
Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 1- 13
DOI: 10.22094/joie.2017.644.1415

1

Integrated Due Date Setting and Scheduling on a Single Machine
Considering an Unexpected Unavailability

Mehdi Iranpoor a , Seyed Mohammad Taghi Fatemi Ghomi b,*

a Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran
b
Department of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
Received 15 July 2016; Revised 18 June 2017; Accepted 11 November 2017

Abstract

In this paper, an integrated machine scheduling with its due date setting problem has been considered. It is assumed that the machine is
subject to some kind of random unavailability. Due dates should be set in an attractive and reliable manner, implying that they should be
short and possible to be met. To this end, first, long due dates are penalized in the objective function. Then, for each customer order, the
probability of meeting his/her promised due date is forced to be at least as large as his/her required service level. To handle this integrated
problem, first, the optimal due date formula for any arbitrary sequence is derived. By using this formula, the mathematical programming
formulation of the problem, including a nonlinear non-convex expression, is developed. By defining a piecewise linear under-estimator, the
solutions of the resultant mixed integer linear programming formulation have become the lower bounds of the problem. Dynasearch is a
very efficient heuristic utilizing the dynamic programming approach to search exponential neighborhoods in the polynomial time. An
iterated dynasearch heuristic is developed for the sequencing part of the problem. Each generated sequence is evaluated by computing its
optimal due dates using the above-mentioned formula. Numerical results confirmed the high quality of the solutions found by this
algorithm, as compared with the lower bound.

Keywords: Due date setting; Unexpected unavailability; Machine scheduling; Iterated dynasearch; Lower bound.

1. Introduction

This paper studies the integrated machine scheduling and
due date setting problem by considering the random
machine unavailability. If the quoted due dates are not
competitively short, customers may opt to buy from faster
competitors. So, the sales and revenues should be
diminished. On the other hand, if the due dates are set at
unachievable values, the promised due dates are more
likely to be violated; therefore, the company's good-will is
damaged. So, the objective is defined as the minimization
of long due date effects while respecting the required
service levels of jobs. We refer to this problem as safe
scheduling with random unavailability (SSRU).
There is some important trade-off in due date setting
decisions between attractiveness and credibility (Slotnick,
2014). Setting short due dates reflects better
responsiveness to customer orders, attracting new
customers and encouraging the current customers to
retain. However, the tardiness is more likely to happen
(Slotnick and Sobel, 2005). Tardiness, in turn, degrades
the reputation of the manufacturing company and brings
about contractual penalties (Slotnick and Sobel, 2005).
Conversely, long due dates may not be acceptable by
customers, resulting in price discount offers by the
company to maintain its business (Shabtay, 2016). On the
other hand, long due dates facilitate production planning
and are more likely to be attained (Yin et al., 2015). Due
dates cannot be determined precisely when the sequence
of jobs is not known. This is why due date setting and

scheduling decisions are usually studied as an integrated
problem.
Typically, each customer considers a maximum length of
lead time to be acceptable (Shabtay,2010). If the quoted
due dates do not exceed the acceptable lead time, there
will be no lead time penalty. However, the due dates later
than these limits are subject to long due date penalties.
Shabtay and Steiner studied two integrated machine
scheduling and due date setting problems by considering
the acceptable lead time and due date assignment cost
(Shabtay and Steiner, 2006). Their problems were the
minimization of total weighted earliness/tardiness and the
total weighted number of tardy jobs. They proved that
both problems were NP-hard and developed polynomial
approaches for some special cases. Shabtay addressed
some integrated machine scheduling and due date setting
regarding earliness, tardiness, holding, batch delivery, and
long due date penalties (Shabtay, 2010). He also assumed
that there is no due date cost when a due date is assigned
not greater than the acceptable lead time. He proved that
the problem was NP-hard and developed polynomial
algorithms for the batch partitioning part and two special
cases of the problem. Gerstl and Mosheiov considered an
acceptable common due window and penalized both early
and late due dates in a machine scheduling setting (Gerstl
and Mosheiov, 2013). They assumed that early due dates
were unfavorable because customers needed some
preparation time before receiving their products. They
developed a polynomial approach that minimized the
maximum due date and job costs. Mor et al. (Mor et al.

*Corresponding author Email address: fatemi@aut.ac.ir

Mehdi Iranpoor et al./ Integrated Due Date Setting…

2

2013) addressed a machine scheduling problem with the
job-dependent acceptable lead time. They developed a
polynomial algorithm which minimized maximum
earliness, tardiness, and due date costs. Yet et al. (Yin et
al., 2016), on the other hand, addressed some due date
setting and machine scheduling problems in which jobs
were owned by two agents. They assumed that the due
dates of one agent were given, whereas the due dates of
the other agents were decision variables. The objective
was the minimization of the total due date assignment and
tardiness costs of the latter agent while keeping the
objective value of the former under a predetermined
threshold. They developed some polynomial and pseudo-
polynomial dynamic programming algorithms for these
problems. Shabtay (Shabtay 2016) studied some due date
setting and scheduling problems with upper bound
constraints on the assigned due dates; therefore, the
objective was the minimization of total earliness,
tardiness, and long due dates penalties. He proved that all
optimal solutions excluded earliness. He analyzed the
problems in various parameter settings. NP-hardness was
proved in some cases, and polynomial-time algorithms
were developed for some other ones.
Due date setting problem becomes more challenging in
the presence of uncertainty. In this situation, a popular
approach is trying to quote tight due dates while
respecting some required service level constraints
(Keskinocak and Tayur 2004). The service level of each
job is defined as the probability that the processing of the
job is completed by its quoted due date (Elyasi and
Salmasi 2013). One source of uncertainty is the
randomness of processing times. Elyasi and Salmasi, for
example, studied two due date assignment and scheduling
problems by considering service level constraints and
random processing times (Elyasi and Salmasi, 2013).
They proved that sequencing jobs in a decreasing service
level order minimized the maximum assigned due date.
They also studied the properties of solutions with the
minimum total expected earliness, tardiness, and due date
costs. Baker and Trietsch studied several integrated due
date settings and machine scheduling problems with
regard to stochastic processing times (Baker and Trietsch,
2009). Assuming stochastically-ordered processing time
distributions, they proved that sequencing the jobs in the
non-decreasing order of expected processing times
minimized some objective functions including the due
date cost. They also proposed some static and dynamic
heuristics when this assumption was not held. Baker, on
the other hand, dealt with the minimization of the sum of
the assigned due dates in a single machine scheduling
problem with normally distributed processing times
(Baker, 2014). He assumed that the service level
constraints had to be met. He developed a branch and
bound approach and some efficient simple dispatching
rules. Baker and Trietsch developed a powerful branch
and bound algorithm to minimize the sum of the total due
date and expected tardiness costs in a machine scheduling
environment with normally distributed processing times
(Baker and Trietsch, 2015). They derived the optimal
service level in any given sequence of jobs.

