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Abstract 

In this paper, a hub covering location problem is considered. Hubs, which are the most congested part of a network, are modeled as M/M/C 
queuing system and located in places where the entrance flows are more than a predetermined value. A fuzzy constraint is considered in order 
to limit the transportation time between all origin-destination pairs in the network. On modeling, a nonlinear mathematical program is 
presented. Then, the nonlinear constraints are converted to linear ones. Due to the computational complexity of the problem, genetic algorithm 
(GA), particle swarm optimization (PSO) based heuristics, and improved hybrid PSO are developed to solve the problem. Since the 
performance of the given heuristics is affected by the corresponding parameters of each, Taguchi method is applied in order to tune the 
parameters. Finally, the efficiency of the proposed heuristics is studied while designing a number of test problems with different sizes. The 
computational results indicated the greater efficiency of the heuristic GA compared to the other methods for solving the problem. 

Keywords: Hub covering location, Queuing system, Congestion, Genetic algorithm, Hybrid particle swarm optimization algorithm. 

1. Introduction 

Every day, large amounts of goods are transported from 
different origins to a set of destinations. Most of the times, 
it is impossible to establish a direct link between the origins 
and destinations. In this situation, a group of locations are 
considered as hubs. Hubs are used to merge, redirect, and 
distribute the flow of goods to hub or spoke nodes. In a 
given network, some of the nodes are selected as hubs, 
while other nodes allocated to the hub nodes are considered 
as spokes. General assumptions about hub location problem 
are as being a direct link between each of the two hubs, the 
lack of link between spoke nodes, lower cost of 
transportation between hub nodes than spoke nodes, and 
the dependence of costs on distance. 
The major contributions in the current research can be 
given as follows: 
 Queuing and time constraints from origin to 

destination are considered simultaneously.  
 The times when flows are transported from origin to 

hub, from hub to hub, and from hub to destination 
are considered as fuzzy numbers. 

 Hubs are located in places where the entrance flows to 
be more than a known value of Γ for each hub. 

 Some heuristics are developed in order to solve the hub 
covering problem. 

2. Literature review 

The basic idea for hub-spoke networks was proposed by 
Goldman (1969). The first mathematical formulation for 
hub location problem was given by O’kelly (1987). The 
first computational results for the single allocation hub 
covering problem was presented by Kara and Tansel 
(2003). They proved that these types of problems were Np-
hard. Marianov and serra (2003) modeled the hub location 
problem considering M/D/C queuing system. A formula 
was derived for the probability of a number of customers 
being in the system in order to be used in a capacity 
constraint. A new modeling of single and multi-allocation 
for hub covering problem was given by Wagner (2004). 
Ernst and Krishnamoorthy (2005) proposed the 
uncapacitated single and multiple allocation hub covering 
problem. Rodriguez et al. (2007) presented a model for hub 
location problem in cargo transportation networks with 
limited capacity hubs. They modeled each hub as an 
M/M/1 queuing system. Calik et al. (2009) studied the 
single allocation hub covering problem with incomplete 

*Corresponding author Email address: m.seifbarghy@qiau.ac.ir 



Mehdi Seifbarghy et al. / Hub Covering Location… 

144 

communications in hubs. Han (2010) developed an integer 
programming (IP) formulation for the problem and 
developed some valid inequalities which provided a tight 
lower  bound  for  the  problem. Gelare and   Nickle  (2011)  
proposed a 4-index formulation for the uncapacitated 
multiple allocation hub location problem tailored for urban 
transport and liner shipping network design. Mohamadi et 
al. (2011) considered a hub-and-spoke network problem 
with crowdedness or congestion in the system. A hub 
cannot serve all trucks simultaneously, and it has some 
restrictions like capacity and service time. They modeled it 
as M/M/c queuing systems. Alumur et al. (2012) 
introduced multi-modal hub location and hub network 
design problem and studied the hub location problem from 
a network design perspective. Alumur et al. (2012) 
addressed several aspects concerning hub location 
problems under uncertainty. They considered two sources 
of uncertainties: the set-up costs for the hubs and the 
demands to be transported between the nodes. 

