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Abstract

In this paper, a hub covering location problem is considered. Hubs, which are the most congested part of a network, are modeled as M/M/C
queuing system and located in places where the entrance flows are more than a predetermined value. A fuzzy constraint is considered in order
to limit the transportation time between all origin-destination pairs in the network. On modeling, a nonlinear mathematical program is
presented. Then, the nonlinear constraints are converted to linear ones. Due to the computational complexity of the problem, genetic algorithm
(GA), particle swarm optimization (PSO) based heuristics, and improved hybrid PSO are developed to solve the problem. Since the
performance of the given heuristics is affected by the corresponding parameters of each, Taguchi method is applied in order to tune the
parameters. Finally, the efficiency of the proposed heuristics is studied while designing a number of test problems with different sizes. The
computational results indicated the greater efficiency of the heuristic GA compared to the other methods for solving the problem.

Keywords: Hub covering location, Queuing system, Congestion, Genetic algorithm, Hybrid particle swarm optimization algorithm.

1. Introduction

Every day, large amounts of goods are transported from
different origins to a set of destinations. Most of the times,
it is impossible to establish a direct link between the origins
and destinations. In this situation, a group of locations are
considered as hubs. Hubs are used to merge, redirect, and
distribute the flow of goods to hub or spoke nodes. In a
given network, some of the nodes are selected as hubs,
while other nodes allocated to the hub nodes are considered
as spokes. General assumptions about hub location problem
are as being a direct link between each of the two hubs, the
lack of link between spoke nodes, lower cost of
transportation between hub nodes than spoke nodes, and
the dependence of costs on distance.
The major contributions in the current research can be
given as follows:
e Queuing and time constraints from origin to
destination are considered simultaneously.
e The times when flows are transported from origin to
hub, from hub to hub, and from hub to destination
are considered as fuzzy numbers.
e Hubs are located in places where the entrance flows to
be more than a known value of I" for each hub.
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e Some heuristics are developed in order to solve the hub
covering problem.

2. Literaturereview

The basic idea for hub-spoke networks was proposed by
Goldman (1969). The first mathematical formulation for
hub location problem was given by O’kelly (1987). The
first computational results for the single allocation hub
covering problem was presented by Kara and Tansel
(2003). They proved that these types of problems were Np-
hard. Marianov and serra (2003) modeled the hub location
problem considering M/D/C queuing system. A formula
was derived for the probability of a number of customers
being in the system in order to be used in a capacity
constraint. A new modeling of single and multi-allocation
for hub covering problem was given by Wagner (2004).
Ernst and Krishnamoorthy (2005) proposed the
uncapacitated single and multiple allocation hub covering
problem. Rodriguez et al. (2007) presented a model for hub
location problem in cargo transportation networks with
limited capacity hubs. They modeled each hub as an
M/M/1 queuing system. Calik et al. (2009) studied the
single allocation hub covering problem with incomplete
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communications in hubs. Han (2010) developed an integer
programming (IP) formulation for the problem and
developed some valid inequalities which provided a tight
lower bound for the problem. Gelare and Nickle (2011)
proposed a 4-index formulation for the uncapacitated
multiple allocation hub location problem tailored for urban
transport and liner shipping network design. Mohamadi et
al. (2011) considered a hub-and-spoke network problem
with crowdedness or congestion in the system. A hub
cannot serve all trucks simultaneously, and it has some
restrictions like capacity and service time. They modeled it
as M/M/c queuing systems. Alumur et al. (2012)
introduced multi-modal hub location and hub network
design problem and studied the hub location problem from
a network design perspective. Alumur et al. (2012)
addressed several aspects concerning hub location
problems under uncertainty. They considered two sources
of uncertainties: the set-up costs for the hubs and the
demands to be transported between the nodes.

