
Journal of Optimization in Industrial Engineering

 Vol.13, Issue 2, Summer & Autumn 2020, 199- 210

99.138510.22094/JOIE.2017.5 :DOI

911

Parallel Jobs Scheduling with a Specific Due Date: a Semi-Definite

Relaxation-Based Algorithm

Javad Behnamian*

Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran

Received 13 March 2016; Revised 12 October 2016; Accepted 20 November 2017

Abstract

One of the assumptions made in classical scheduling theory is that a job is always executed by one machine at a time. Since this assumption

is not always true, in this paper, a relatively new concept of job scheduling, namely parallel jobs, is considered, in which a job can be

executed by one or more machine at the same time. While the analytical conditions can be easily stated for some simple models, a graph

model approach is required when conflicts of processor usage are present. The main decisions and solving steps are: (i) converting the

scheduling problem to graph model; (ii) dividing jobs into independent sets: in this phase, we propose a semi-definite relaxation-based

algorithm in which we use graph coloring concept; (iii) sequencing the independent sets as a single-machine scheduling in which jobs in

such a system are job sets formed by using a semi-definite relaxation solution and determining the problem as a schedule that minimizes the

sum of the tardiness of jobs. In this regard, after grouping the jobs by a semi-definite programming relaxation-based algorithm, we used the

rounding algorithm for graph coloring. We also proposed a variable neighborhood search algorithm for sequencing the obtained job sets in

order to minimize the sum of the tardiness. Experimental results show that this methodology is interesting by obtaining good results.

Keywords: Parallel jobs scheduling; Semidefinite relaxation; Tardiness; Graph coloring.

1. Introduction

The scheduling problem frequently arises in the

manufacturing systems. This problem is the allocation of

limited resources to perform a set of activities in a period

of time. In this paper, we study the scheduling model of

parallel jobs. It is assumed that a parallel job may use

more than one machine at the same time. This relaxation

departs from one of the classic scheduling assumptions.

Parallel job scheduling has recently gained considerable

attention (Sun et al., 2014). Many applications of

parallelism are reported. This parallelism is expressed in a

certain programming environment, and finally a parallel

application is executed on some computing platform. In

many applications, a network topology is considered, in

which jobs can only be executed on particular machines.

Only connected machines may execute a job together

simultaneously for its processing time. Parallel machines

with a specific network topology can be viewed as a graph

where each node represents a machine and each edge

represents the communication link between the two nodes.

Another area of application for parallel job model is

bandwidth and storage management. In fact, the study of

computer architectures with parallel machines has

prompted the design and analysis of good algorithms for

parallel jobs scheduling.

In order to clarify our specific goal in this paper, let us

consider the following well-known problem. We are given

m identical parallel machines and a set of n independent,

parallel jobs j = 1… n. All jobs have an equal positive

integer processing time, which we also call its length. Let

T = {T1, T2 . . . Tn} be a set of n independent tasks and P =

{P1, P2 . . . Pm} a set of m machines. During each time

instant, each machine can be used by a single task at most.

A schedule for each task is an allocation of one or more

time intervals to one or more machines. Job j

simultaneously requires mj ≤ m machines at each point in

time for its processing. Positive integer mj is also known

as the width of job j. Note that we assume that mj is part of

the input. Any machine can process at most one job at a

time. The objective is to find a feasible schedule; that is,

the sum of the tardiness is to be minimized. We consider

the non-preemptive variant of this problem in which tasks

are independent.

Our objective of this study is to give a combinatorial

characterization of the properties of the system in which

these schedules are allowed. At first, we present the

problem by analyzing some simple cases. Then, we will

use a graph model approach for a multi-machine task

scheduling model with pre-specified machine allocation.

The main decisions and solving steps are as follows,

respectively.

(i) Converting the scheduling problem to

graph model,

(ii) Dividing jobs into independent sets: in

this phase, we propose a semi-definite

relaxation in which we use graph coloring

concept, and

(iii) Sequencing the independent sets as a

single-machine scheduling in which jobs in

such a system are job sets formed by using a

semi-definite relaxation solution and

determining the problem as a schedule that

minimizes the sum of the tardiness of jobs.

*Corresponding author Email address: Behnamian@Basu.ac.ir

Javad Behnamian

 022

Since problem 1 || ∑Tj is NP-hard (Pinedo, 2008), so the

use of a metaheuristic algorithm can be appropriate, and

in this phase, for (ii), we propose an efficient

metaheuristic algorithm.

The remainder of this paper is organized as follows:

Section 2 gives the brief literature review of parallel jobs

scheduling. Section 3 introduces the proposed graph-

based algorithm for dividing the jobs into independent

sets. Section 4 presents a VNS-based algorithm used in

the sequencing the job sets. Section 5 presents

experimental design, and finally, Section 6 states our

conclusions and further research studies.

2. Literature Review

In the last two decades, many results have appeared in the

parallel machines scheduling literature. More recent

results of this model include, among others, Emmons

(1987), Kubiak et al. (1990), Herrmann and Lee (1993),

Chen (1996), Almeida and Centeno (1998), Chen and

Powell (1999), Birman and Mosheiov (2004), Esteve et

al. (2006), and Bülbül et al. (2007). A last survey of these

problems was published by Gordon et al. (2002), Lauff

and Werner (2004), and Hoogeveen (2005).