To the best of our knowledge, a few papers have studied the 
pHCP and pHMP with uncertainty in flows, costs, and 
transportation time. Sim et al. (2009) introduced a stochastic 
pHCP (SpHCP) utilizing a chance-constraint method to 
model the minimum delivery service requirement by taking 
the variability in transportation times into account. Yang et 
al. (2013a) presented a new risk aversion pHCP with fuzzy 
travel times by adopting value-atrisk(VaR) criterion in the 
formulation of objective function. In order to solve and 
validate the model, they first turned the original VaRpHCP 
into its equivalent parametric mixed-integer programming 
problem, and then developed a hybrid algorithm by 
incorporating genetic algorithm and local search (GALS) to 
solve the parametric mixed-integer programming problem. 
Yang et al. (2013b) proposed a new pHCP with normal 
fuzzy travel time, in which the main goal is to maximize the 
credibility of fuzzy travel times, such that not exceeding a 
predetermined acceptable time point along all paths on a 
network. Due to complexity of the proposed model, they 
applied an approximation approach (AA) to discretize fuzzy 
travel times and reformulate the original problem as a 
mixed-integer programming problem subject to logical 
constraints. Next, they made use of the structural 
characteristics to develop a parametric decomposition 
method to divide the approximate pHCP into two mixed-
integer programming subproblems. Finally, the authors 
developed an improved hybrid particle swarm optimization 
(PSO) algorithm by combining PSO with genetic operators 
and local search (LS) to update and improve particles for 
the subproblems. In another work, Yang et al. (2014) 
reduced the uncertainty embedded in the secondary 
possibility distribution of a type-2 fuzzy variable by fuzzy 
integral and applied the proposed reduction method to 
pHCP. They also developed a robust optimization method to 
take uncertainty in travel times into account by employing 
parametric possibility distributions. 

Mohammadi et al. (2013) developed a stochastic bi-
objective multi-mode transportation model for hub covering 
problem. They considered the transportation time between 
each pair of nodes as an uncertain parameter that is also 
influenced by a risk factor in the network. Similar to 
Contreras et al. (2011), Adibi and Razmi (2015) developed 
a 2-stage stochastic programming for formulating stochastic 
uncapacitated multiple-allocation HLP. They considered 
three cases, wherein (1) flow is stochastic, (2) cost is 
stochastic, and (3) both flow and cost, are stochastic. Unlike 
Contreras et al. (2011), the authors concluded that 
considering uncertainty into formulation could result in 
different solutions. 
The paper is structured as follows. Section2 presents a 
nonlinear mathematical model and its linearization. Section 
3 describes the proposed solution algorithms. Section 4 
presents computational results. Section 5 concludes the 
paper and presents further research directions. 

3. Parameters and Variables 

The parameters and decision variables of the model are as 
follows: 
i,j,k,m= Index of nodes݅, ݆, ݇, ݉ = {1, … , ݊}
Xikmj=

if traffic from node i to node jgoes through 

hubs located at nodes k and m;

otherwise,

1

0







if node i is allocated to hub at node k;

 otherwise
=

0 ,ik

1
X





ik m jC : The transportation cost of each unit flow from node 

i to node j going through hubs located at nodes k
and m. 

kf  : The fixed cost of locating a hub at node k

 

kr  : The maximum cost between hub k and nodes allocated 

to hub k

 

,q k : Desired upper bound for the probability of an extra 

queue length at a hub k

 

kb  : Upper bound of queue length at hub k

 

T  : Maximum authorized transportation time between any 
origin/destination pair 

ikt : Transportation time between nodes i and j

 

ija : The average flow which is required to be transported 

from node i  toj

 

k : Minimum required demand for locating a hub at k

 

k : Service rate of hub located in node k
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4. Problem Formulation 