To the best of our knowledge, a few papers have studied the
pHCP and pHMP with uncertainty in flows, costs, and
transportation time. Sim et al. (2009) introduced a stochastic
pHCP (SpHCP) utilizing a chance-constraint method to
model the minimum delivery service requirement by taking
the variability in transportation times into account. Yang et
al. (2013a) presented a new risk aversion pHCP with fuzzy
travel times by adopting value-atrisk(VaR) criterion in the
formulation of objective function. In order to solve and
validate the model, they first turned the original VaRpHCP
into its equivalent parametric mixed-integer programming
problem, and then developed a hybrid algorithm by
incorporating genetic algorithm and local search (GALS) to
solve the parametric mixed-integer programming problem.
Yang et al. (2013b) proposed a new pHCP with normal
fuzzy travel time, in which the main goal is to maximize the
credibility of fuzzy travel times, such that not exceeding a
predetermined acceptable time point along all paths on a
network. Due to complexity of the proposed model, they
applied an approximation approach (AA) to discretize fuzzy
travel times and reformulate the original problem as a
mixed-integer programming problem subject to logical
constraints. Next, they made use of the structural
characteristics to develop a parametric decomposition
method to divide the approximate pHCP into two mixed-
integer programming subproblems. Finally, the authors
developed an improved hybrid particle swarm optimization
(PSO) algorithm by combining PSO with genetic operators
and local search (LS) to update and improve particles for
the subproblems. In another work, Yang et al. (2014)
reduced the uncertainty embedded in the secondary
possibility distribution of a type-2 fuzzy variable by fuzzy
integral and applied the proposed reduction method to
pHCP. They also developed a robust optimization method to
take uncertainty in travel times into account by employing
parametric possibility distributions.
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Mohammadi et al. (2013) developed a stochastic bi-
objective multi-mode transportation model for hub covering
problem. They considered the transportation time between
each pair of nodes as an uncertain parameter that is also
influenced by a risk factor in the network. Similar to
Contreras et al. (2011), Adibi and Razmi (2015) developed
a 2-stage stochastic programming for formulating stochastic
uncapacitated multiple-allocation HLP. They considered
three cases, wherein (1) flow is stochastic, (2) cost is
stochastic, and (3) both flow and cost, are stochastic. Unlike
Contreras et al. (2011), the authors concluded that
considering uncertainty into formulation could result in
different solutions.

The paper is structured as follows. Section2 presents a
nonlinear mathematical model and its linearization. Section
3 describes the proposed solution algorithms. Section 4
presents computational results. Section 5 concludes the
paper and presents further research directions.

3. Parametersand Variables

The parameters and decision variables of the model are as
follows:
i,j,k,m=Index of nodesi, j, k,m = {1, ...,n}

1 if'traffic from node i to node j goes through
X1 hubs located at nodes k and m;
0 otherwise,

if node 1is allocated to hub at node k;

1
k = .

" 10 otherwise,

C kmj The transportation cost of each unit flow from node

i to node j going through hubs located at nodes &
and m.

S : The fixed cost of locating a hub at node k
7, : The maximum cost between hub k and nodes allocated

to hub &
Hq « - Desired upper bound for the probability of an extra

queue length at a hub £
b, : Upper bound of queue length at hub &

T : Maximum authorized transportation time between any
origin/destination pair
t, : Transportation time between nodes 7 and ;

a;: The average flow which is required to be transported

from node i toj
I', : Minimum required demand for locating a hub at &

M, : Service rate of hub located in node &
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4. Problem Formulation

In the problem under study, there is a set of » nodes in a
given network. A number of the nodes should be selected
as hubs, while the rest of the nodes, called spokes, are
allocated to the hub nodes. There are some constraints for
locating hub nodes, such as cost, entrance flow, time and

Mlnzzzzczkmj ikmj +ykxkk

capacity. The model is of single allocation type which
means each node can only be allocated to an individual
hub. The proposed model in this research, which is based
on Mohamadi et al. (2011), can be stated as follows:

(1)
i=lk=lm=1j=1
S.T:
n o n o ()
Zinkmj =1 Vi,j
k=1m=1
X S X Vi, j k,m (€)
X iomj S X g Vi,j,k,m “4)
x, <x,, Vi,j,k,m )
c x, <r, Vik (6)
(7
ZZ Lik ZZ XX g 2Dix g VK
i=lj=l i=lj=l i=lj=l
P{length of queue at node k >b;} < 0, Vk ®)
- - - o )
X sy | Lik FE kom +E mj <T Vi,j,k,m
n (10)
Dxy =1 N
k=1
6{0,1} Vi, j,k,m (D
X, e{O,l} Vi, k (12)