The other significant source of uncertainty is machine
availability. The unavailability can be a result of random
breakdown or arrival of an emergent job which should be
processed immediately (Kacem et al. 2014). In both cases,
the start and length of the unavailability interval are not
known in advance (Huo et al., 2014). To the best of our
knowledge, due date setting in the presence of random
unavailability has not been studied in the literature yet. It
must be noted that Kacem et al. studied a machine
scheduling problem with regard to an unexpected
unavailability for the minimization of the maximum
lateness (Kacem et al., 2014). They addressed two sources
of unavailability: breakdown and entrance of an emergent
job. The difference in these cases was that the arriving
emergent job was considered when calculating the
maximum lateness. They analyzed the approximability of
these problems, proving that Jackson rule was a 2-
approximation algorithm for both cases. Huo et al. also
considered the two similar cases, but with the objective of
the minimization of the total weighted completion time in
which the weight of each job was proportional to its
processing time (Huo et al. 2014). They showed that
the simple a LPT rule and its variation had
competitive approximation ratios for the situations
with known unavailability and unknown
unavailability information, respectively. Yin et al.
(2017) considered parallel machine scheduling problems
with possible disruptions and deteriorating
processing times. They assumed that some of the
machines might be disrupted at known times, but the
duration of disruption was stochastic. They analyzed
two cases of immediate maintenance after disruption,
which returned the machine to its original efficient state,
and not performing maintenance. They developed some
pseudo-polynomial time approximation algorithms and
polynomial-time approximation schemes for these
problems. Agnetis et al. (Agnetis et al., 2017) studied a
parallel machine scheduling problem under unrecoverable
interruptions. They assumed that if such an interruption
(failure) happened on one machine, all jobs scheduled on
that machine and not processed yet could not be
completed or moved to another machine. Their objective
was finding the sequence maximizing the expected
number of the completed jobs on all machines. They
proposed a pseudo-polynomial time exact algorithm and
an efficient list scheduling heuristic. Kacem and Kellerer
(Kacem and Kellerer, 2016) addressed three semi-online
single machine scheduling problems under a single
unexpected breakdown. The first two problems were the
minimization of makespan with/without jobs' release
times; while the third problem was the minimization of
the maximum lateness without considering the release
times. They provided three approximation algorithms with
tight solutions, as compared with the optimal offline
solutions with known start time and duration of
breakdown.
 The contributions of the paper are as follows:
(1) To the best of our knowledge, the novel problem of
due date setting, considering stochastic machine
unavailability, either with or without the required service
level constraints, is studied for the first time.

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 1- 13

3

(2) The optimal due date formula is derived for any
arbitrary sequence.
(3) A dynamic programming-based heuristic, called
dynasearch, is proposed to find efficient solutions.
(4) A tight lower bound is developed for the evaluation of
the heuristic solutions.
The paper is organized as follows. In Section 2, the
problem is formally defined and the notations are
introduced. Section 3 derives the optimal due dates in any
arbitrary given sequence. Further, in this section, it is
proved that the problem is NP-hard in the strong sense.
By using the optimal due date formula, the mathematical
programming formulation of the problem is developed in
Section 4. Section 5 describes the iterated dynasearch
algorithm used to solve the problem. In order to evaluate
the quality of this heuristic algorithm, a lower bound is
developed in Section 6. The performance of the proposed
algorithm and the tightness of the lower bound are
evaluated numerically in Section 7. Finally, Section 8
summarizes the results.

2. Problem Definition and Notations

This paper studies an integrated due date setting and
machine scheduling problem. Each job has an acceptable
lead time. Setting due dates later than these acceptable
lead times are penalized. The objective is the
minimization of total long due date penalties. The
machine is subject to an unexpected unavailability. This
uncertainty does not allow for the quotation of 100%
guaranteed due dates. In other words, breakdown may
cause tardiness. However, due dates should be reliable.
Hence, due dates not satisfying the required service level
constraints are not allowed. As mentioned above, service
level is the probability that the processing of the job is
completed by its quoted due date. Each job has a specific
required service level. It is assumed that the length of the
time interval before the start of unavailability and the
length of unavailability follow exponential distributions.
All jobs are available at time zero. Further, it is assumed
that preemption is allowed. In other words, the processing
of the interrupted job is resumed as soon as the machine is
repaired.
The parameters and decision variables are as follows.

