent set. We aim for 

an algorithm that colors the graph almost properly. This is 

exactly the motivation of the semi-colorings of a graph 

presented in Karger et al. (1998), and we will describe it 

in the following sub-section. 

3.4. Rounding algorithm 

A k-semicoloring of graph G = (V, E) is an assignment of 

k colors to at least half of its vertices, such that no two 

adjacent vertices share the same color. It is clear that at 

least n/2 vertices are properly colored in any k-

semicoloring of graph (Dell’Olmo and Gentili 2006). 

Therefore, if we can semicolor a graph with k colors, we 

can color graph with k 124343log n colors where n = |V| 

(Li and Liu, 2008). Here, we can semicolor the remaining 

half vertices of the graph with k new colors at each 

iteration. We used the idea of Li and Liu (2008) as a 

rounding algorithm.  

Algorithm KMS (proposed by Karger, Motwani and 

Sudan (1998)) 

1: Solve the semi-definite programming relaxation and 

obtain a vector 3-coloring {vi}
n
i=1. 

2: Let c = (2 (k − 2)/k · ln∆) 1/2 for sufficiently large ∆. Set 

j = 1. 

3: Create a random vector rj . 

4: Denote Rj = {i ∈ V | 〈vi, rj 〉 ≥ c}. 

5: Assign color j to Rj and remove the vertices in Rj. Set j 

= j + 1. 

6: Repeat Steps 3 to 5 until all vertices are colored. 

4. Sequencing the Job Sets 

After classification according to the fact that jobs need 

machines in the independent set, we will have sets of jobs 

that must be sequenced at group of machine. In this phase, 

we have a single machine scheduling problem whose job 

sets and group of machine in parallel can be considered as 

jobs and single machine, respectively. In a machine 

scheduling, a late delivery implies a penalty in the form of 

loss of good will and the magnitude of the penalty 

depends on the importance of the order or the client and 

the tardiness of the delivery. One of the most important 

objectives in the scheduling is to minimize the sum of the 

tardiness (Lushchakova, 2012). The tardiness of job j is 

defined as follows: 

Tj = max (Cj − dj , 0). (3) 

In this study, we consider the scheduling problem where 

the sum of tardiness of jobs must be minimized. For this, 

in the following sub-section, we will present an advanced 

local search, namely variable neighborhood search 

algorithm (VNS). 

4.1. VNS-based metaheuristic 

For sequencing the independent job sets, we propose a 

VNS-based metaheuristic algorithm. The construction of 

VNS-based metaheuristic is motivated by the need to 

achieve a good trade-off between the global exploration 

and local exploitation during the search. Let us now 

discuss the aspects of the proposed algorithm. 

http://mathworld.wolfram.com/Vector.html
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4.2. Encoding scheme 

The proposed representation for our proposed algorithm 

to solve scheduling is based on coding all job sets as 

genes in a 1-by-(n') string where n' is a number of job 

sets. In this type of representation, the sequence of job 

sets is represented by the number of genes from the left 

side to the right side. Figure 2 shows an example for 

representation. In this example, there are five job sets with 

order 5→1→2→4→3.  

 

5 1 2 4 3 

Fig. 2. Solution representation 

4.3. Initial solution 

Any available method would be sufficient to generate a 

feasible solution to our algorithm. For this algorithm, we 

use a random initial solution. 

4.4. Variable neighborhood search 

Variable neighborhood algorithm is based on the principle 

of systematic change of the neighborhood during the 

search. The motivations behind the concept of VNSs are: 

(i) A local minimum in one neighborhood structure is not 

necessarily locally minimal with respect to another 

neighborhood structure; (ii) A global optimum is locally 

optimal with respect to all neighborhood structures.  

4.5. Our proposed algorithm 

In this algorithm, every time a neighborhood is selected, a 

random procedure is called. This procedure selects a 

random solution from the selected neighborhood structure 

(Rocha et al., 2007). Therefore, neighborhoods N1(S) and 

N2(S) are created in the following manner, one for each l, 

respectively: 

Neighborhood structure 1 

1: Choose randomly two different job sets i1 and i2  

2: Swap job sets i1 and i2. 

Neighborhood structure 2 

1: Choose randomly one job set i1; 

2: Choose randomly a valid position pos; 

3: Transfer job set i1 to a position pos. 