In the problem under study, there is a set of n nodes in a 
given network. A number of the nodes should be selected 
as hubs, while the rest of the nodes, called spokes, are 
allocated to the hub nodes. There are some constraints for 
locating hub nodes, such as cost, entrance flow, time and 

capacity. The model is of single allocation type which 
means each node can only be allocated to an individual 
hub. The proposed model in this research, which is based 
on Mohamadi et al. (2011), can be stated as follows: 

1 1 1 1 1

n n n n n

ikmj ikmj k kk
i k m j k

c xMin f x
    

                                                                                       (1) 

S.T: 

1 1

1                      ,
n n

ikmj
k m

x i j
 

 
(2) 

ikmj jmx x , , ,i j k m (3) 

ikmj ikx x , , ,i j k m (4) 

ik kkx x , , ,i j k m (5) 

ik ik kc x r  ,i k (6) 

1 1 1 1 1 1

n n n n n n

ij ik ji ik ij ik jk k kk
i j i j i j

a x a x a x x x
     

     k
(7) 

P{length of queue at node k >ܾ௞} ≤ ݇∀௤,௞ߠ (8) 

                                     , , ,ik km mjikmjx t t t T i j k m 
 
 

   
                      (9) 

1
1                                                           

n

ik
k

x i


 
(10) 

 
 

0,1                                                          , , ,

0,1                                                           ,

ikmj

ik

x i j k m

x i k

 

 

(11) 

                (12) 

In the aforementioned single allocation model, the objective 
function in (1) minimizes the sum of transportation and 
fixed costs of locating the hubs. Constraint (2) ensures that 
all the flows between i and j are routed through a pair of 
hubs in m and k (perhaps a pair of k and k). Constraints (3) 
and (4) guarantee routing the flows between i and j through 
hubs k and m, involving allocating i and j to hubs k and m, 
respectively. Constraint (5) states that a node can be 
allocated only to a hub node. Constraint (6) declares that 
node i can only be allocated to hub k if the flow cost 

between i and k be less than rk. Constraint (7) ensures 
forming a hub when the entrance flow to be more than the 
value of k . Constraint (8) forces the probability of more 

than bkdemand waiting at a queue to be less than or equal to 
θq,k. Constraint (9) states that the travel time between all the 
origin-destination pairs in the network be less than  ෨ܶ . 
Constraint (10) ensures that each node is assigned to exactly 
one hub. Constraints (11) and (12) give the status of the 
decision variables. As Mohamadi (2011) let Ps be the 
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steady-state probability of s customers being in the system with c servers; Constraint(8) can be stated as (13): 

(13)
,  ,

1 0

      1 
k

k

b c

s sq k q k
s b c s

p or p


 


   
   

 

An expression for the probabilities Ps is needed; this 
expression can be derived assuming an arrival rate of λ and 
a service rate of μ. Then, the service and arrival rates for 
any state can be given by Eqs. (14) and (15): 

  
(14) n 

 

   (15) 
         

µ   
          

nµ n c

cµ n c


  

n

p0, as the probability of no demand in the system can be 
given by Eq.(16): 

(16) 

1
1

0
0

1 1 µ
( ) ( )

! µ ! µ µ

cc
n

n

c
p

n c c
 








  
  
   

 


The probability of being n demands in the system with c
servers can be stated by Eq. (17) as Gross and Harris 
(1974).

    (17) 

0

0

              
!