Parameters

n: the number of jobs

Tb: the stochastic variable of time interval before the

start of unavailability

βb: the average time before the start of unavailability

Tr : the stochastic variable of the duration of

unavailability

β r: the average time of the duration of unavailability

aj: the acceptable lead time of job j

pj: the processing time of job j

P: the total processing times of all jobs

p : the average processing time of all jobs

wj: the weight of job j

slj: the required service level of job j

Decision variables

[j]: the index of job scheduled as the jth job

Cj: the stochastic variable of the completion time of job j

dj: the due date of job j

xij: the binary variable which is 1 whenever job i

precedes job j in the sequence or i=j

yj: the completion time of the jth job in the sequence

when unavailability does not occur

As mentioned above, the objective is the minimization of
the total long due date penalties:

()1

n

j j jj
z w d a

=

+
= −∑ (1)

 wherein (Χ)+ refers to the maximum of zero and Χ.
In an arbitrary sequence of jobs, the completion time of
the jth job in the sequence is computed through
expression (2).

β

β

=

=

−

=
⎡ ⎤⎣ ⎦

−

=

⎧ ∑
⎪
⎪= ⎨ ∑⎪

+⎪⎩

∑

∑

[]1

[]1

[]1

[]1

; e

; 1-e

j
kk

b

j
kk

b

p
j

kk
j p

j
k rk

p with probability
C

p T with probability

 (2)

The first term in (2) is the summation of the processing
times of jobs from the beginning of the sequence to the jth
job. This situation happens when the unavailability does

not occur before completing the jth job. The second term
is the complementary situation. In this case, the

Mehdi Iranpoor et al./ Integrated Due Date Setting…

4

completion time of the
jth job includes the stochastic

variable of the repair time (Tr).
Each customer has a required service level, which must be
respected. The service level constraint of job j is
Pr(Cj≤dj)≥slj, which means that the probability of
violating each due date should be less than or equal to the
corresponding required service level. When this inequality
holds, job j is called stochastically on time; else, it is
called stochastically tardy (Baker, 2014). In order to
minimize the due date costs, djs should have the minimum
possible values. Therefore, equation (3) meets the
required service levels and minimizes the long due date
effects.

()Pr ; 1,...,j j jC d sl j n≤ = = (3)

3. Finding the Optimal Solutions

The problem under study (SSRU) has two parts:
determining the due dates and sequencing the jobs. In this
section, first, the optimal due dates are derived for the
known sequences of jobs. Then, it is proved that the
problem is NP-hard in the strong sense.

3.1 Optimal due dates in the known sequences

In this subsection, it is proved that in any given sequence
of jobs, the optimal due dates can be calculated by a
closed form expression. This result is used to develop the
solution approach and the lower bound in the subsequent
sections. To derive the optimal due dates, two
complementary cases of the required service levels are
handled in the following lemmas. As shown in Lemma 1,
in the first case, the unexpected unavailability can be
omitted.
Lemma 1. In an arbitrary sequence, for each job [j] with

[]

[]1

e

j
kk

b

p

jsl β
=−

∑
≤

(4)

the optimal due date is []1

j

kk p=∑ .

Proof.
In this case, the probability that the unavailability starts
after the completion of job [j] is larger than the required
service level. Thus, with neglecting the unexpected
unavailability, the required service level is satisfied, and
the due date costs are minimized.

The second lemma presents a closed-form expression of
the optimal due dates for the complementary case. In this
case, the probability of the occurrence of random
breakdown affects the optimal due date of job [j]; hence,

[]1
*
[]

j

kk pjd => ∑ .
Lemma 2. In an arbitrary sequence, for each job [j] with

[]

[]1

 > e

j
kk

b

p

jsl β
=−

∑
(5)

the optimal due date is

[] []()
[]1

[]1
ln 1 1

j
kk

b

p

j

k rj jk
d p e slββ

=−

=

⎛ ⎞⎛ ⎞∑
⎜ ⎟⎜ ⎟= + − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ (6)

Proof.
See appendix A.
The following theorem is a straightforward combination
of the above lemmas.
Theorem 1. In an arbitrary sequence, the optimal due date
of job [j] is

[] []()
[]1

*
[]1

ln 1 1

j
kk

b

p

j

k rj jk
d p e slββ

=−

=

+⎛ ⎞⎛ ⎞⎛ ⎞∑
⎜ ⎟⎜ ⎟⎜ ⎟= + − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑
(7)

In case condition (4) is held, the natural logarithm in (7) is
negative; so, d[j] equals the resultant of lemma 1. On the
other hand, in case where condition (5) is held, the
logarithm is positive and the above expression equals the
resultant of lemma 2.

3.2 Computational complexity

In this section, it is proved that SSRU is NP-hard in the
strong sense. The proof is proceeded by showing that the
problem contains the single machine total weighted
tardiness problem as a special case. Hence, according to
the widely conjectured assumption P≠NP, developing an
algorithm to find the optimal solution in the polynomial or
pseudo-polynomial time seems impossible. Therefore, in
Section 5, an efficient heuristic is developed to find near
optimal solutions in reasonable times.
Theorem 2. SSRU is strongly NP-hard.

Proof.
It should be proved that there is a strongly NP-hard
problem, which is reducible to SSRU. Single machine
total weighted tardiness problem, denoted by 1||∑wT, is
strongly NP-hard (Pinedo, 2012). Here, based on the
following transformation, it is shown that 1||∑wT is
reducible to SSRU.
slj=0; j=1,…,n
 According to Lemma 1, in any schedule, the optimal
due dates would be:

[][] 1

j

j kk
d p

=
= ∑

Hence, the problem can be regarded as a 1||∑wT in which
the due date of job j is aj and the weight of job j is wj.