Due to a different application of parallel jobs in various

contexts, recently, the model of parallel job scheduling

has been also studied extensively, see e.g., (Drozdowski,

1996; Du and Leung, 1989; Feldmann et al., 1998;

Ludwig and Tiwari, 1994, Naroska and Schwiegelshohn,

2002), and (Amoura et al., 1997; Blazewicz, et al., 1986;

Chen and Miranda, 1999; Du and Leung, 1989; Feldmann

et al., 1994; Jansen and Porkolab, 1999; Ludwig and

Tiwari, 1994; Mu’alem and Feitelson, 1999; Turek et al.,

1992).

In this regard, for the online scheduling of parallel jobs on

m identical machines to minimize the makespan where

jobs arrive over time, Chen and Vestjens (1997) proved a

lower bound 1.347 on the case without preemption, and

Johannes (2006) showed that 6/5 is a lower bound on the

case where preemption is allowed, and he proved that a

list scheduling algorithm has a competitive ratio of 2 for

both cases. An online algorithm with competitive ratio 2 -

1/m was raised by Naroska and Schwiegelshohn (2002)

for the model where the processing times of jobs are not

known until they are finished. This algorithm is optimal

since Shmoys et al. (1995) showed a lower bound 2 - 1/m

on the competitive ratio of any online algorithm.

These papers are just small samples of work in this area.

Table1 contains, in a chronological order, other papers.

Table1

 Summarized literature review

Year Author/s Comments

1989 Du and Leung complexity of scheduling

1992 Wang and Cheng heuristic of scheduling

1994 Babbar and Krueger online hard real-time scheduling, partitionable

multiprocessors

1994 Turek et al. scheduling parallelizable tasks, minimize average response

time

1996 Drozdowski real-time scheduling of linear speedup

1996 Sgall randomized online scheduling

1997 Glasgow and Shachnai Channel-based scheduling

1998 Rapine et al. online scheduling of parallelizable jobs

1998 Feitelson and Rudolph metrics and benchmarking for parallel job scheduling

1998 Feldmann et al. optimal online scheduling, jobs arrive dynamically

according to the dependencies

1999 Krishnamurti and Gaur approximation algorithm, hypercube parallel task

1999 Kwon and Chwa. parallel tasks with individual deadlines

1999a Li approximation algorithm, independent parallel tasks

1999b Li list scheduling algorithm, precedence-constrained parallel

tasks

2000 Deng et al. preemptive scheduling on multiprocessors

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 199-210

029

2000 Jansen and Porkolab preemptive parallel task

2000 Li and Pan probabilistic analysis, precedence-constrained parallel tasks,

multicomputers with contiguous processor allocation

2001 Bischof and Mayr online scheduling of parallel jobs with runtime restrictions

2002 Jansen malleable parallel tasks, asymptotic fully polynomial-time

approximation scheme

2002 Jansen and Porkolab linear-time approximation schemes

2002 Srinivasan et al. selection of partition sizes for moldable scheduling

2003 Jansen and Porkolab optimal preemptive schedules, Linear programming

approaches

2003 Ye and Zhang online scheduling, parallel jobs with dependencies

2004 Dutot et al. approximation algorithms

2005 Frachtenberg et al. adaptive parallel job scheduling with flexible co-scheduling

2006 Johannes parallel jobs with release dates, approximation algorithms

for both the preemptive and the non-preemptive

2007 Ye and Zhang 7-competitive online algorithm, improving the previous

upper bound

2010 Guo and Kang malleable parallel jobs, online algorithm with competitive

ratio, optimal for two machines

2011 Barbosa and Moreira batch of jobs with non-deterministic arrival times,

minimizing the scheduling makespan, using direct acyclic

graph for list scheduling

2012 Ebrahimi Moghaddam and

Bonyadi

multiprocessor task scheduling, immune-based Genetic

algorithm, a new coding scheme to reduce the search space

2012 Damodaran and Vélez-

Gallego

parallel batch processing machines with unequal job ready

times, simulated annealing algorithm, makespan

2013 Brelsford et al. parallel job scheduling for extreme scale computing, hybrid

centralized and distributed approach, improving the scaling

behavior of scheduling time

2013 Cheng et al. Parallel batching machines with arbitrary job sizes,

improved ant colony optimization

2014 Sun et al. online adaptive scheduling for multiple sets of parallel jobs,

two-level algorithm scenario with a feedback-driven

adaptive scheduler, minimizing the scheduling total

response time and makespan

2015 Bougeret et al. 5/2-approximation to multiple cluster scheduling problem

corresponds to minimizing the makespan and 2-

approximation to a restricted problem

According to the reviewed literature, the main novelty of

this paper is the scheduling of parallel jobs using a novel

hybrid algorithm composed of exact and heuristic

algorithms. In this regard, after grouping the jobs by a

semi-definite programming relaxation algorithm, we used

the rounding algorithm for graph coloring. We also

proposed a variable neighborhood search algorithm for

sequencing the obtained job sets in order to minimize the

sum of the tardiness. To the best of our knowledge, this

study is the first research that combined graph model,

semi-definite programming, rounding algorithm, and

metaheuristic to scheduling problems.