In the aforementioned single allocation model, the objective
function in (1) minimizes the sum of transportation and
fixed costs of locating the hubs. Constraint (2) ensures that
all the flows between i and j are routed through a pair of
hubs in m and k (perhaps a pair of k£ and k). Constraints (3)
and (4) guarantee routing the flows between i and j through
hubs & and m, involving allocating i and j to hubs £ and m,
respectively. Constraint (5) states that a node can be
allocated only to a hub node. Constraint (6) declares that
node i can only be allocated to hub k if the flow cost
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between i and k be less than 7. Constraint (7) ensures
forming a hub when the entrance flow to be more than the

value of I", . Constraint (8) forces the probability of more

than b,demand waiting at a queue to be less than or equal to
0,k Constraint (9) states that the travel time between all the
origin-destination pairs in the network be less than T .
Constraint (10) ensures that each node is assigned to exactly
one hub. Constraints (11) and (12) give the status of the
decision variables. As Mohamadi (2011) let Ps be the
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steady-state probability of s customers being in the system

b, +c

Zps— K or 1- Zps<0

s=b; +l+c

(13)

An expression for the probabilities Ps is needed; this

with ¢ servers; Constraint(8) can be stated as (13):

nu n<c

=1
cu

Do, as the probability of no demand in the system can be

(15)

n>c

expression can be derived assuming an arrival rate of A and given by Eq.(16):
a service rate of . Then, the service and arrival rates for
any state can be given by Eqs. (14) and (15): c -
y g y Egs. (14) and (15) 1 2 1( 1 cu
Po= Z;(—) 1 (C —)| 10
ﬂ'n — ﬂ (14) n=0 S\ U U
The probability of being n demands in the system with ¢
servers can be stated by Eq. (17) as Gross and Harris
(1974).
2{7[
Po n<c
nlu"
pa=y (17)
—ch!,u” Do n>c
And, the sum of pis given as in Eq. (18):
c+by, yE c+by YL
ZPY =2 Pt D P 21-6,, (18)
n=0 1 n=c+C c :u
Eq.(13) can be rewritten as Eq. (19):
n c -
i G l(i] 1(/1] ( - ]
n=0n!:un n:On! H c! H C,U—/I
c+by c—1 /1 ¢
cp
+ Z — z_'(_)n [ ] ( /1) 21—(9qu (19)
n=+1€C c: lu n=0M: /u C:u_

Neither the locations of hubs nor the arrival rates to hubs are
known before solving the problem. The locations of the
hubs are given by the values of the variables Xj;. The arrival

A ZZayxlk +ZZaUx
i=lj=l i=lj=l i=lj=1

l?’{]

According to Marianov and Serra (2003), Eq. (20) can be
solved for variable A and for finding the maximum value,
Amax- Once this value is found, any smaller value of A will

ZZalekxjk Yk

rate to a hub located at node k according to Mohamadi et al.
(2011) can be obtained from (20)

(20)

satisfy Eq. (18). This means that Eq. (18) is equivalent to A
< Amax. It can be rewritten as:
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ZZayxzk +ZZ%X ZZ%X ¥ ik S A @1

i=lj= i=lj= i=lj=
i#]
In the proposed model, constraint (9) is a fuzzy statemen fuzzy number, like A, can be presented by three real
whose right-hand side (T ) and the coefficient of variablesi numbers (s,Lr) as in Fig.1(Zadeh, 1965).
t k,tkm,t
: ™ ) are triangular fuzzy numbers. Each triangular
m(x)
&
i

- > >

Fig. 1. Peresentation of a triangular fuzzy number

Consider two triangular fuzzy numbers asAT =(s l,l 15 Vl) and B = (s,,/,,r,), then the constraint of AX < B can be written as
(22)-(24) using the given values of the fuzzy numbers.

s, +n<s,+r (22)
s,—1,<s,-1, (23)
s, <s, (24)

Considering (22)-(24) and defining the triangular fuzzy numbers of Constraint (9) as i =(t1ik,t2ik,t3ik)

>

tkm —(tl t o ’t3km) lm] (tl

Constraint(9) can be rewritten as in (25)-(26):

mj’ mj

13,,) T=(T1,T, ,Ty),

25
(01 58 2 3 )+ @y 22, 30,0+, 22,0 13, ) < (LT T) ()
(tLig + iy + i, t20 + 20y + 24, E3i + t3pm + t30) Xikmj < (T1, T2, T3) (26)