4. Mathematical Programming Formulation

In order to formulate the problem, we use the optimal due
date formula. According to the proof of Theorem 1,
expression (7) can be rewritten as follows:

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 1- 13

5

[] []()
[]1

*
[] []1 1

max , ln 1 1

j
kk

b

p

j j

k k rj jk k
d p p e slββ

=−

= =

⎧ ⎫⎛ ⎞⎛ ⎞⎛ ⎞∑
⎪ ⎪⎜ ⎟⎜ ⎟⎜ ⎟= + − −⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎪⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎩ ⎭

∑ ∑
(8)

Therefore, the mathematical formulation of the problem is as follows:

1

n

j jj
Min w z

=∑

(9)

1
0 ; 1,...,n

i ij ji
p x y j n

=
− = =∑ (10)

; 1,...,j j jz y a j n≥ − =

(11)

()ln 1 1 ; 1,...,
j

b

y

j j r j jz y e sl a j nββ
−⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟≥ + − − − =
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(12)

1; 1,..., , 1,..., ,i j iju u nx n i n j n j i− + ≤ − = = ≠ (13)

1; 1,...,jjx j n= =

(14)

, , 0 ; 1,...,j j ju y z j n≥ =

(15)

0,1; 1,..., ; 1,...,ijx i n j n= = = (16)

Expression (9) minimizes total long due date effects.
Constraints (10-12) calculate zjs. Constraint (10) sets yj

equal to the total processing times of jobs [1] to [j]. On
the other hand, constraints (11) and (12) force that zj

≥

d*
j

– aj. Also, the non-negativity of zj and minimization of
∑wjzj guarantee that zj equals (d*

j – aj)+, that is, the
amount by which the optimal due date of job j violates its
acceptable lead time. Constraint (13) is similar to the
subtour elimination constraint in MTZ formulation of the
traveling salesman problem (Öncan et al. 2009). However,
in MTZ formulation, xij =1 if and only if job j precedes job
j

immediately. Nevertheless, the proof that constraints
(13-16) discard all subtours and exclude no feasible
sequence is similar to that of MTZ formulation. So, for the
sake of brevity, it is not repeated here, and the interested
readers are referred to (Miller et al. 1960).

5. Iterated Dynasearch Algorithm

As shown in Subsection 3.2, there are similarities between
the problem under study and the total weighted tardiness
problem. Dynasearch is a heuristic that uses a dynamic
programming approach in order to search exponential size
neighborhoods in a polynomial time. According to the
literature, this algorithm has been used several times for
machine scheduling problems with total tardiness and
total weighted tardiness objectives. For instance,

Angel
and Bampis (2005), Congram et al.

(2002), Kedad-Sidhoum and Sourd (2010), Grosso et al.
(2004), and Sourd (2006) used dynasearch for solving
machine scheduling problems in which the objective
function includes sum or total weighted tardiness. In
another study, Ding et al. combined dynasearch with
an adaptive perturbation strategy to solve the total
weighted tardiness problem on a single machine (Ding
et al. 2016). The efficiency of dynasearch in these
studies promised successful application to the problem
under study. Congram et al. introduced dynasearch
heuristic as a powerful local search algorithm capable
of searching the exponential size neighborhood in the
polynomial time (Congram et al., 2002). Typically, while
the neighborhood gets larger, the quality of solutions
found by the traditional local search approaches is
decreased. As a powerful local search algorithm,
dynasearch mitigates this deficiency using a dynamic
programming approach (Dumitrescu and Stützle, 2010).
By employing dynamic programming, dynasearch
conducts a series of moves in each iteration. This feature
makes dynasearch superior to traditional local search
algorithms in which a single move is made in each
iteration. Neighborhood in dynasearch is built by a
combination of independent move operations (Kedad-
Sidhoum and Sourd, 2010). Two move operations are
called independent when they work on separate parts of
the sequence. This concept is exemplified in Table 1.

Mehdi Iranpoor et al./ Integrated Due Date Setting…

6

Table 1
Examples for the description of independent moves

Original sequence Move Independent?

1-2-3-4-5-6-7-8
swap jobs 1 and 5
swap jobs 7 and 8 YES

1-2-3-4-5-6-7-8
swap jobs 1 and 2
swap jobs 4 and 5 YES

1-2-3-4-5-6-7-8 swap jobs 2 and 5
swap jobs 4 and 8

 NO

The dynasearch neighborhood comprises all sequences
that can be derived from the current solution by a
combination of pairwise independent moves. The
dynamic programming used in dynasearch checks all
these neighbor solutions and returns the best one. The
detailed pseudo-code of this dynamic programming for
SSRU is presented in appendix B.

Dynasearch starts with an initial sequence as the input. In
this paper, expression (17) is proposed to construct the
initial solution. To this end, in each step, the non-
sequenced job with the highest MAUj is sequenced as the
next job.

()1ln
1

j

b

t p

j
j j j r

jj

w e
MAU Exp a t p kp

slp

β

β

++
+

−
⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟= − − − − ⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

(17)

This expression is a modified version of the apparent
urgency used in (Congram et al. 2002) for the single-
machine total weighted tardiness scheduling problem. In
this expression, k is the parameter of the dispatching rule.
We call this dispatching rule the modified apparent
urgency.
Figure 1 depicts the proposed iterated dynasearch for
SSRU. The algorithm starts by a sequence generated by
the modified apparent urgency rule. Then, the dynamic
programming algorithm is run within a loop until the
stopping condition is met. In each iteration of the loop, the
dynamic programming algorithm is recalled from the
solution found in the previous step. If the objective

functions of two calls are the same, the found solution is a
local optimum. In such a case, the search is repeated
based on a perturbed solution generated from the previous
local optimal solution or the best found solution until now
(Congram et al., 2002). The perturbation is conducted by
applying a random number of non-necessarily
independent moves on the selected solution. As
mentioned in (Congram et al., 2002), the dominance of
dynasearch over traditional local search algorithms
becomes more prominent when the search is repeated
from the previous near local optimal solutions. The
algorithm is stopped when the number of loops in which
local optima happen becomes a predefined number.