3. Grouping the Jobs

3.1. Parallel jobs scheduling and related graph

We now define the correspondence between scheduling

systems and associated graphs. We focus, in particular, on

the scheduling system in which job does not allow

preemption and all tasks have a unit processing time, and

the processing of each task requires the simultaneous

Javad Behnamian

 020

availability of a set of machines P(Tj) ⊆ P during pj time

units. We say that tasks Ti and Tj are in conflict if P(Ti) ∩

P(Tj) ≠ ∅. A schedule is a set of values of starting times

{tj, j = 1, 2, ... , n} to be associated with each task Tj , such

that no two tasks use the same machine in the same

interval time. Given a multi-machine task scheduling

system, we can associate it with the so-called constraint

graph as shown in the example in Figure 1: there is one

vertex for each task and one edge between two vertices if

and only if the corresponding tasks are in conflict. Note

that if a processing time pj ∈ Z+ is associated with each

task Tj , the resulting constraint graph has a weight wj = pj

for each vertex j associated with task Tj .

On the contrary, given a graph G = (V (G),E(G)), where

V(G) denotes the node set and E(G) denotes the edge set,

a multi-machine task scheduling system can be associated

with it in the following way: the set of tasks corresponds

to the set of vertices, the set of machines corresponds to

the cliques of a minimum edge clique cover (ECC), and

set Pi of machines associated with task Ti corresponds to

the cliques of the minimum ECC covering vertex vi . We

recall that clique C of G is a complete subgraph of G, and

a minimum ECC of Gi is a collection of cliques of

minimum size θ(G) that covers all edges of G.

In this example, as it can be seen, a minimum ECC is

composed of the five cliques corresponding to the five

edges of the graph. We can associate with this graph the

scheduling system with five machines {P1, P2, P3, P4, P5}

(corresponding to the cliques of the minimum ECC) and

five tasks {T1, T2, T3, T4, T5} (corresponding to the five

vertices), such that P(T1) = {P1, P2}, P(T2) = {P2, P3},

P(T3) = {P1, P4}, P(T4) = {P4 }, and P(T5) = {P3, P5}.

Fig. 1. A scheduling system and the associated constraint graph

An independent set of G is a subset S ⊆ V(G) of vertices,

no two of which are adjacent. A coloring of the vertices of

G is a partition {Sj} of the vertices of G, such that each set

Sj is an independent set. In the particular case of unit

processing times, a minimum coloring on the graph

corresponds to a schedule of minimum length where the

set of tasks executed in the same time instant is associated

with vertices in the same color class (Dell’Olmo and Gentili

2006). We are interested in classes of graphs for which

such a coloring implies a scheduling without idle times.

We now state more formally this correspondence between

graph and scheduling systems.

3.2. Graph coloring

In graph theory, a k-coloring for G is a function f: V [k],

such that f(u) f(v) for all (u, v) ∈ E. Clearly, finding a k-

coloring of a graph is equivalent to the problem of

partitioning the vertices into k or fewer independent sets.

Note that for a given k-colorable graph G= (V, E), finding

a k-coloring for G is NP-hard for k ≥ 3. In this paper, for

graph coloring, a semi-definite programming relaxation

approach is used.

3.3. Semi-definite programming relaxation

In our problem, for a given k-coloring of the graph, the

semi-definite programming (SDP) relaxation assigns a

unit vector to each vertex of a graph G = (V,E) to color it,

such that certain separation properties are satisfied for

vectors corresponding to each pair of adjacent vertices.

Vector
n

iv  assigned to vortex i∈V is the vector

corresponding to the color class of i. Recall that the dot

product between the two vectors increases as they get

closer to each other. Therefore, to maximize the distance

between the edges, we want to minimize quantity max (i,j)

∈ E vi.vj.

It is known that for any integer k < n + 1, there exist k unit

vectors in Rn, such that their pairwise inner products are

−1/ (k−1). Moreover, given that k-coloring of graph

G=(V,E), we can assign one of these k vectors to each

color class, such that 〈vi, vj〉=t =-1/(k-1), ∀ (i, j) ∈ E where

vi is the vector assigned to vertex i ∈ V (see Lemma 4.1 in

Karger et al. (1998) for details). The relaxation considered

by Karger et al. (1998) is as in the following SDP.

P5 5

P4 4 3

P3 5

2

P2

1

P1 3

5

{1,2}

{1,4} {2,3}

{4}

3

{3,5}

1

2

4 5

Time

Machine

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 199-210

022

(1)

. : , (,) ,

 , 1 ,

 ,

i j

i i

n

i

P Minimize t

S t v v t i j E

v v i V

v R i V

    

    

  

 (1)

In fact, this problem is an SDP and the optimum value of

k is called the vector chromatic number of G. To see this,

consider matrix W=(wij)∈S (n+1)(n+1) with wij=vi.vj and

wi,n+1=wn+1,i=0 for all i, j∈{1, .. . ,n} , wn+1,n+1=t . Then,

problem (P1) has the linear constraints and linear

objective function of the elements of W, which is positive

semi-definite.

Lemma 1: Let t* be the optimal value of (P1). If G is k-

colorable, then t* ≤ -1/ (k-1).

Lemma 2: Let t* be the optimal value of (P1). If G

contains a k-clique, then t* ≥ -1/ (k-1).

Note that if t* = -1/ (k-1), function θ(G) = 1- (1/t*) = k*

(this function is known as the Lovasz theta function).

Problem (P1) is essentially equivalent to the below semi-

definite programming:

(2)

. : (,) ,

 1 ,

 ,

i j

ii

n

P Minimize t

S t A X t i j E

A X i V

X S i V

   

   

  

 (2)

where Aii = eiei
T, Aij = eiej

T, and ei is the unit vector with

its ith element equal to 1 (a unit vector is a vector of

length 1, sometimes also called a direction vector).

Clearly, a solution to (P1) can be obtained via Cholesky

decomposition of any solution to (P2).