               
!

n

n

n n

n c n

p n c
n

p

p n c
c c




















And, the sum of psis given as in Eq. (18): 

Eq.(13) can be rewritten as Eq. (19): 
1

1

0 0

1 1
! ! !

n cnc c

n
n n

c
n n c c
   
    




 

      
      
       


 

(19) 

1
1

,
1 0

1 1
( ) ( )  1

! ! !

k
cc b n c

n
q kn c n

n c n

c
c c n c c

    
    


 


  

  
  
   

   
 

Neither the locations of hubs nor the arrival rates to hubs are 
known before solving the problem. The locations of the 
hubs are given by the values of the variables Xkk. The arrival 

rate to a hub located at node k according to Mohamadi et al. 
(2011) can be obtained from (20) 

    

11 1 1 1 1

n n n n n n

k ij ik ij ik ij ik jk
ji j i j i

i j

a x a x a x x
    


     k   
(20)            

According to Marianov and Serra (2003), Eq. (20) can be 
solved for variable λ and for finding the maximum value, 
λmax. Once this value is found, any smaller value of λ will 

satisfy Eq. (18). This means that Eq. (18) is equivalent to λ
≤

 

λmax. It can be rewritten as:  

(18) 

       
0 0 ,

0 10
1

! !

kk c bn nc

q kn n c n
n n c

c b

s
s

p p
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


  




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 Mutation operator: The shift and movement operators 
of Topcuoglu et al. (2005) are used in this regard. If the 
generated solutions of this operator are feasible, they 
are conveyed to the next generation; otherwise, the 
operator runs again.

 

 Stop criterion: If no improvement occurs within a 
specific number of successive generations, the 
algorithm stops.

 

5.2. Particle Swarm optimization 

This algorithm was initially introduced by Kenedy and 
Eberhart (1995) and was used by Yapicioglu et al. (2007) 
and Yang et al. (2013) for location problems. Now, the steps 
of this corresponding heuristic are explained. 

 Representation of the solution: Representation of 
solution is just similar to that of GA’s. 

 Initial solution: The heuristic stars with a randomly 
generated initial solution. 

 Fitness function: the fitness function is considered 
equal to the objective function, which means that the 
particle with less objective function value is of higher 
priority. 

The rest of the conditions are based on the regular PSO. If 
no improvement happens after a predetermined number of 
iteration, the algorithm stops. 

(44) ( , )( ) ( )k k k k
pbest i i G iX X X best X    

whereXPbest,i
krepresents the best position of the ith particle, 

XGbest
krepresents the best position among the swarm, and 

Xi
krepresents the position of the ith individual solution at 

the kth iteration. Since Xi
k, XPbest

k, and XGbest
k are 

location–allocation arrays, the symbol‘‘⊗’’ represents the 
crossover operation of two individuals solutions. The 
symbol ‘‘∨’’ indicates that the optimal solution is selected 
from the offsprings of Xi

k ⊗ XPbest
k, 

Xi
k⊗XGbest

k,Xഥ୧୩,whereXഥ୧୩represents the mutation operation 
of Xi

k. If the generated offspring is infeasible, the 
operators again are used to reach a feasible solution. 

 Stop condition: If no improvement in a number of 
successive iterations is obtained, then the algorithm stops. 

5.4. Numerical examples 

In this section, the performance of the given heuristics is 
evaluated. Table 1gives the values of parameters and the 
probability distributions functions considered when 
randomly generating the numerical examples. 60 (5 × 2 ×2 × 3) examples based on the values of n, c, B, and θ have 
been designed. 

5.5. Tuning parameters  

In order to tune the parameters of the heuristics, Taguchi 
method (1986) is applied, and problems with 10,15, and 20 
nodes for small sizes, problems with 40 nodes for medium 
sizes, and problems with70 nodes for large sizes are 
designed. Furthermore, S/N ratio is considered as in Eq (45). 