Fig. 1. Flowchart of iterated dynasearch algorithm for SSRU

Generate initial solution using
modified apparent urgency

Run dynamic programming
as described in appendix B

Algorithm is caught
in local optimum?

Apply the perturbation

Stopping
condition is met?

Start

End

YES

NO

YES

NO

swap jobs 6 and 7

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 1- 13

7

6. Lower Bound Solution

In order to evaluate the quality of the solutions of the
dynasearch algorithm, either the optimal or lower bound
should be available. Problem (9-16) is a non-convex
mixed integer nonlinear programming one. Therefore,
general optimization packages cannot guarantee finding
global optimum solutions even for small-sized problems.
Further, as shown in subsection 3.2, the problem is
strongly NP-hard. Thus, finding the optimal solution to
this problem in a reasonable time seems impossible. A

lower bound is, therefore, developed in this section to
measure the quality of the heuristic solutions.
The lower bound is developed through replacing the
nonlinear part of constraint (12) by a piecewise under-
estimator. This replacement results in a mixed integer-
programming problem with additional continuous and
binary variables. Thanks to the modern codes for solving
pure and mixed integer programming problems, piecewise
linear approximations, even with extra continuous and
integer variables, are more manageable than the original
nonlinear problems (Bergamini et al. 2008). Let fj(yj) be
defined as

() ()ln 1 1 ; 1,...,
j

b

y

j j j r jf y y e sl j nββ
−⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟= + − − =
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(18)

This is the first and second parts of the right-hand side of
Constraint (12). By derivation, it can be easily proved that
fj(yj) is strictly increasing and concave with respect to yj. If
it is replaced with a piecewise linear under-estimator in
problem (9-16), the solution space is expanded. Hence,
solving the resultant problem finds a lower bound for the
optimal solution. The following approach for building the

piecewise linear under-estimator lower bound is called
delta method (Bergamini et al. 2008).
Let yj

a be the value of yj, for which fj(yj) equals aj. yj
a can

be found numerically by simple arithmetic algorithms.
Further, assume that Ψj = max{pj, yj

a }. Consider a set of
K grid points gkj, k=1, … , K, which divides the interval
[Ψj, P] into K-1 equal subintervals. Figure 2 shows an
example with K=4.

Fig. 2. Division of [Ψj, P] to equidistant intervals

Theorem 3 shows the modification in problem (9-16),
resulting in replacing the non-convex curve fj(yj) with a
piecewise linear under-estimator. This replacement
expands the feasible solution space and, hence, generates
the lower bounds for the optimal solutions.

Theorem 3. By replacing fj(yj) with expression (19) and
adding Constraints (21-25) in problem (9-16), the
optimal solution to the resultant mixed integer linear
programming problem gives a lower bound for the
optimal solution of SSRU.

()
() () ()()1,1

1

1 j k j j kjK

j j kjk
j

K f g f g
f

P
ψ δ

ψ
+−

=

⎛ ⎞− −
⎜ ⎟+
⎜ ⎟−
⎝ ⎠

∑ (19)

1

1

K

j j kjk
y ψ δ−

=
≤ +∑ (20)

1 1 ; 1,...,
1 1

j j
j j

P P
v j n

K K

ψ ψ
δ

− −
≤ ≤ =

− −
 (21)

1, ; 1,..., , 2,..., 1
1 1

j j
kj kj k j

P P
v v j n k K

K K

ψ ψ
δ −

− −
≤ ≤ = = −

− −

(22)

Mehdi Iranpoor et al./ Integrated Due Date Setting…

8

1, 2, ; 1,...,
1

j
K j K j

P
v j n

K

ψ
δ − −

−
≤ =

−
(23)

0 ; 1,..., , 1,..., 1kj j n k Kδ ≥ = = − (24)

{ }0,1 ; 1,..., , 1,..., 2kjv j n k K= = = − (25)

Proof.
The following fraction is the slope of the piecewise linear
under-estimator of fj(yj) between gkj and gk+1,j.

() () ()() ()1,1 j k j j kj jK f g f g P ψ+− − −

So, if δ kj equals min{yj-gkj,gk+1,,j-gkj}, expression (19)
truly calculates the under-estimator. Whenever δk-1,j is less
than (P-Ψj)/(K-1), binary variables vkj in constraints (21-
23) force δ kj to be zero. This shows that fj(yj) is
underestimated truly on the piecewise linear under-
estimator.
Note that, as shown in Figure 2, by increasing the value
of K, the under-estimator is tightened. However, this
improvement is done under the cost of adding more
additional binary and continuous variables into the model.

7. Numerical analysis

In this section, numerical results are reported. The aim of
this section is two-fold. First, the performance of the
proposed dynasearch algorithm is evaluated. Second, the
tightness of the provided piece-linear lower bound is
assessed. To this end, the solutions of dynasearch
algorithm are compared with those of the lower bounds.
In order to conduct this comparison, 1100 instances, i.e.,
100 instances for 11 problem sizes, were generated. The
parameter values were selected randomly from the
following intervals.

slj∈U[0.2,0.95]
βr∈U[10n,30n]

βb∈U[30n, 100n]
pj∈U[50,200]
aj∈U[pj, pj +300]

All the experiments were implemented on a laptop
computer with 2.40GHz of CPU and 2.00GB of RAM.
Dynasearch was coded in C++ and the lower bound model
was solved by GAMS/CPLEX.
A popular index for analyzing the quality of a solution
approach is the average relative percentage deviation,
RPD% for short. This index calculates the relative
difference between heuristic solutions and the reference

ones. The reference solutions can be optimal, best known,
or lower bound. As shown in expression (26), RPD% is
defined here as the relative difference between the
dynasearch and lower bound solutions. In this expression,
Dyna denotes the dynasearch solution and LB implies the
lower bound.