Suppose that we found a feasible solution to the SDP.

How do we convert it to a valid coloring? Any rounding

scheme will probably miscolor some edges. We use

rounding that gives us a large independent set. We aim for

an algorithm that colors the graph almost properly. This is

exactly the motivation of the semi-colorings of a graph

presented in Karger et al. (1998), and we will describe it

in the following sub-section.

3.4. Rounding algorithm

A k-semicoloring of graph G = (V, E) is an assignment of

k colors to at least half of its vertices, such that no two

adjacent vertices share the same color. It is clear that at

least n/2 vertices are properly colored in any k-

semicoloring of graph (Dell’Olmo and Gentili 2006).

Therefore, if we can semicolor a graph with k colors, we

can color graph with k 124343log n colors where n = |V|

(Li and Liu, 2008). Here, we can semicolor the remaining

half vertices of the graph with k new colors at each

iteration. We used the idea of Li and Liu (2008) as a

rounding algorithm.

Algorithm KMS (proposed by Karger, Motwani and

Sudan (1998))

1: Solve the semi-definite programming relaxation and

obtain a vector 3-coloring {vi}
n
i=1.

2: Let c = (2 (k − 2)/k · ln∆) 1/2 for sufficiently large ∆. Set

j = 1.

3: Create a random vector rj .

4: Denote Rj = {i ∈ V | 〈vi, rj 〉 ≥ c}.

5: Assign color j to Rj and remove the vertices in Rj. Set j

= j + 1.

6: Repeat Steps 3 to 5 until all vertices are colored.

4. Sequencing the Job Sets

After classification according to the fact that jobs need

machines in the independent set, we will have sets of jobs

that must be sequenced at group of machine. In this phase,

we have a single machine scheduling problem whose job

sets and group of machine in parallel can be considered as

jobs and single machine, respectively. In a machine

scheduling, a late delivery implies a penalty in the form of

loss of good will and the magnitude of the penalty

depends on the importance of the order or the client and

the tardiness of the delivery. One of the most important

objectives in the scheduling is to minimize the sum of the

tardiness (Lushchakova, 2012). The tardiness of job j is

defined as follows:

Tj = max (Cj − dj , 0). (3)

In this study, we consider the scheduling problem where

the sum of tardiness of jobs must be minimized. For this,

in the following sub-section, we will present an advanced

local search, namely variable neighborhood search

algorithm (VNS).

4.1. VNS-based metaheuristic

For sequencing the independent job sets, we propose a

VNS-based metaheuristic algorithm. The construction of

VNS-based metaheuristic is motivated by the need to

achieve a good trade-off between the global exploration

and local exploitation during the search. Let us now

discuss the aspects of the proposed algorithm.

http://mathworld.wolfram.com/Vector.html

Javad Behnamian

 022

4.2. Encoding scheme

The proposed representation for our proposed algorithm

to solve scheduling is based on coding all job sets as

genes in a 1-by-(n') string where n' is a number of job

sets. In this type of representation, the sequence of job

sets is represented by the number of genes from the left

side to the right side. Figure 2 shows an example for

representation. In this example, there are five job sets with

order 5→1→2→4→3.

5 1 2 4 3

Fig. 2. Solution representation

4.3. Initial solution

Any available method would be sufficient to generate a

feasible solution to our algorithm. For this algorithm, we

use a random initial solution.

4.4. Variable neighborhood search

Variable neighborhood algorithm is based on the principle

of systematic change of the neighborhood during the

search. The motivations behind the concept of VNSs are:

(i) A local minimum in one neighborhood structure is not

necessarily locally minimal with respect to another

neighborhood structure; (ii) A global optimum is locally

optimal with respect to all neighborhood structures.

4.5. Our proposed algorithm

In this algorithm, every time a neighborhood is selected, a

random procedure is called. This procedure selects a

random solution from the selected neighborhood structure

(Rocha et al., 2007). Therefore, neighborhoods N1(S) and

N2(S) are created in the following manner, one for each l,

respectively:

Neighborhood structure 1

1: Choose randomly two different job sets i1 and i2

2: Swap job sets i1 and i2.

Neighborhood structure 2

1: Choose randomly one job set i1;

2: Choose randomly a valid position pos;

3: Transfer job set i1 to a position pos.

In this algorithm, if no improvement is made in first

neighborhood after an iteration, then the other one (l = 2)

is applied, and every time a new solution is found, the

first and fastest local search is used (l = 1).

The steps of the proposed algorithm are as follows:

Algorithm 2: Basic VNS structure

1: Find an initial solution S* randomly;

2: l ← 1;

3: for iterations ← 1 to a maximum number of

iterations do

4: S ← S*;

5: Shake procedure: find a random solution S´Nl

(S);

6: Perform a local search on Nl (S´) to find a solution

S˝;

7: if f(S˝) ≤ f(S*) then

8: S* ← S˝;

9: l ← 1;

10: end if

11: l ← l+1;

12: end for

The algorithm proposed here has three specifications:

(i) Generating the initial solution via a random initial

solution: The method starts with generating initial

chromosomes randomly.

(ii) Intensification phase using VNS local search. In the

proposed algorithm, varying the neighborhood structure

during the search process could facilitate the avoidance of

traps and enlarge the search scope. VNS works by

performing movements that upgrade the solutions. So, the

solution that has the minimal objective value is selected as

a move.