(45) S/N ratio=-10log10 (RPD)2

In order to compute the S/N ratio, relative percentage 
deviation(RPD) criterion is used. The RPD values represent 
the difference between the best solution and the average one 
as in Eq. (46): 

RPD=
࢒࢕࢙࢔࢏ࡹ࢒࢕࢙࢔࢏ࡹష࢒࢕࢙ࢍ࢕࢒࡭ × 100

(46) 

Algsol represents the fitness function value in each run for 
each problem, while Minsolrepresents the best fitness 
function value for each problem. The given orthogonal 
arrays of Taguchi method are given for different levels in 
order to do the experiments. In this research, three-level 
experiments have been recognized as the most appropriate 
designs; according to Taguchi standard orthogonal arrays, 
L9 orthogonal is selected as the appropriate experiment 
design in order to tune the parameters for all heuristics. The 
results are represented in Tables 2-4. 

 
5.3. Improved  Hybrid PSO 

This heuristic is a combination of GA and PSO. The initial 
idea was given by Yang et al. (2013). The major 
characteristics of this heuristic are given below: 
 Representation of solution: Representation of the 

solution is as the given GA-based heuristic. 
 Initial population: Initially, a random solution is 

generated. If the solution is infeasible, then a new solution 
is generated; this procedure continues until the first 
feasible solution is achieved, then the first feasible 
solution is added to the initial solution. To complete the 
population, each new feasible solution is compared to the 
available solution; if it is not generated before, the 
solution is add it to the population. This continues by 
completion of the number of the population. 

 Fitness function: The fitness function is considered equal 
to the value of the objective function. 

 Update process: To update the position of a particle, the 
genetic operators are used. New position is indicated by 
xi

k+1,and
 
the

 
formula of updating is as in Eq. (44). 

 
 

1k
iX 
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 Table 2 
 Levels of tuned parameters for the GA-based heuristic 

Parameters Size of Problem Tuned value 

Size of Population 
Small 100 

Medium 250 

Large 400 

Number of Generation 
Small 150 

Medium 250 

Large 350 

Pm 
Small 0.15 

Medium 0.3 

Large 0.35 

Pc 
Small 0.9 

Medium 0.95 

Large 0.9 

                      Table 3 
                                         Levels of tuned parameters for the PSO-based heuristic 

Parameters Size of Problem Tuned value 

Size of Population 
Small 100 

Medium 250 

Large 400 

Number of Iterations 
Small 150 

Medium 250 

Large 350 

C1 
Small 2 

Medium 2 

Large 2 

C2 
Small 1.5 

Medium 1.5 

Large 1.5 

                     
                     Table 4 

                                       Levels of tuned parameters for the improved hybrid 
Parameters Size of Problem Tuned value 

Size of Population 
Small 100 

Medium 250 

Large 400 

Number of Iterations 
Small 150 

Medium 250 

Large 350 

                Table 1 
                Random data of the last problems 

Parameters and values 
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Table 5 
Results of metahuristic algorithms’ solutions 

Node b C θ LINGO GA hybrid PSO Pso
CPU(S) Obj CPU(S) Obj CPU(S) Obj CPU(S) Obj 

10 

10 

3 
0.2 3224 3348 5.1 3348 13.08 3348 11.41 3354
0.4 3242 3351 4 3351 16.37 3595 11.31 3353
0.6 3237 3369 4.97 3372 18.09 3485 12.09 3379

4 
0.2 3341 3190 4.68 3190 20.09 3199 12.71 3332
0.4 3376 3180 7.19 3182 19.8 3185 12.39 3225
0.6 3370 3194 4.27 3207 13.26 3210 11.79 3282

20 

3 
0.2 3392 3355 4.51 3360 12.36 3355 11.63 3366
0.4 3420 3370 4.87 3372 15.91 3563 11.57 3380
0.6 3435 3387 7.79 3397 16.53 3401 11.53 3383

4 
0.2 3654 3192 4.32 3202 19.03 3192 12.33 3219
0.4 3688 3197 5.01 3198 19.51 3197 12.06 3267
0.6 3671 3202 8.24 3202 15.83 3202 11.67 3302

15 

10 

3 
0.2 - - 15.19 5845 26.23 6306 12.82 6382
0.4 - - 15.83 5821 25.12 5952 12.84 5964
0.6 - - 12.13 6389 33.38 6351 18.32 6488