% 100%Dyna LB
RPD

LB

−
= × (26)

The summary of the numerical results is reported in Table
2. As shown in this table, the numerical studies were
performed on 11 different problem size categories ranging
from 20 to 70 jobs (n=20 to 70). Each category included
100 randomly generated problem instances
(#Instances=100). Since the proposed lower bound is a
mixed integer linear programming problem, the optimal
solutions may not be found in a reasonable time. GAMS
has some stopping criteria. In this paper, we used reslim
and optcr. When using optcr, GAMS stops as soon as the
proportional difference between the incumbent solution
and the best possible solution is less than the optcr
parameter. On the other hand, reslim limits the execution
time spent for solving the problem. The best found and
best possible, i.e., the lower bound, solutions are reported
at the termination time. Obviously, the lower bounds of
the proposed model, can be used as the bounds for the
original problem. These best possible values are used as
LB is expression (26).
As shown in Table 2, the average run time of dynasearch
algorithm is less than a few seconds for all problem sizes.
Moreover, the average RPD% over all problems is less
than 2%. Note that this gap is measured between the
lower bound and heuristic solutions. Therefore, the
average proportional difference between dynasearch and
optimal solutions may be even less than 2%.
Box plots can provide more information about the
distribution of data than average. These plots include the
minimum, first quartile, median, third quartile, and
maximum of data, respectively. Further, in the presence of
extreme values, the median may be preferred over the
simple average. In the last column of Table 2, the box plot
of each problem category is depicted. For instance,
according to the last row of this table, 75% of test
problems with 70 jobs have the RPD% of less than 3.

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 1- 13

9

Table 2
Gap between the dynasearch and the lower bound

n

Grid

points

(K)

Instances

Termination

conditions for LB

Average run time

of LB (seconds)

Average run time

of dynasearch

(seconds)

Average

RPD%
Boxplot for RPD%

20 11 100
reslim=600

optcr=0.000
<1 <1 1.16

25 11 100
reslim=600

optcr=0.000
2.4 <1 0.86

30 11 100
reslim=600

optcr=0.000
<1 <1 0.72

35 11 100
reslim=600

optcr=0.000
24.1 <1 0.72

40 11 100
reslim=120

optcr=0.0005
44.0 <1 0.82

45 5 100
reslim=600

optcr=0.0005
30.9 <1 1.21

50 5 100
reslim=600

optcr=0.0005
46.3 1.1 1.63

55 5 100
reslim=180

optcr=0.002
47.8 1.4 1.57

60 5 100
reslim=180

optcr=0.002
70.1 1.8 1.76

65 5 100
reslim=180

optcr=0.002
88.8 2.4 1.90

70 5 100
reslim=180

optcr=0.002
124.0 2.9 2.37

Mehdi Iranpoor et al./ Integrated Due Date Setting…

10

difference between dynasearch solutions and lower
bounds for problems with 70 jobs was not greater than
2.1%. Hence, the mean difference of heuristic solutions
and optimal solutions was strictly less than 2.1%.
Regarding the complexity of the problem discussed in
Subsection 3.2, the proposed dynasearch heuristic seems
efficient.

n Results of hypothesis testing

20

Test of mu = 1.1 vs > 1.1

The assumed standard deviation = 0.765489

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 1.1572 0.7655 0.0765 1.0313 0.75 0.227

25

Test of mu = 0.8 vs > 0.8

The assumed standard deviation = 0.531588

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 0.8642 0.5316 0.0532 0.7768 1.21 0.113

30

Test of mu = 0.65 vs > 0.65

The assumed standard deviation = 0.480157

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 0.7244 0.4802 0.0480 0.6454 1.55 0.061

35

Test of mu = 0.65 vs > 0.65

The assumed standard deviation = 0.480157

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 0.7223 0.5164 0.0516 0.6373 1.40 0.081

40

Test of mu = 0.75 vs > 0.75

The assumed standard deviation = 0.712152

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 0.8192 0.7122 0.0712 0.7021 0.97 0.165

45

Test of mu = 1.1 vs > 1.1

The assumed standard deviation = 0.714515

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 1.2114 0.7145 0.0715 1.0939 1.56 0.060

50

Test of mu = 1.5 vs > 1.5

The assumed standard deviation = 0.996387

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 1.6300 0.9964 0.0996 1.4661 1.30 0.096

55

Test of mu = 1.5 vs > 1.5

The assumed standard deviation = 0.936846

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 1.5708 0.9368 0.0937 1.4167 0.76 0.225

60

Test of mu = 1.6 vs > 1.6

The assumed standard deviation = 1.15098

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 1.760 1.151 0.115 1.571 1.39 0.082

65

Test of mu = 1.7 vs > 1.7

The assumed standard deviation = 1.26307

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 1.899 1.263 0.126 1.691 1.57 0.058

70

Test of mu = 2.1 vs > 2.1

The assumed standard deviation = 1.67306

Variable N Mean StDev SE Mean 95% Lower Bound Z P

rpd% 100 2.367 1.673 0.167 2.092 1.60 0.055

Fig. 3. Z-test of RPD% measure

In order to make statistical inference about the average
RPD%, one sample z-test was performed for each
problem size. The statistical tests were performed in
Minitab 16. The results of these tests are reported in
Figure 3. All p-values were less than 0.05. Hence, all null
hypotheses were accepted at 95% confidence level. For
instance, according to this figure, the mean of the average