(iii) Diversification phase shaking function in VNS. In

VNS algorithm, the shaking procedure in the basic VNS

approach is a diversification factor, whilst the local search

will intensify the search to lead to its converging to a local

optimum.

5. Experimental Design

To show the performances of the metaheuristic algorithms

suggested in this paper, a series of computational

experiments were done on randomly generated test

problems, and the results are reported in this section.

We have thoroughly reviewed the literature, and

according to the literature review, we conclude that the

most related and best algorithms are simulated annealing

(SA) proposed by Damodaran and Vélez-Gallego (2012)

and improved ant colony optimization (IACO) proposed

by Cheng et al. (2013). So, after adapting these algorithms

to our problem assumptions, we compare the proposed

algorithm (namely, HMH) with them.

The algorithms were implemented in MATLAB 7 and run

on an Intel Pentium IV dual core 2.00 GHz PC at 1022

MB RAM under a Microsoft Windows Vista

environment.

5.1. Data generation and settings

The lack of other works dealing with this problem forces

us to use artificial instances to test our algorithms. To

analyze the algorithms and models developed for this

problem, several classes of instances are defined. In each

class, there is a change in one of the inputs. The problem

data can be characterized by three factors. These levels

are shown in Table 2.

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 199-210

022

 Table 2

 Factor levels

Factor Level(s)

Number of jobs (n) 10 15 20 25

Number of machines (m) 2 3 5 10

Width of jobs (w) 2 (1,3)

For the test on our proposed algorithms, 320 problems

were randomly generated, i.e., 10 problems for each of 32

combinations. Another important issue is the due dates of

the jobs. In this study, the due dates are uniformly

distributed from 1 to 3 which are 100% to 300% of the

processing time. The stopping criterion for VNS-based

metaheuristic is also set to a number of iterations to 10

repetitions.

5.2. Experimental results

In order to evaluate the efficacy and performance of the

algorithms proposed in this paper, 320 instances are

solved.

Table 3 represents the computational results. In this table,

each instance is solved using 10 different seeds, and the

average cases are considered. The results demonstrate that

there is a clear, statistically significant difference between

the performances of the algorithms. The means plot and

least significant difference (LSD) intervals (at 95%

confidence level) for three algorithms are shown in Figure

3.

Fig. 3. Plot of RPD for the type of algorithm factor

 Table 3

 Computational results (sum of the tardiness)

 Instance Algorithm

No. n

m

w

SA

IACO

HMH

1 10 2 2 0.759 0.147 0.000

2 10 3 2 0.176 0.000 0.176

3 10 5 2 1.400 0.900 0.000

4 10 10 2 0.243 0.526 0.000

5 10 2 (1,3) 0.000 1.182 0.469

6 10 3 (1,3) 0.505 0.437 0.000

7 10 5 (1,3) 0.786 0.000 0.044

8 10 10 (1,3) 0.064 0.418 0.000

Average 0.492 0.451 0.086

9 15 2 2 0.424 0.238 0.000

10 15 3 2 0.818 0.000 0.538

11 15 5 2 0.248 0.404 0.000

12 15 10 2 0.000 1.154 0.243

13 15 2 (1,3) 0.000 1.091 0.189

14 15 3 (1,3) 0.000 0.350 0.154

15 15 5 (1,3) 0.505 0.574 0.000

0.413

0.460

0.095

R
P

D

SA IACO HMH

Javad Behnamian

 022

16 15 10 (1,3) 0.238 0.486 0.000

Average 0.279 0.537 0.140

17 20 2 2 0.300 0.950 0.000

18 20 3 2 0.529 0.300 0.000

19 20 5 2 0.118 0.000 0.267

20 20 10 2 0.130 0.130 0.000

21 20 2 (1,3) 0.353 0.000 0.086

22 20 3 (1,3) 1.200 1.100 0.000

23 20 5 (1,3) 0.050 0.100 0.000

24 20 10 (1,3) 0.885 0.885 0.000

Average 0.446 0.433 0.044

25 25 2 2 0.231 0.000 0.598

26 25 3 2 1.065 0.835 0.000

27 25 5 2 0.661 0.228 0.000

28 25 10 2 0.300 0.300 0.000

29 25 2 (1,3) 0.059 0.059 0.000

30 25 3 (1,3) 0.417 0.000 0.282

31 25 5 (1,3) 0.083 1.094 0.000

32 25 10 (1,3) 0.682 0.835 0.000

Average 0.437 0.419 0.110

To compare the algorithms, in this table, the relative

percentage deviation (RPD) is used that is obtained by

formula (4):

lg
100sol sol

sol

A Min
RPD

Min


  (4)

where Minsol is the best solutions obtained for each

instance, and Algsol is an objective function obtained by a

given algorithm.

5.3. Analysis of controlled factors

5.3.1. Analysis of problem size factor (number of jobs)

In order to see the effects of the number of jobs on three

algorithms, a two-way ANOVA is applied. Plot of RPD

for the interaction between the type of algorithm and

number of jobs is shown in Figure 4. As it can be seen, in

all cases, the HMH works better than others.

Fig. 4. Plot of RPD for the interaction between the type of algorithm and the number of jobs

5.3.2. Analysis of number of parallel machine factor

Another two-way ANOVA and LSD test is applied to see

the effect of the magnitude of machines on the quality of

the algorithms. The results are illustrated in Figure 5.

Figure 5 shows that HMH has good performance

compared to those of IACO and SA.