4 
0.2 - - 15.49 5721 24.65 5967 14.86 6205
0.4 - - 15.38 5644 38.75 6037 16.05 6560
0.6 - - 17.33 5365 34.59 5702 18.5 6537

20 

3 
0.2 - - 15.23 5616 28.95 5956 19.07 6571
0.4 - - 14.43 5715 27.52 6055 19.32 6324
0.6 - - 13.65 5823 29.61 5812 22.12 6206

4 
0.2 - - 13.11 5373 27.21 5760 22.44 6499
0.4 - - 13.33 5547 26.32 5811 23.01 6344
0.6 - - 12.12 5412 35.8 5507 22.76 6420

20 

10 

3 
0.2 - - 27.62 8713 44.21 9767 31.2 10016
0.4 - - 19.93 8877 45.33 9586 28.62 10102
0.6 - - 28.07 8928 40.2 9337 30.48 10009

4 
0.2 - - 18.56 8877 44.45 9375 27.94 10001
0.4 - - 15.01 8995 37.26 9461 29.38 9978
0.6 - - 18.62 8689 43.3 9295 31.16 10033

20 

3 
0.2 - - 34.58 8689 87.37 9581 33.54 10055
0.4 - - 27.88 8711 47.63 9566 29.86 10070
0.6 - - 21.78 8877 51.1 9234 30.5 9989

4 
0.2 - - 36.08 9088 41.79 9210 29.4 9995
0.4 - - 28.35 8585 66.75 9426 30.58 10005
0.6 - - 20.46 8676 46.6 9179 29.34 10062

40 

10 

3 
0.2 - - 275.37 30031 268.54 30124 241.22 30768
0.4 - - 190.75 29261 303.57 30232 241.52 30788
0.6 - - 141.09 29649 331.34 30132 239.29 30575

4 
0.2 - - 241.41 28950 291.54 30086 239.45 30844
0.4 - - 173.35 29142 299.43 30133 238.78 30355
0.6 - - 252.19 28836 298.54 30112 238.33 30888

20 

3 
0.2 - - 231.21 29315 314.43 30001 244.58 31374
0.4 - - 232.08 29140 310.23 30276 243.45 30744
0.6 - - 257.62 29024 302.46 29999 239.58 30768

4 
0.2 - - 243.35 29076 351.21 30069 244.22 30646
0.4 - - 307.15 28766 377.53 30094 269.45 30744
0.6 - - 232.92 29137 325.37 30012 260.29 30974

70 

10 

3 
0.2 - - 599.21 76890 762.51 76999 677.43 77112
0.4 - - 6503.91 76895 614.93 77043 711.21 77234
0.6 - - 599.25 76898 823.65 77153 850.06 77333

4 
0.2 - - 935.31 76702 995.21 76884 906.54 77189
0.4 - - 1129.1 76623 1070.02 76602 943.54 77003
0.6 - - 707.34 76601 925.67 76998 870.56 77068

20 

3 
0.2 - - 786.9 76693 1034.44 76875 843.24 77234
0.4 - - 526.72 76880 1045.65 77125 854.45 77496
0.6 - - 953.12 77001 975.55 77122 967.67 77833

4 
0.2 - - 705.97 76873 1136.66 76985 902.78 77676
0.4 - - 869.21 76854 1234.28 77133 956.32 77765
0.6 - - 1037.54 76407 912.12 76452 995.76 77558

(-) means that lingo could not solve the problems in a reasonable amount of time, CPU represents the time, and obj represents the objective  function value. 
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6.  Experimental Results

In order to assess the performance of the heuristics, the 
quality of solutions for the small-sized problems is 
compared with those obtained from lingo solver. The results 
based on applications of the three algorithms from the view 
point of run time and solution are represented in Table 5. 
Samples of convergence diagrams of the heuristics are 
indicated in Fig. 3-5. In order to assess the efficiency of the 
heuristics, a special criterion is used. The criterion is a 
relative percentage ratio (RPI) which is used for the 
objective function values and CPU time assessment. Each 
heuristic is run four times per an example, and the best and 
worst objective functions (values) are founded; the values of 
this index are between 0 and 100. Smaller values of this 

index represent better performance. RPI values are 
computed as in Eq. (47)-(48). 