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 1- 13

11

8. Conclusion and Future Research

In this paper, an integrated solution approach was
developed for a machine scheduling problem with reliable
due date setting by considering an unexpected
unavailability. Given the sequence of jobs, the closed-
form formula of optimal due dates was derived. It was
proved that the problem is NP-hard in the strong sense.
The nonlinear mathematical programming formulation of
the problem was built. The formulation was the base for
designing a tight lower bound. An iterated dynasearch
algorithm was then proposed to solve the problem. Due to
the proved NP-hardness and nonlinearity of the problem,
it was very tough to find the optimal solutions to evaluate
the efficiency of dynasearch algorithm. Hence, a mixed
integer programming lower bound was developed. The
small gaps between heuristic and lower bound solutions
revealed the good quality of the proposed dynasearch as
well as the tightness of the lower bound.
To the best of our knowledge, this study is the first one
dealing with due date setting by considering random
unavailability within a scheduling environment.
Therefore, a promising avenue for future research is to
study various integrated due date setting and scheduling
problems with the consideration of random unavailability
intervals. Further, the proposed dynasearch heuristic has
good quality solutions. Hence, this heuristic can be
combined as an initial solution, i.e., upper bound, with a
relaxation of the proposed lower bound to develop a
branch and bound algorithm for the studied problem.

References

Agnetis, A., Detti, P. & Martineau, P. (2017). Scheduling

nonpreemptive jobs on parallel machines subject to
exponential unrecoverable interruptions. Computers
& Operations Research, 79(1), 109–118.

Angel, E., & Bampis, E. (2005). A multi-start dynasearch
algorithm for the time dependent single-machine
total weighted tardiness scheduling problem.
European Journal of Operational Research, 162(1),
281–289.

Baker, K.R. (2014). Setting optimal due dates in a basic
safe-scheduling model. Computers & Operations
Research, 41(1), 109–114.

Baker, K.R., & Trietsch, D. (2015). Trading off due-date
tightness and job tardiness in a basic scheduling
model. Journal of Scheduling, 18(3), 305-309.

Baker, K.R., & Trietsch, D. (2009). Safe scheduling:
Setting due dates in single-machine problems.
European Journal of Operational Research, 196(1),
69–77.

Bergamini, M.L., Grossmann, I., Scenna, N., & Aguirre,
P. (2008). An improved piecewise outer-
approximation algorithm for the global optimization
of MINLP models involving concave and bilinear
terms. Computers & Chemical Engineering, 32(3),
477–493.

Congram, R. K., Potts, C.N., & Velde, S.L.V.D. (2002).
An Iterated Dynasearch Algorithm for the Single-

Machine Total Weighted Tardiness Scheduling
Problem. INFORMS Journal on Computing, 14(1),
52-67

Ding, J., Lu, Z., Cheng, T.C.E., & Xu, L. (2016).
Breakout dynasearch for the single-machine total
weighted tardiness problem. Computers & Industrial
Engineering, 98(1), 1–10.

Dumitrescu, I., & Stutzle, T. (2010). Usage of Exact
Algorithms to Enhance Stochastic Local Search
Algorithms, In: Matheuristics. Springer, New York.

Elyasi, A., & Salmasi, N. (2013). Due date assignment in
single machine with stochastic processing times.
International Journal of Production Research, 51(8),
2352-2362.

Gerstl, E., & Mosheiov, G. (2013). Minmax due-date
assignment with a time window for acceptable lead-
times. Annals of Operations Research, 211(1), 167–
177.

Grosso, A., Croce, F.D., & Tadei, R. (2004). An enhanced
dynasearch neighborhood for the single-machine
total weighted tardiness scheduling problem.
Operations Research Letters, 32(1), 68–72.

Huo, Y., Reznichenko, B., & Zhao, H. (2014).
Minimizing total weighted completion time with an
unexpected machine unavailable interval. Journal of
Scheduling, 17(2), 161–172.

Kacem, I., & Kellerer, H. (2016). Semi-online scheduling
on a single machine with unexpected breakdown.
Theoretical Computer Science, 646(1), 40–48.

Kacem, I., Nagih, A., & Seifaddini, M. (2014). Maximum
lateness minimization with positive tails on a single
machine with an unexpected non-availability
interval. Computer Applications and Information
Systems (WCCAIS), 2014 World Congress on, IEEE
Press, 1-5.

Kedad-Sidhoum, S., & Sourd, F. (2010). Fast
neighborhood search for the single machine
earliness–tardiness scheduling problem. Computers
& Operations Research, 37(8), 1464–1471.

Keskinocak, P., & Tayur, S. (2004). Due date
management policies, In: Handbook of Quantitative
Supply Chain Analysis. Kluwer Academic
Publishers, Boston.

Miller, C.E., Tucker, A.W., & Zemlin, R.A. (1960).
Integer programming formulation of traveling
salesman problems. Journal of the ACM (JACM),
7(4), 326-329.

Montgomery, D.C., & Runger, G.C. (2014). Applied
Statistics and Probability for Engineers. 6th edition,
Wiley, Danvers.

Mor, B., Mosheiov, G., & Shabtay, D. (2013). A note:
Minmax due-date assignment problem with lead-time
cost. Computers & Operations Research, 40(8),
2161–2164.

Öncan, T., Altınel, İ.K., & Laporte, G. (2009). A
comparative analysis of several asymmetric traveling
salesman problem formulations. Computers &
Operations Research, 36(3), 637–654.