Considering (22) - (24), Constraint (30) can be stated as in (27) - (29):

(tLye + tlyn + t1 ) Xiemj < Ty (27)
[t + Ly + t1) — (24 + 24 + t200) [Xikmj < (T1_T2) (28)
[(t1i + 1y + t1y;) + (3 + 3km + 3mj) 1 Xikmj < (T1 + T3) 29

Therefore, the final model can be stated as in (30)-(43):

Min Zzzzczkm] ikmj + Z‘ka kk (30)

i=lk=lm=lj=1
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Vi, j

n on
PRI
k=lm=1

X iom S X Vi,j,k,m

X <x, Vi,j,k,m
Vi,j,k,m

CuXy ST Vl,k

ZZ%M +ZZ

ikmj

Xy S Xy

ZZLIU xux, 20 x, Vk

l_]_ l_J_ l—]_
Zzayx’k +Zzal]x Zzayxlkx/k < A
i=l J_ i=l J_ =1 j_
l;t]
<
b, 2 T e X oy F L Xy <T,

t1 o + t3 i) Xikmj + (t1gm — 2km) Xigemj + (t1m;

ixik =1 Vi

k=
xiklj S {Oll}Vl ljl kxl
Xik € {0,1}Vl ,j, k,l

5. Solution Techniques and Numerical Rresults

In this section, the solution heuristics are explainec
consisting of a genetic algorithm(GA) based and a particle
swarm optimization (PSO) based heuristics, as well as
improved hybrid PSO.

5.1. Genetic algorithm

Holand (1975) proposed the idea of GA for optimizing a
number of various types of problems. This algorithm has
been used by many researchers interested in location
problems including Topcuoglu (2005), Cunha and Silva
(2007), and Mohamadi et al. (2011). Now, the steps of this
heuristic, based on GA, are explained.

e Representation of solution: As the GA standard
algorithm, the solutions are called by
chromosomes. Here, the chromosome is composed
of two parts: hub and assignment arrays. The
length of the chromosome is equal to the number
of nodes on the network. The first part (hub array)
is a binary string. Value "1" indicates that the node
is selected as a hub, while value "0" indicates that
the node is just a spoke. The second part represents
the assignment of each node to the corresponding
hub as in Fig.2.

— 2mj)Xiemj < (T1_T2)
ik ikm i) Xikmj T ELim + i) Xigemj + (tlonj + t35m)) Xipmj < (T1 + T3)
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Fig.2. Representation of solution in genetic algorithm for an
example with ten nodes.

Initial solution: A random solution for this purpose is
generated.

Fitness function: The fitness function value is
considered as the difference between the maximum
value of the objective and the current objective
functions.

Parents selection strategy: The roulette wheel rule is
used in this regard.

Crossover operator: The single point and random key
operator are used, so that each operator is selected with

probability of%. Applying each operator, the generated

child may need to be modified. Regarding the first part
of the chromosome, if the generated offspring does not
have any hub node, or all nodes be selected as hubs, the
offspring will be rejected and reproduction is done; for
the second part of the chromosome, if a hub node is
allocated to another hub node, a modification is done.



Journal of Optimization in Industrial Engineering, Vol.11, Issue 1, Winter and Spring 2018, 143-156

e Mutation operator: The shift and movement operators
of Topcuoglu et al. (2005) are used in this regard. If the
generated solutions of this operator are feasible, they
are conveyed to the next generation; otherwise, the
operator runs again.

e Stop criterion: If no improvement occurs within a
specific number of successive generations, the
algorithm stops.

5.2. Particle Swarm optimization

This algorithm was initially introduced by Kenedy and
Eberhart (1995) and was used by Yapicioglu et al. (2007)
and Yang et al. (2013) for location problems. Now, the steps
of this corresponding heuristic are explained.

e Representation of the solution: Representation of
solution is just similar to that of GA’s.

e Initial solution: The heuristic stars with a randomly
generated initial solution.

e Fitness function: the fitness function is considered
equal to the objective function, which means that the
particle with less objective function value is of higher
priority.

The rest of the conditions are based on the regular PSO. If

no improvement happens after a predetermined number of

iteration, the algorithm stops.