(47) RPIsol=ቚ ௕௘௦௧ೞ೚೗ି஺௟௚ೞ೚೗௕௘௦௧ೞ೚೗ିௐ௢௥௦௧ೞ೚೗ቚ
(48) RPItime=ቚ ௕௘௦௧೟೔೘೐ି஺௟௚೟೔೘೐௕௘௦௧೟೔೘೐ିௐ௢௥௦௧೟೔೘೐ቚ

The results of RPI as given by Eqs (47)-(48) are given in 
Table 6. As it is clear from Figs.6-11, the RPI index for both 
objective functions and an CPU time is of better 
performance for GA for all sizes. 

Fig. 3. Convergence diagram of Genetic algorithm for problem with 20 nodes 

Fig. 4. Convergence diagram of PSO algorithm in for problem with 20 nodes 

Fig. 5.Convergence diagram of improved hybrid PSO algorithm for problems with 20 node 
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Table 6 
 Results of  RPI indexes

 

Node b c θ
 

GA Hybrid PSO PSO 
RPI RPI RPI 

Time ObjFun Time ObjFun Time ObjFun 

10 

10 

3 
0.2 2.999 0 58.38 0 54.07 1.063 
0.4 1.536 11.18 67.607 20.186 59.094 0.31 
0.6 2.276 28.251 75.829 51.868 55.947 1.046 

4 
0.2 22.58 39.321 62.766 30.123 57.32 23.706 
0.4 0 22.185 53.6 41.887 46.04 7.45 
0.6 2.298 12.647 87.642 51.983 46.723 8.3865 

20 

3 
0.2 19.319 0 77.574 35.654 62.723 2.614 
0.4 0.012 0 84.573 43 55.193 1.246 
0.6 11.918 16.498 74.784 37.373 57.734 0 

4 
0.2 16.268 1.654 89.336 36 55.511 4.477 
0.4 4.758 1.29 85.8621 37 48.62 12.419 
0.6 19.454 0 65.3869 38 44.731 12.755 

15 

10 

3 
0.2 3.271 31.768 23.9308 65.59 7.677 71.166 
0.4 23.299 27.895 39.097 36.052 14.995 36.799 
0.6 5.539 46.574 34.515 43.804 16.892 53.79 

4 
0.2 8.333 0 14.039 18.317 7.253 36.038 
0.4 18.061 9.905 55.487 40.546 19.994 68.014 
0.6 16.114 0 44.529 17.124 18.718 59.552 

20 

3 
0.2 22.299 22.285 48.984 33.873 32.566 72.92 
0.4 16.028 4.524 42.9014 12 29.802 44.459 
0.6 4.956 14.419 19.296 13.626 17.874 53.064 

4 
0.2 15.04 0 37.028 10.821 32.206 65.162 
0.4 12.92 17.483 36.828 33.85 38.188 66.893 
0.6 14.208 0 51.367 5.986 44.384 63.516 

20 

10 

3 
0.2 15.609 0 61.362 47.621 25.482 65.247 
0.4 0.034 10.651 77.842 48.224 26.631 75.569 
0.6 13.422 13.537 38.278 35.166 18.36 70.703 

4 
0.2 7.111 11.247 59.663 19.5 26.181 71.162 
0.4 0.81 15.974 39.172 16.374 25.586 65.197 
0.6 0.035 0.65 43.735 12.906 22.222 67.88 

20 

3 
0.2 22.606 0 99.706 46.506 21.081 71.22 
0.4 20.199 1.978 47.508 16.28 22.944 78.801 
0.6 0.001 10.941 66.879 17.474 19.89 71.475 