Mehdi Iranpoor et al./ Integrated Due Date Setting…

12

Pinedo, M. L. (2012). Scheduling: theory, algorithms, and
systems. 4th edition, Springer Science & Business
Media, New York.

Shabtay, D. (2010). Scheduling and due date assignment
to minimize earliness, tardiness, holding, due date
assignment and batch delivery costs. International
Journal of Production Economics, 123(1), 235–242.

Shabtay, D. (2016). Optimal restricted due date
assignment in scheduling. European Journal of
Operational Research, 252(1), 79–89.

Shabtay, D., & Steiner, G. (2006). Two due date
assignment problems in scheduling a single machine.
Operations Research Letters, 34(6), 683–691.

Slotnick, S.A. (2014). Lead-time quotation when
customers are sensitive to reputation. International
Journal of Production Research, 52(3), 713-726.

Slotnick, S.A., & Sobel, M.J. (2005). Manufacturing lead-
time rules: Customer retention versus tardiness costs.

European Journal of Operational Research, 163(3),
825–856.

Sourd, F. (2006). Dynasearch for the earliness–tardiness
scheduling problem with release dates and setup
constraints. Operations Research Letters, 34(5),
591–598.

Yin, Y., Cheng, T.C.E., Yang, X., & Wu, C.C. (2015).
Two-agent single-machine scheduling with
unrestricted due date assignment. Computers &
Industrial Engineering, 79, 148–155.

Yin, Y., Wang, D. J., Wu, C.C., & Cheng, T.C.E. (2016).
CON/SLK Due Date Assignment and Scheduling on
a Single Machine with Two Agents. Naval Research
Logistics, 63(5), 416-429.

Yin, Y., Wang, Y., Cheng, T.C.E., Liu, W., & Li, J.
(2017). Parallel-machine scheduling of deteriorating
jobs with potential machine disruptions. Omega,
69(1), 17–28.

This article can be cited: Iranpoor M. & Fatemi Ghomi S.M.T (2019). Integrated Due Date
 Setting and Scheduling on a Single Machine Considering an Unexpected Unavailability.
 Journal of Optimization in Industrial Engineering. 12 (1), 1-13

http://www.qjie.ir/article_538023.html
DOI: 10.22094/JOIE.2017.644.1415

Appendix A: Proof of lemma 2.

In this case, in order to satisfy the required service level,
the probability of the occurrence of unavailability should
be considered. Accordingly, the feasible due date should
be

[] []1

j

kj k
d p

=
>∑

Let ρ[j] be an extra time added to []1

j

kk
p

=∑ to obtain an
acceptable due date for job [j]. In other words,

[] [][]1

j

kj jk
d p ρ

=
= +∑

The stochastic variable of the completion time of job [j]
before d[j] can be calculated in two ways.

First,

[] [][]1

j

k j jk
p C d

=
< ≤∑ and

[] []1

j

kj k
C p

=
≤∑ are

mutually exclusive events. So, the general addition rule
(Montgomery and Runger, (2014)) results in (27).

[] []() [] []() []()[] []1 1
Pr Pr Prj j

k kj j j j jk k
p C d C d C p

= =
< ≤ = ≤ − ≤ ⇒∑ ∑

[] []() []

[]1

[]1
Pr e

j
kk

b

p

j

k j j jk
p C d sl β

=−

=

∑
< ≤ = −∑ (27)

 Second, the definition of conditional probability
(Montgomery and Runger, (2014)) results in (28).

[] []() [] []() []()()[] []1 1
Pr Prj j

k kj j j j jk k
p C d C d C p

= =
< ≤ = ≤ >∑ ∑∩

[] [] []() []()[] []1 1
Pr Prj j

k kj j j jk k
C d C p C p

= =
= ≤ > × >∑ ∑

[]()
[]1

Pr 1 e

j
kk

b

p

r jT βρ
=−

⎛ ⎞∑
⎜ ⎟= ≤ × − ⇒⎜ ⎟⎜ ⎟
⎝ ⎠

[] []()
[] []1

[]1
Pr 1 e 1 e

j
kj k

br

p

j

k j jk
p C d

ρ

ββ
=−−

=

⎛ ⎞∑⎛ ⎞
⎜ ⎟⎜ ⎟< ≤ = − × −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑

(28)

The left hand sides of equations (27) and (28) are equal.
After putting the right hand sides in an equality and doing
some calculations, it is concluded that

[] []()
[]1

ln 1 1

j
kk

b

p

rj je slβρ β
=−

⎛ ⎞⎛ ⎞∑
⎜ ⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

By the substitution of ρ[j] in

[] [][]1

j

kj jk
d p ρ

=
= +∑ , the proof

is completed.

[] []()
[]1

[]1
ln 1 1

j
kk

b

p

j

k rj jk
d p e slββ

=−

=

⎛ ⎞⎛ ⎞∑
⎜ ⎟⎜ ⎟= + − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

Appendix B. The detailed pseudo-code of dynasearch
heuristic

Let σ be an arbitrary sequence and obj the value of its
objective function. The pseudo-code of the dynamic

Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 1- 13

13

programming algorithm for SSRU, which is a
modification of one used in (Angel and Bampis, (2005)),
is shown in Figure 4.
As shown in Figure 1, the dynamic programming
algorithm is called at each iteration with an input
sequence. The search within this dynamic programming
algorithm is conducted in a backward manner. This

algorithm applies the best set of pairwise independent
moves on the input solution. Symbols i, j and k denote the
jobs in these positions of the sequence. dyna(i) is the best
objective function of jobs in positions i through n.
forward_cost[j] represents the total costs of jobs in
positions i through n when jobs i and j are swapped.

Fig. 4. Detailed pseudo-code of dynasearch algorithm for SSRU