5.3. Improved Hybrid PSO

This heuristic is a combination of GA and PSO. The initial
idea was given by Yang et al. (2013). The major
characteristics of this heuristic are given below:

o Representation of solution: Representation of the
solution is as the given GA-based heuristic.

o Initial population: Initially, a random solution is
generated. If the solution is infeasible, then a new solution
is generated; this procedure continues until the first
feasible solution is achieved, then the first feasible
solution is added to the initial solution. To complete the
population, each new feasible solution is compared to the
available solution; if it is not generated before, the
solution is add it to the population. This continues by
completion of the number of the population.

¢ Fitness function: The fitness function is considered equal
to the value of the objective function.

o Update process: To update the position of a particle, the
genetic operators are used. New position is indicated by

x£",and the formula of updating is as in Eq. (44).

X.k+1
=X/t

(pbest i ) ®Xik)v(XGb€Stk ®Xl‘k)v (44)

149

WhereXpbest,ikrepresents the best position of the ith particle,
XGbeslkrepresents the best position among the swarm, and
Xirepresents the position of the ith individual solution at
the kth iteration. Since Xik, Xpbestk, and XGbestk are
location—allocation arrays, the symbol‘‘®’’ represents the
crossover operation of two individuals solutions. The
symbol ‘‘V’’ indicates that the optimal solution is selected
from the offsprings of XY ®  Xpbests
X*®Xgpest- XK, whereXKrepresents the mutation operation
of XX If the generated offspring is infeasible, the
operators again are used to reach a feasible solution.

e Stop condition: If no improvement in a number of
successive iterations is obtained, then the algorithm stops.

5.4. Numerical examples

In this section, the performance of the given heuristics is
evaluated. Table 1gives the values of parameters and the
probability  distributions functions considered when
randomly generating the numerical examples. 60 (5 X 2 X
2 % 3) examples based on the values of n, ¢, B, and 6 have
been designed.

5.5. Tuning parameters

In order to tune the parameters of the heuristics, Taguchi
method (1986) is applied, and problems with 10,15, and 20
nodes for small sizes, problems with 40 nodes for medium
sizes, and problems with70 nodes for large sizes are
designed. Furthermore, S/N ratio is considered as in Eq (45).

S/N ratio=-10log ) (RPD)’ (45)

In order to compute the S/N ratio, relative percentage
deviation(RPD) criterion is used. The RPD values represent
the difference between the best solution and the average one
as in Eq. (46):

RPD:AlOgsol—Minsal x 100

Mingg; (46)
Alg,, represents the fitness function value in each run for
each problem, while Ming,represents the best fitness
function value for each problem. The given orthogonal
arrays of Taguchi method are given for different levels in
order to do the experiments. In this research, three-level
experiments have been recognized as the most appropriate
designs; according to Taguchi standard orthogonal arrays,
L9 orthogonal is selected as the appropriate experiment
design in order to tune the parameters for all heuristics. The
results are represented in Tables 2-4.
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Table 1
Random data of the last problems

Parameters and values

n c B 0 n F a c r T t t t3 T, T, Ts
10
]
15 0 02| g
3 ST <ol o <o 9 <o g 9 ¢ g ¢
20 I I T I I B I = =
4 S vl e I s B = I = =
0 0 [ 06| B 8 S| S S| g S| & & 2 g 3
(98]
70 8
Table 2
Levels of tuned parameters for the GA-based heuristic
Parameters Size of Problem Tuned value
. . Small 100
Size of Population Nedium 750
Large 400
. Small 150
Number of Generation Nedium 50
Large 350
Small 0.15
Pm Medium 03
Large 0.35
Small 0.9
Pe Medium 0.95
Large 0.9
Table 3
Levels of tuned parameters for the PSO-based heuristic
Parameters Size of Problem Tuned value
. . Small 100
Size of Population Medium 250
Large 400
. Small 150
Number of Iterations Medium 250
Large 350
Small 2
cl Medium 2
Large 2
Small 1.5
2 Medium 1.5
Large 1.5
Table 4
Levels of tuned parameters for the improved hybrid
Parameters Size of Problem Tuned value
Small 100
Size of Population Medium 250
Large 400
Small 150
Number of Iterations Modium 750
Large 350
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Table 5
Results of metahuristic algorithms’ solutions
Nod b C 0 LINGO GA hvbrid PSQ Pso

ode CPU(S) Obj CPU(S) Obj CPU(S) Obj CPU(S) Obj
0.2 3224 3348 5.1 3348 13.08 3348 11.41 3354