In this algorithm, if no improvement is made in first 

neighborhood after an iteration, then the other one (l = 2) 

is applied, and every time a new solution is found, the 

first and fastest local search is used (l = 1). 

The steps of the proposed algorithm are as follows: 

Algorithm 2: Basic VNS structure 

1:   Find an initial solution S* randomly; 

2:      l ← 1; 

3:      for iterations ← 1 to a maximum number of 

iterations do 

4:          S ← S*; 

5:          Shake procedure: find a random solution S´Nl 

(S); 

6:          Perform a local search on Nl (S´) to find a solution 

S˝; 

7:          if f(S˝) ≤ f(S*) then 

8:              S* ← S˝; 

9:              l ← 1; 

10:        end if 

11:        l ← l+1; 

12:    end for 

The algorithm proposed here has three specifications: 

(i) Generating the initial solution via a random initial 

solution: The method starts with generating initial 

chromosomes randomly. 

(ii) Intensification phase using VNS local search. In the 

proposed algorithm, varying the neighborhood structure 

during the search process could facilitate the avoidance of 

traps and enlarge the search scope. VNS works by 

performing movements that upgrade the solutions. So, the 

solution that has the minimal objective value is selected as 

a move. 

(iii) Diversification phase shaking function in VNS. In 

VNS algorithm, the shaking procedure in the basic VNS 

approach is a diversification factor, whilst the local search 

will intensify the search to lead to its converging to a local 

optimum. 

5. Experimental Design 

To show the performances of the metaheuristic algorithms 

suggested in this paper, a series of computational 

experiments were done on randomly generated test 

problems, and the results are reported in this section. 

We have thoroughly reviewed the literature, and 

according to the literature review, we conclude that the 

most related and best algorithms are simulated annealing 

(SA) proposed by Damodaran and Vélez-Gallego (2012) 

and improved ant colony optimization (IACO) proposed 

by Cheng et al. (2013). So, after adapting these algorithms 

to our problem assumptions, we compare the proposed 

algorithm (namely, HMH) with them. 

The algorithms were implemented in MATLAB 7 and run 

on an Intel Pentium IV dual core 2.00 GHz PC at 1022 

MB RAM under a Microsoft Windows Vista 

environment. 

5.1. Data generation and settings 

The lack of other works dealing with this problem forces 

us to use artificial instances to test our algorithms. To 

analyze the algorithms and models developed for this 

problem, several classes of instances are defined. In each 

class, there is a change in one of the inputs. The problem 

data can be characterized by three factors. These levels 

are shown in Table 2. 
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 Table 2 

 Factor levels 

Factor Level(s) 
 

Number of jobs (n) 10 15 20 25 

Number of machines (m) 2 3 5 10 

Width of jobs (w) 2 (1,3)   

For the test on our proposed algorithms, 320 problems 

were randomly generated, i.e., 10 problems for each of 32 

combinations. Another important issue is the due dates of 

the jobs. In this study, the due dates are uniformly 

distributed from 1 to 3 which are 100% to 300% of the 

processing time. The stopping criterion for VNS-based 

metaheuristic is also set to a number of iterations to 10 

repetitions. 

 

 

5.2. Experimental results 

In order to evaluate the efficacy and performance of the 

algorithms proposed in this paper, 320 instances are 

solved.  

Table 3 represents the computational results. In this table, 

each instance is solved using 10 different seeds, and the 

average cases are considered. The results demonstrate that 

there is a clear, statistically significant difference between 

the performances of the algorithms. The means plot and 

least significant difference (LSD) intervals (at 95% 

confidence level) for three algorithms are shown in Figure 

3. 

 

 

Fig. 3. Plot of RPD  for the type of algorithm factor 

 
 

                  Table 3 

                    Computational results (sum of the tardiness) 

  Instance  Algorithm   

No.  n 
 

m 
 

w 
 

SA 
 

IACO 
 

HMH 

             

1  10  2  2  0.759  0.147  0.000 

2  10  3  2  0.176  0.000  0.176 

3  10  5  2  1.400  0.900  0.000 

4  10  10  2  0.243  0.526  0.000 

5  10  2  (1,3)  0.000  1.182  0.469 

6  10  3  (1,3)  0.505  0.437  0.000 

7  10  5  (1,3)  0.786  0.000  0.044 

8  10  10  (1,3)  0.064  0.418  0.000 

Average      0.492  0.451 0.086 

           