0.0

0.2

0.4

0.6

0.8

10 jobs 15 jobs 20 jobs 25 jobs

R
P

D

SA IACO HMH

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 199-210

022

Fig. 5. Plot of RPD for the interaction between the type of algorithm and number of parallel machine

5.3.3. Analysis of width of jobs factor

Another two-way ANOVA and LSD test is applied to see

the effect of the width of jobs on the quality of the

algorithms. The results are illustrated in Figure 6. You can

see that this factor has no significant effect on the

performance of HMH. Also, in all cases, i.e., w=2 and

w=(1,3), HMH works better than other algorithms

.

Fig. 6. Plot of RPD for the interaction between the type of algorithm and width of jobs

6. Conclusions and Future Work

In this paper, we investigated the identical parallel

machines scheduling problems in which the jobs may use

more than one machine at the same time; we desired to

minimize the sum of the tardiness of jobs. The problem

involves job set with specific due date and it is assumed

that the tardiness penalty will occur if the job is completed

after its due date.

In this research, to deal with parallel job scheduling, first,

after converting scheduling to the graph model, we make

use of the semi-definite programming relaxation method

for coloring it. In this phase, jobs are grouped in the

independent sets according to their requirement of

machines. The core of our method is the novel idea of

using the non-negative matrix instead of variable in linear

programming. Then, a VNS-based metaheuristic was

proposed for sequencing the job sets. In the proposed

algorithm, the balance between the global exploration and

the local exploitation was stressed. Experiments

demonstrated that our proposed algorithm generates an

efficient set of solutions. The future work is to change the

objectives in this paper and develop an effective proposed

algorithm for other types of scheduling problems.

References

Almeida, M.T., & Centeno, M. (1998). A composite

heuristic for the single machine early/tardy job

scheduling problem. Computers andOperations

Research, 25, 625-635.

Babbar, D., & Krueger, P. (1994). On-line hard real-time

scheduling of parallel tasks on partitionable

multiprocessors. In Proceedings of International

Conference on Parallel Processing (ICPP’94), pages

II–29–II–38. IEEE Computer Society, Los Alamitos,

CA, USA.

Barbosa, J.G., & Moreira, B. (2011). Dynamic scheduling

of a batch of parallel task jobs on heterogeneous

clusters, Parallel Computing, 37(8), 428–438.

Birman, M., & Mosheiov, G. (2004). A note on a due-date

assignment on a two-machine flow-shop. Computers

and Operations Research, 31, 473–480.

Bischof, S., & Mayr, E.W. (2001). On-line scheduling of

parallel jobs with runtime restrictions. Theoretical

Computer Science, 268, 1, 67–90.

0.0

0.2

0.4

0.6

0.8

m=2 m=3 m=5 m=10

R
P

D

SA IACO HMH

0.0

0.2

0.4

0.6

0.8

w=2 w=(1,3)

R
P

D

SA IACO HMH

Javad Behnamian

 022

Bougeret, M., Dutot, P-F., Trystram, D., Jansen, K., &

Robenek, C. (2015). Improved approximation

algorithms for scheduling parallel jobs on identical

clusters, Theoretical Computer Science, 600(4), 70-

85.

Brelsford, D., Chochia, G., Falk, N., Marthi, K., Sure, R.,

Bobroff, N., Fong, L., & Seelam, S. (2013).

Partitioned parallel job scheduling for extreme scale

computing, In: Job Scheduling Strategies for Parallel

Processing, Lecture Notes in Computer Science,

7698, 157-177.

Bülbül, K., Kaminsky, P., & Yano, C. (2007). Preemption

in single machine earliness/tardiness scheduling.

Journal of Scheduling, 10, 271–292.

Chen, B., & Vestjens, A.P.A. (1997). Scheduling on

identical machines: How good is LPT in an on-line

setting?. Operations Research Letters, 21, 165–169.

Chen, Z.L. (1996). Scheduling and common due date

assignment with earliness-tardiness penalties and

batch delivery costs. European Journal of

Operational Research, 93, 49-60.

Chen, Z.L., & Powell, W.B. (1999). A column generation

based decomposition algorithm for a parallel

machines just-in-time scheduling problem. European

Journal of Operational Research, 116, 221-233.

Cheng, B., Wang, Q., Yang, S., & Hu, X. (2013). An

improved ant colony optimization for scheduling

identical parallel batching machines with arbitrary job

sizes, Applied Soft Computing, 13, 765–772.

Damodaran, P., & Vélez-Gallego, M.C. (2012). A

simulated annealing algorithm to minimize makespan

of parallel batch processing machines with unequal

job ready times, Expert Systems with Applications,

39, 1451–1458.

Damodaran, P., & Vélez-Gallego, M.C. (2012). A

simulated annealing algorithm to minimize makespan

of parallel batch processing machines with unequal

job ready times, Expert Systems with Applications,

39, 1451–1458.

Dell’Olmo, P., & Gentili, M. (2006). Graph models for

scheduling systems with machine saturation

property, Mathematical Methods of Operations

Research, 63, 329–340.

Deng, X., Gu, N., Brecht, T., & Lu, K. (2000). Preemptive

scheduling of parallel jobs on multiprocessors. SIAM

Journal on Computing, 30(1), 145–160.

Drozdowski, M. (1996). Real-time scheduling of linear

speedup parallel tasks. Information Processing

Letters, 57(1), 35–40.

Du, J., & Leung, J. (1989). Complexity of scheduling

parallel job system. SIAM Journal on Discrete

Mathematics, 2, 473–487.