4 
0.2 27.849 21.661 39.576 8.78 14.13 69.348 
0.4 11.528 0 75.136 15.205 15.223 68.765 
0.6 10.721 0 57.508 24.206 26.615 66.698 

40 

10 

3 
0.2 33.554 46.03 5.311 50.065 11.103 78.004 
0.4 25.396 19.034 79.942 56.223 47.891 77.518 
0.6 2.656 14.359 38.588 37.099 46.204 43.832 

4 
0.2 54.56 0.82 65.553 47.415 53.474 78.506 
0.4 14.24 6.395 76.475 50.715 53.317 56.171 
0.6 68.88 3.039 77.643 48.144 59.577 75.574 

20 

3 
0.2 0.016 10.999 24.243 34.728 11.116 82.22 
0.4 0.018 18.148 65.992 59.882 10.001 77.075 
0.6 41.193 5.915 61.58 42.187 31.532 70.796 

4 
0.2 43.413 0 87.291 35.363 43.767 55.911 
0.4 67.128 0 95.211 41.383 52.084 61.639 
0.6 0.075 13.848 99.675 41.451 29.551 71.798 

70 

10 

3 
0.2 5.043 36.319 56.904 54.423 29.884 62.825 
0.4 12.87 0.207 66.117 30.641 32.282 70.186 
0.6 0.029 0.133 56.432 34.136 62.725 58.232 

4 
0.2 45.94 0.155 75.829 28.304 31.585 75.738 
0.4 44.9 2.196 46.446 0 26.935 41.945 
0.6 0.014 0 53.178 41.225 47.037 48.494 

20 

3 
0.2 6.889 28.08 79.98 39.462 28.077 61.913 
0.4 0.011 4.206 80 33.653 63.154 78.245 
0.6 14.202 0 38.846 12.359 27.214 84.984 

4 
0.2 0.202 31.125 79.98 39.1 45.696 88.319 
0.4 0.024 0 50.71 25.881 23.861 84.508 
0.6 39.928 6.919 33.858 9.856 31.244 82.049 

average 16.55 13.856 62.887 32.793 26.186 57.455 
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                           Table 8  
                            Results of ANOVA test for objective function index(ࢻ = ૙. ૙૞ ) 

Size level Mean Std.dev Pooled StDev F P 

Small 
GA 5927 2302 

2548 0.58 0.561 PSO 6575 2782 
Hybrid PSO 6227 2537 

Medium 
GA 29194 350 

251 122.05 0.00 PSO 30789 243 
Hybrid PSO 30106 85 

Large 
GA 76776 171 

229 21.78 0.00 PSO 77375 283 
Hybrid PSO 76948 219 

7. Conclusions and Future Researches 

In this paper, a hub covering location model is proposed in 
which the hubs behave as M/M/c queuing systems. A 
nonlinear model considering constraints for entrance flow 
and transportation time is presented. The model was 
linearized. Since the problem is NP-hard, three GA, PSO, 
and Hybrid PSO-based heuristics were proposed to solve 
the problem. Then, a number of numerical examples with 
three different sizes of small, medium, and large was 
designed, and the performance of the heuristics was 
evaluated. The results indicated that the GA-based heuristic 
dominates others for all types of the problems. According to 
the results, in confidence level of 0.95, the mean equality 
hypothesis for time index is rejected for all problem sizes, 
and the mean equality hypothesis for objective function 
index is rejected for medium and large-sized problems. The 
proposed model can be used in establishing airports, post 
offices, passenger terminal, etc. Also, other queuing 
systems, such as G/G/1 and G/G/M, can be used to develop 
a more realistic model. On the other hand, the problem can 
be developed to a multi-period one, in which the effects of 
time value of money are considered. The entrance flow as 
fuzzy number can be a new idea in order to extend the 
model. 
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