3 0.4 3242 3351 4 3351 16.37 3595 11.31 3353

10 0.6 3237 3369 4.97 3372 18.09 3485 12.09 3379

0.2 3341 3190 4.68 3190 20.09 3199 12.71 3332

4 04 3376 3180 7.19 3182 19.8 3185 12.39 3225

10 0.6 3370 3194 4.27 3207 13.26 3210 11.79 3282
0.2 3392 3355 4.51 3360 12.36 3355 11.63 3366

3 0.4 3420 3370 4.87 3372 15.91 3563 11.57 3380

20 0.6 3435 3387 7.79 3397 16.53 3401 11.53 3383

0.2 3654 3192 4.32 3202 19.03 3192 12.33 3219

4 0.4 3688 3197 5.01 3198 19.51 3197 12.06 3267

0.6 3671 3202 8.24 3202 15.83 3202 11.67 3302

0.2 - - 15.19 5845 26.23 6306 12.82 6382

3 0.4 - - 15.83 5821 25.12 5952 12.84 5964

10 0.6 - - 12.13 6389 33.38 6351 18.32 6488

0.2 - - 15.49 5721 24.65 5967 14.86 6205

4 04 - - 15.38 5644 38.75 6037 16.05 6560

15 0.6 - - 17.33 5365 34.59 5702 18.5 6537
0.2 - - 15.23 5616 28.95 5956 19.07 6571

3 0.4 - - 14.43 5715 27.52 6055 19.32 6324

20 0.6 - - 13.65 5823 29.61 5812 22.12 6206

0.2 - - 13.11 5373 27.21 5760 22.44 6499

4 0.4 - - 13.33 5547 26.32 5811 23.01 6344

0.6 - - 12.12 5412 358 5507 22.76 6420
0.2 - - 27.62 8713 44.21 9767 31.2 10016
3 0.4 - - 19.93 8877 45.33 9586 28.62 10102
10 0.6 - - 28.07 8928 40.2 9337 30.48 10009

0.2 - - 18.56 8877 44 .45 9375 27.94 10001

4 04 - - 15.01 8995 37.26 9461 29.38 9978
20 0.6 - - 18.62 8689 43.3 9295 31.16 10033
0.2 - - 34.58 8689 87.37 9581 33.54 10055
3 0.4 - - 27.88 8711 47.63 9566 29.86 10070

20 0.6 - - 21.78 8877 51.1 9234 30.5 9989

0.2 - - 36.08 9088 41.79 9210 294 9995
4 0.4 - - 28.35 8585 66.75 9426 30.58 10005
0.6 - - 20.46 8676 46.6 9179 29.34 10062
0.2 - - 275.37 30031 268.54 30124 241.22 30768
3 0.4 - - 190.75 29261 303.57 30232 241.52 30788
10 0.6 - - 141.09 29649 331.34 30132 239.29 30575
0.2 - - 241.41 28950 291.54 30086 239.45 30844
4 04 - - 173.35 29142 299.43 30133 238.78 30355
40 0.6 - - 252.19 28836 298.54 30112 238.33 30888
0.2 - - 231.21 29315 314.43 30001 244.58 31374
3 0.4 - - 232.08 29140 310.23 30276 243.45 30744
20 0.6 - - 257.62 29024 302.46 29999 239.58 30768
0.2 - - 243.35 29076 351.21 30069 24422 30646
4 0.4 - - 307.15 28766 377.53 30094 269.45 30744
0.6 - - 232.92 29137 325.37 30012 260.29 30974
0.2 - - 599.21 76890 762.51 76999 677.43 77112
3 0.4 - - 6503.91 76895 614.93 77043 711.21 77234
10 0.6 - - 599.25 76898 823.65 77153 850.06 77333
0.2 - - 935.31 76702 995.21 76884 906.54 77189
4 04 - - 1129.1 76623 1070.02 76602 943.54 77003
70 0.6 - - 707.34 76601 925.67 76998 870.56 77068
0.2 - - 786.9 76693 1034.44 76875 843.24 77234
3 0.4 - - 526.72 76880 1045.65 77125 854.45 77496
20 0.6 - - 953.12 77001 975.55 77122 967.67 77833
0.2 - - 705.97 76873 1136.66 76985 902.78 77676
4 0.4 - - 869.21 76854 1234.28 77133 956.32 77765
0.6 - - 1037.54 76407 912.12 76452 995.76 77558