Dutot, P.F., Mounié, G., & Trystram, D. (2004).

Scheduling parallel tasks: Approximation algorithms.

In J.Y. Leung, editor, Handbook of Scheduling:

Algorithms, Models, and Performance Analysis,

pages 26.1–26.24. CRC Press, Boca Raton.

Ebrahimi Moghaddam, M., & Bonyadi, M.R. (2012). An

immune-based genetic algorithm with reduced search

space coding for multiprocessor task scheduling

problem, International Journal of Parallel

Programming, 40(2), 225-257.

Emmons, H. (1987). Scheduling to a common due-date on

parallel uniform processors. Naval Research Logistics

Quarterly, 34, 803–810.

Esteve, B., Aubijoux, C., Chartier, A., & Tkindt, V.

(2006). A recovering beam search algorithm for the

single machine just-in-time scheduling

problem. European Journal of Operational Research,

172, 798–813.

Feitelson, D.G., & Rudolph, L. (1998). Metrics and

benchmarking for parallel job scheduling. In D.G.

Feitelson and L. Rudolph, editors, Job Scheduling

Strategies for Parallel Processing. LNCS, volume

1459, pages 1–24. Springer, Berlin.

Feldmann, A., Kao, M.-Y., Sgall, J., & Teng, S.-H.

(1998). Optimal online scheduling of parallel jobs

with dependencies. Journal of Combinatorial

Optimization, 1(4), 393–411.

Feldmann, A., Sgall J., & Teng, S.H. (1994). Dynamic

scheduling on parallel machines. Theoretical

Computer Science, 130(1), 49–72.

Frachtenberg, E., Feitelson, D.G., Petrini, F., &

Fernandez, J. (2005). Adaptive parallel job

scheduling with flexible coscheduling. IEEE

Transactions on Parallel and Distributed Systems,

16(11), 1066–1077.

Glasgow, J., & Shachnai, H. (1997). Channel based

scheduling of parallelizable tasks. In Proceedings of

5th IEEE International Workshop on Modeling,

Analysis, and Simulation of Computer and

Telecommunications Systems (MASCOTS’97), pages

11–16. IEEE Computer Society, Los Alamitos, CA,

USA.

Gordon, V., Proth, J.M., & Chu, C. (2002). A survey of

the state-of-the-art of common due-date assignment

and scheduling research. European Journal of

Operational Research, 135, 1–25.

Guo, S., & Kang, L. (2010). Online scheduling of

malleable parallel jobs with setup times on two

identical machines, European Journal of Operational

Research, 206, 555–561.

Herrmann, J.W., & Lee., C.Y. (1993). On scheduling to

minimize earliness-tardiness and batch delivery costs

with a common due date. European Journal of

Operational Research, 70, 272-288.

Hoogeveen, J.A. (2005). Multicriteria

scheduling. European Journal of Operational

Research, 167, 592–623.

Jansen, K. (2002). Scheduling malleable parallel tasks: An

asymptotic fully polynomial-time approximation

scheme. In R. Möhring and R. Raman,

editors, Proceedings of ESA 2002. LNCS, volume

2461, pages 562–574, Springer, Berlin.

Jansen, K., & Porkolab, L. (2000). Preemptive parallel

task scheduling in o(n) + poly(m) time. In D.T. Lee

and S.H. Teng, editors, Proceedings of ISAAC 2000.

LNCS, volume 1969, pages 398–409, Springer,

Berlin.

Journal of Optimization in Industrial Engineering, Vol.13, Issue 2, Summer & Autumn 2020, 199-210

021

Jansen, K., & Porkolab, L. (2002). Linear-time

approximation schemes for scheduling malleable

parallel tasks. Algorithmica, 32(3), 507–520.

Jansen, K., & Porkolab, L. (2003). Computing optimal

preemptive schedules for parallel tasks: Linear

programming approaches. Mathematical

Programming, 95(3), 617–630.

Johannes, B. (2006). Scheduling parallel jobs to minimize

the makespan. Journal of Scheduling, 9(5), 433–452.

Karger, D., Motwani, R., & Sudan, M. (1998).

Approximate graph coloring by

semidefiniteprogramming. J. ACM, 45(2), 246–265.

Krishnamurti, R., & Gaur, D.R. (1999). An approximation

algorithm for nonpreemptive scheduling on

hypercube parallel task systems. Information

Processing Letters, 72(5–6), 183–188.

Krishnamurti, R., & Narahari, B. (1995). An

approximation algorithm for preemptive scheduling

on parallel-task systems. SIAM Journal on Discrete

Mathematics, 8(4), 661–669.

Kubiak, W., Lou, S., & Sethi, R. (1990). Equivalence of

mean flow time problems and mean absolute

deviation problems. Operations Research Letters, 9,

371–374.

Kwon, O.H., & Chwa, K.-Y. (1999). Scheduling parallel

tasks with individual deadlines. Theoretical Computer

Science, 215(1-2), 209–223.

Lauff, V., & Werner, F. (2004). Scheduling with

common due date, earliness and tardiness penalties

for multimachine problems: A survey. Mathematical

and Computer Modelling, 40, 637–655.

Li, K. (1999a). Analysis of an approximation algorithm

for scheduling independent parallel tasks. Discrete

Mathematics and Theoretical Computer Science,

3(4), 155–166.

Li, K. (1999b). Analysis of the list scheduling algorithm

for precedence constrained parallel tasks. Journal of

Combinatorial Optimization, 3(1), 73–88.