9  15  2  2  0.424  0.238  0.000 

10  15  3  2  0.818  0.000  0.538 

11  15  5  2  0.248  0.404  0.000 

12  15  10  2  0.000  1.154  0.243 

13  15  2  (1,3)  0.000  1.091  0.189 

14  15  3  (1,3)  0.000  0.350  0.154 

15  15  5  (1,3)  0.505  0.574  0.000 

0.413

0.460

0.095

       

R
P

D

SA IACO HMH
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16  15  10  (1,3)  0.238  0.486  0.000 

Average        0.279  0.537  0.140 

             

17  20  2  2  0.300  0.950  0.000 

18  20  3  2  0.529  0.300  0.000 

19  20  5  2  0.118  0.000  0.267 

20  20  10  2  0.130  0.130  0.000 

21  20  2  (1,3)  0.353  0.000  0.086 

22  20  3  (1,3)  1.200  1.100  0.000 

23  20  5  (1,3)  0.050  0.100  0.000 

24  20  10  (1,3)  0.885  0.885  0.000 

Average        0.446  0.433  0.044 

             

25  25  2  2  0.231  0.000  0.598 

26  25  3  2  1.065  0.835  0.000 

27  25  5  2  0.661  0.228  0.000 

28  25  10  2  0.300  0.300  0.000 

29  25  2  (1,3)  0.059  0.059  0.000 

30  25  3  (1,3)  0.417  0.000  0.282 

31  25  5  (1,3)  0.083  1.094  0.000 

32  25  10  (1,3)  0.682  0.835  0.000 

Average        0.437  0.419  0.110 

           

 
To compare the algorithms, in this table, the relative 

percentage deviation (RPD) is used that is obtained by 

formula (4): 

lg
100sol sol

sol

A Min
RPD

Min


   (4) 

where Minsol is the best solutions obtained for each 

instance, and Algsol is an objective function obtained by a 

given algorithm. 

 

5.3. Analysis of controlled factors 

5.3.1. Analysis of problem size factor (number of jobs) 

In order to see the effects of the number of jobs on three 

algorithms, a two-way ANOVA is applied. Plot of RPD  

for the interaction between the type of algorithm and 

number of jobs is shown in Figure 4. As it can be seen, in 

all cases, the HMH works better than others. 

  

 

Fig. 4. Plot of RPD  for the interaction between the type of algorithm and the number of jobs 

 

5.3.2. Analysis of number of parallel machine factor 

  

Another two-way ANOVA and LSD test is applied to see 

the effect of the magnitude of machines on the quality of 

the algorithms. The results are illustrated in Figure 5. 

Figure 5 shows that HMH has good performance 

compared to those of IACO and SA. 
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Fig.  5. Plot of RPD  for the interaction between the type of algorithm and number of parallel machine 

 

5.3.3. Analysis of width of jobs factor  

Another two-way ANOVA and LSD test is applied to see 

the effect of the width of jobs on the quality of the 

algorithms. The results are illustrated in Figure 6. You can 

see that this factor has no significant effect on the 

performance of HMH. Also, in all cases, i.e., w=2 and 

w=(1,3), HMH works better than other algorithms

. 

 

Fig. 6. Plot of RPD  for the interaction between the type of algorithm and width of jobs 

6. Conclusions and Future Work 

In this paper, we investigated the identical parallel 

machines scheduling problems in which the jobs may use 

more than one machine at the same time; we desired to 

minimize the sum of the tardiness of jobs. The problem 

involves job set with specific due date and it is assumed 

that the tardiness penalty will occur if the job is completed 

after its due date.  

In this research, to deal with parallel job scheduling, first, 

after converting scheduling to the graph model, we make 

use of the semi-definite programming relaxation method 

for coloring it. In this phase, jobs are grouped in the 

independent sets according to their requirement of 

machines. The core of our method is the novel idea of 

using the non-negative matrix instead of variable in linear 

programming. Then, a VNS-based metaheuristic was 

proposed for sequencing the job sets. In the proposed 

algorithm, the balance between the global exploration and 

the local exploitation was stressed. Experiments 

demonstrated that our proposed algorithm generates an 

efficient set of solutions. The future work is to change the 

objectives in this paper and develop an effective proposed 

algorithm for other types of scheduling problems. 
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