(-) means that lingo could not solve the problems in a reasonable amount of time, CPU represents the time, and obj represents the objective function value.
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6. Experimental Results

In order to assess the performance of the heuristics, the
quality of solutions for the small-sized problems is
compared with those obtained from lingo solver. The results
based on applications of the three algorithms from the view
point of run time and solution are represented in Table 5.
Samples of convergence diagrams of the heuristics are
indicated in Fig. 3-5. In order to assess the efficiency of the
heuristics, a special criterion is used. The criterion is a
relative percentage ratio (RPI) which is used for the
objective function values and CPU time assessment. Each
heuristic is run four times per an example, and the best and
worst objective functions (values) are founded; the values of
this index are between 0 and 100. Smaller values of this
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index represent better performance. RPI values are
computed as in Eq. (47)-(48).
RPI, = |01 201 (47)
bestgo—Worstgy;
RP] | i time=0time | (48)
time orsttime

The results of RPI as given by Eqs (47)-(48) are given in
Table 6. As it is clear from Figs.6-11, the RPI index for both
objective functions and an CPU time is of better
performance for GA for all sizes.
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Fig. 3. Convergence diagram of Genetic algorithm for problem with 20 nodes
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Table 6
Results of RPI indexes
GA Hybrid PSO PSO
Node b 0 RPI RPI RPI
Time ObjFun Time ObjFun Time ObjFun
0.2 2.999 0 58.38 0 54.07 1.063
0.4 1.536 11.18 67.607 20.186 59.094 0.31
10 0.6 2.276 28.251 75.829 51.868 55.947 1.046
0.2 22.58 39.321 62.766 30.123 57.32 23.706
0.4 0 22.185 53.6 41.887 46.04 7.45
10 0.6 2.298 12.647 87.642 51.983 46.723 8.3865
0.2 19.319 0 77.574 35.654 62.723 2.614
0.4 0.012 0 84.573 43 55.193 1.246
20 0.6 11.918 16.498 74.784 37.373 57.734 0
0.2 16.268 1.654 89.336 36 55.511 4.477
0.4 4.758 1.29 85.8621 37 48.62 12.419
0.6 19.454 0 65.3869 38 44731 12.755
0.2 3.271 31.768 23.9308 65.59 7.677 71.166
0.4 23.299 27.895 39.097 36.052 14.995 36.799
10 0.6 5.539 46.574 34.515 43.804 16.892 53.79
0.2 8.333 0 14.039 18.317 7.253 36.038
0.4 18.061 9.905 55.487 40.546 19.994 68.014
15 0.6 16.114 0 44.529 17.124 18.718 59.552
0.2 22.299 22.285 48.984 33.873 32.566 72.92
0.4 16.028 4.524 42,9014 12 29.802 44.459
20 0.6 4.956 14.419 19.296 13.626 17.874 53.064
0.2 15.04 0 37.028 10.821 32.206 65.162
0.4 12.92 17.483 36.828 33.85 38.188 66.893
0.6 14.208 0 51.367 5.986 44384 63.516
0.2 15.609 0 61.362 47.621 25.482 65.247
0.4 0.034 10.651 77.842 48.224 26.631 75.569
10 0.6 13.422 13.537 38.278 35.166 18.36 70.703
0.2 7.111 11.247 59.663 19.5 26.181 71.162
0.4 0.81 15.974 39.172 16.374 25.586 65.197
20 0.6 0.035 0.65 43.735 12.906 22222 67.88
0.2 22.606 0 99.706 46.506 21.081 71.22
0.4 20.199 1.978 47.508 16.28 22.944 78.801
20 0.6 0.001 10.941 66.879 17.474 19.89 71.475
0.2 27.849 21.661 39.576 8.78 14.13 69.348
0.4 11.528 0 75.136 15.205 15.223 68.765
0.6 10.721 0 57.508 24.206 26.615 66.698
0.2 33.554 46.03 5.311 50.065 11.103 78.004
0.4 25.396 19.034 79.942 56.223 47.891 77.518
10 0.6 2.656 14.359 38.588 37.099 46.204 43.832
0.2 54.56 0.82 65.553 47.415 53.474 78.506
0.4 14.24 6.395 76.475 50.715 53.317 56.171
40 0.6 68.88 3.039 77.643 48.144 59.577 75.574
0.2 0.016 10.999 24.243 34.728 11.116 82.22
0.4 0.018 18.148 65.992 59.882 10.001 77.075
20 0.6 41.193 5.915 61.58 42.187 31.532 70.796
0.2 43.413 0 87.291 35.363 43.767 55911
0.4 67.128 0 95.211 41.383 52.084 61.639
0.6 0.075 13.848 99.675 41.451 29.551 71.798
0.2 5.043 36.319 56.904 54.423 29.884 62.825
0.4 12.87 0.207 66.117 30.641 32.282 70.186
10 0.6 0.029 0.133 56.432 34.136 62.725 58.232
0.2 45.94 0.155 75.829 28.304 31.585 75.738
0.4 449 2.196 46.446 0 26.935 41.945
70 0.6 0.014 0 53.178 41.225 47.037 48.494
0.2 6.889 28.08 79.98 39.462 28.077 61.913
0.4 0.011 4.206 80 33.653 63.154 78.245
20 0.6 14.202 0 38.846 12.359 27.214 84.984
0.2 0.202 31.125 79.98 39.1 45.696 88.319
0.4 0.024 0 50.71 25.881 23.861 84.508
0.6 39.928 6.919 33.858 9.856 31.244 82.049
average 16.55 13.856 62.887 32.793 26.186 57.455
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Analysis of wvariance (ANOVA) is applied utilizing
Minitab16. According to the results, in confidence level o
0.95, the mean equality hypothesis for time index is rejected
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Fig. 11. RPlme index for network with 70 nodes