Li, K., & Pan, Y. (2000). Probabilistic analysis of

scheduling precedence constrained parallel tasks on

multicomputers with contiguous processor

allocation. IEEE Transactions on Computers, 49(10),

1021–1030.

Li, P., & Liu, Z. (2008). A report on approximate graph

coloring by semidefinite programming, Instructor

Kartik,K. Sivaramakrishnan, Edward P. Fitts

Department of Industrial and Systems Engineering,

North Carolina State University.

Low, C., & Yuling, Y. (2009). Genetic algorithm-based

heuristics for an open shop scheduling problem with

setup, processing, and removal times

separated. Robotics and Computer-Integrated

Manufacturing, 2(25), 314-322.

Ludwig, W., & Tiwari, P. (1994). Scheduling malleable

and nonmalleable parallel jobs. In Proceedings of the

5th ACM-SIAM symposium on discrete algorithms

(SODA). pp. 167–176.

Lushchakova, I.N. (2012). Preemptive scheduling of two

uniform parallel machines to minimize total

tardiness, European Journal of Operational

Research, 219(1), 27-33.

Montgomery, D.C. (2000. Design and Analysis of

Experiments, Fifth ed. New York: John Wiley &

Sons.

Naroska, E., & Schwiegelshohn, U. (2002). On an on-line

scheduling problem for parallel jobs. Information

Processing Letters, 81, 6, 297–304.

Pinedo, M.L. (2008). Scheduling: Theory, Algorithms,

and Systems, Third

Edition, Springer Science+Business Media, LLC,

NY: USA.

Rapine, C.H., Scherson, I., & Trystram, D. (1998). On-

line scheduling of parallelizable jobs. In D. Pritchard

and J. Reeve, editors, Proceedings of Euro-Par 1998.

LNCS, 1470, 322–327. Springer, Berlin.

Rocha, M., Gómez Ravetti, M., Mateus, G.R., & Pardalos,

P.M. (2007). Solving parallel machines scheduling

problems with sequence-dependent setup times using

variable neighborhood search. IMA Journal of

Management Mathematics, 18, 101−115.

Sgall, J. (1996). Randomized on-line scheduling of

parallel jobs. Journal od Algorithms, 21(1), 149– 175.

Shmoys, D., Wein, J., & Williamson, D. (1995).

Scheduling parallel machines on-line, SIAM Journal

on Computing, 24, 1313–1331.

Srinivasan, S., Subramani, V., Kettimuthu, R.,

Holenarsipur, P., & Sadayappan, P. (2002). Effective

selection of partition sizes for moldable scheduling of

parallel jobs. In S. Sahni, V.K. Prasanna, and U.

Shukla, editors, Proceedings of 9th International

Conference on High Performance Computing

(HiPC’02). LNCS, 2552, 174–183.

Sun, H., Hsu, W-J., & Cao, Y. (2014). Competitive online

adaptive scheduling for sets of parallel jobs with

fairness and efficiency, Journal of Parallel and

Distributed Computing, 74(3), 2180–2192.

Turek, J. Wolf, J.L. Pattipati, K.R., & Yu, P.S. (1992).

Scheduling parallelizable tasks: Putting it all on the

shelf. ACM SIGMETRICS Performance Evaluation

Review, 20, 1, 225–236.

Turek, J., Ludwig, W., Wolf, J.L., Fleischer, L., Tiwari,

P., Glasgow, J., Schwiegelshohn, U., & Yu, P. S.

(1994). Scheduling parallelizable tasks to minimize

average response time. In Proceedings of 6th Annual

ACM Symposium on Parallel Algorithms and

Architectures (SPAA’94), pages 200–209. ACM, New

York, NY, USA.

Turek, J., Schwiegelshohn, U., Wolf, J.L., & Yu, P.S.

(1994). Scheduling parallel tasks to minimize average

response time. In Proceedings of the 5th Annual

ACM-SIAM Symposium on Discrete algorithms

(SODA’94), pages 112–121. SIAM, Philadelphia PA,

USA.

Turek, J., Wolf, J. L., & Yu, P. S. (1992). Approximate

algorithms for scheduling parallelizable tasks. In

Proceedings of 4th Annual ACM Symposium on

Parallel Algorithms and Architectures

(SPAA’92), pages 323–332. ACM, New York, NY,

USA.

Javad Behnamian

 092

Wang, Q., & Cheng, K.-H. (1991). List scheduling of

parallel tasks. Information Processing Letters, 37(5),

291–297.

Wang, Q., & Cheng, K.-H. (1992). A heuristic of

scheduling parallel tasks and its analysis. SIAM

Journal on Computing, 21(2), 281–294.

Ye, D., & Zhang, G. (2003). On-line scheduling of

parallel jobs with dependencies on 2-dimensional

mesh. In T. Ibaraki, N. Katoh, and H. Ono,

editors, Proceedings of 14th International Symposium

Algorithms and Computation (ISAAC’03). LNCS,

2906, 329–338.

Ye, D., & Zhang, G. (2007). On-line scheduling of

parallel jobs in a list, Journal of Scheduling, 10, 407–

413.

This article can be cited: Behnamian, J. (2021). Parallel Jobs Scheduling with a Specific

Due Date: a Semi-Definite Relaxation-Based Algorithm.

Journal of Optimization in Industrial Engineering. 13 (2), 199-210.

http://www.qjie.ir/article_538024.html
DOI: 10.22094/JOIE.2017.599.1385

http://www.qjie.ir/article_538024.html