for all problem sizes, and the mean equality hypothesis for
objective function index is rejected for medium and large-
sized problems. The results are given in Tables 7-8.

Table 7
Results of ANOVA test for time index(a = 0.05)
Size level Mean Std.dev Pooled St Dev F P
GA 14.86 8.92
Small PSO 20.18 7.99 11.60 20.74 0.00
Hybrid PSO 32.06 16.12
GA 231.54 44.94
Medium PSO 245.01 9.71 31.32 24.25 0.00
Hybrid PSO 314.52 28.80
GA 1279 1656
Large PSO 77375 283 975 24482.83 0.00
Hybrid PSO 961 169
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Table 8
Results of ANOVA test for objective function index(a = 0.05)
Size level Mean Std.dev Pooled StDev F P
GA 5927 2302
Small PSO 6575 2782 2548 0.58 0.561
Hybrid PSO 6227 2537
GA 29194 350
Medium PSO 30789 243 251 122.05 0.00
Hybrid PSO 30106 85
GA 76776 171
Large PSO 77375 283 229 21.78 0.00
Hybrid PSO 76948 219

7. Conclusions and Futur e Resear ches

In this paper, a hub covering location model is proposed in
which the hubs behave as M/M/c queuing systems. A
nonlinear model considering constraints for entrance flow
and transportation time is presented. The model was
linearized. Since the problem is NP-hard, three GA, PSO,
and Hybrid PSO-based heuristics were proposed to solve
the problem. Then, a number of numerical examples with
three different sizes of small, medium, and large was
designed, and the performance of the heuristics was
evaluated. The results indicated that the GA-based heuristic
dominates others for all types of the problems. According to
the results, in confidence level of 0.95, the mean equality
hypothesis for time index is rejected for all problem sizes,
and the mean equality hypothesis for objective function
index is rejected for medium and large-sized problems. The
proposed model can be used in establishing airports, post
offices, passenger terminal, etc. Also, other queuing
systems, such as G/G/1 and G/G/M, can be used to develop
a more realistic model. On the other hand, the problem can
be developed to a multi-period one, in which the effects of
time value of money are considered. The entrance flow as
fuzzy number can be a new idea in order to extend the
model.
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