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Abstract 

In this paper, an integrated machine scheduling with its due date setting problem has been considered. It is assumed that the machine is 
subject to some kind of random unavailability. Due dates should be set in an attractive and reliable manner, implying that they should be 
short and possible to be met. To this end, first, long due dates are penalized in the objective function. Then, for each customer order, the 
probability of meeting his/her promised due date is forced to be at least as large as his/her required service level. To handle this integrated 
problem, first, the optimal due date formula for any arbitrary sequence is derived. By using this formula, the mathematical programming 
formulation of the problem, including a nonlinear non-convex expression, is developed. By defining a piecewise linear under-estimator, the 
solutions of the resultant mixed integer linear programming formulation have become the lower bounds of the problem. Dynasearch is a 
very efficient heuristic utilizing the dynamic programming approach to search exponential neighborhoods in the polynomial time. An 
iterated dynasearch heuristic is developed for the sequencing part of the problem. Each generated sequence is evaluated by computing its 
optimal due dates using the above-mentioned formula. Numerical results confirmed the high quality of the solutions found by this 
algorithm, as compared with the lower bound. 
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1. Introduction 

This paper studies the integrated machine scheduling and 
due date setting problem by considering the random 
machine unavailability. If the quoted due dates are not 
competitively short, customers may opt to buy from faster 
competitors. So, the sales and revenues should be 
diminished. On the other hand, if the due dates are set at 
unachievable values, the promised due dates are more 
likely to be violated; therefore, the company's good-will is 
damaged.  So, the objective is defined as the minimization 
of long due date effects while respecting the required 
service levels of jobs. We refer to this problem as safe 
scheduling with random unavailability (SSRU). 
There is some important trade-off in due date setting 
decisions between attractiveness and credibility (Slotnick, 
2014).  Setting short due dates reflects better 
responsiveness to customer orders, attracting new 
customers and encouraging the current customers to 
retain. However, the tardiness is more likely to happen 
(Slotnick and Sobel, 2005). Tardiness, in turn, degrades 
the reputation of the manufacturing company and brings 
about contractual penalties (Slotnick and Sobel, 2005). 
Conversely, long due dates may not be acceptable by 
customers, resulting in price discount offers by the 
company to maintain its business (Shabtay, 2016). On the 
other hand, long due dates facilitate production planning 
and are more likely to be attained (Yin et al., 2015). Due 
dates cannot be determined precisely when the sequence 
of jobs is not known. This is why due date setting and 

scheduling decisions are usually studied as an integrated 
problem. 
Typically, each customer considers a maximum length of 
lead time to be acceptable (Shabtay,2010). If the quoted 
due dates do not exceed the acceptable lead time, there 
will be no lead time penalty. However, the due dates later 
than these limits are subject to long due date penalties. 
Shabtay and Steiner studied two integrated machine 
scheduling and due date setting problems by considering 
the acceptable lead time and due date assignment cost 
(Shabtay and Steiner, 2006). Their problems were the 
minimization of total weighted earliness/tardiness and the 
total weighted number of tardy jobs. They proved that 
both problems were NP-hard and developed polynomial 
approaches for some special cases. Shabtay addressed 
some integrated machine scheduling and due date setting 
regarding earliness, tardiness, holding, batch delivery, and 
long due date penalties (Shabtay, 2010). He also assumed 
that there is no due date cost when a due date is assigned 
not greater than the acceptable lead time. He proved that 
the problem was NP-hard and developed polynomial 
algorithms for the batch partitioning part and two special 
cases of the problem. Gerstl and Mosheiov considered an 
acceptable common due window and penalized both early 
and late due dates in a machine scheduling setting (Gerstl 
and Mosheiov, 2013). They assumed that early due dates 
were unfavorable because customers needed some 
preparation time before receiving their products.  They 
developed a polynomial approach that minimized the 
maximum due date and job costs. Mor et al. (Mor et al. 
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2013) addressed a machine scheduling problem with the 
job-dependent acceptable lead time. They developed a 
polynomial algorithm which minimized maximum 
earliness, tardiness, and due date costs. Yet et al. (Yin et 
al., 2016 ), on the other hand, addressed some due date 
setting and machine scheduling problems in which jobs 
were owned by two agents. They assumed that the due 
dates of one agent were given, whereas the due dates of 
the other agents were decision variables. The objective 
was the minimization of the total due date assignment and 
tardiness costs of the latter agent while keeping the 
objective value of the former under a predetermined 
threshold. They developed some polynomial and pseudo-
polynomial dynamic programming algorithms for these 
problems. Shabtay (Shabtay 2016) studied some due date 
setting and scheduling problems with upper bound 
constraints on the assigned due dates; therefore, the 
objective was the minimization of total earliness, 
tardiness, and long due dates penalties. He proved that all 
optimal solutions excluded earliness. He analyzed the 
problems in various parameter settings. NP-hardness was 
proved in some cases, and polynomial-time algorithms 
were developed for some other ones. 
Due date setting problem becomes more challenging in 
the presence of uncertainty. In this situation, a popular 
approach is trying to quote tight due dates while 
respecting some required service level constraints 
(Keskinocak and Tayur 2004). The service level of each 
job is defined as the probability that the processing of the 
job is completed by its quoted due date (Elyasi and 
Salmasi 2013). One source of uncertainty is the 
randomness of processing times. Elyasi and Salmasi, for 
example, studied two due date assignment and scheduling 
problems by considering service level constraints and 
random processing times (Elyasi and Salmasi, 2013). 
They proved that sequencing jobs in a decreasing service 
level order minimized the maximum assigned due date. 
They also studied the properties of solutions with the 
minimum total expected earliness, tardiness, and due date 
costs. Baker and Trietsch studied several integrated due 
date settings and machine scheduling problems with 
regard to stochastic processing times (Baker and Trietsch, 
2009). Assuming stochastically-ordered processing time 
distributions, they proved that sequencing the jobs in the 
non-decreasing order of expected processing times 
minimized some objective functions including the due 
date cost. They also proposed some static and dynamic 
heuristics when this assumption was not held. Baker, on 
the other hand, dealt with the minimization of the sum of 
the assigned due dates in a single machine scheduling 
problem with normally distributed processing times 
(Baker, 2014). He assumed that the service level 
constraints had to be met. He developed a branch and 
bound approach and some efficient simple dispatching 
rules. Baker and Trietsch developed a powerful branch 
and bound algorithm to minimize the sum of the total due 
date and expected tardiness costs in a machine scheduling 
environment with normally distributed processing times 
(Baker and Trietsch, 2015).  They derived the optimal 
service level in any given sequence of jobs. 

The other significant source of uncertainty is machine 
availability. The unavailability can be a result of random 
breakdown or arrival of an emergent job which should be 
processed immediately (Kacem et al. 2014). In both cases, 
the start and length of the unavailability interval are not 
known in advance (Huo et al., 2014). To the best of our 
knowledge, due date setting in the presence of random 
unavailability has not been studied in the literature yet. It 
must be noted that Kacem et al. studied a machine 
scheduling problem with regard to an unexpected 
unavailability for the minimization of the maximum 
lateness (Kacem et al., 2014). They addressed two sources 
of unavailability: breakdown and entrance of an emergent 
job. The difference in these cases was that the arriving 
emergent job was considered when calculating the 
maximum lateness. They analyzed the approximability of 
these problems, proving that Jackson rule was a 2-
approximation algorithm for both cases. Huo et al. also 
considered the two similar cases, but with the objective of 
the minimization of the total weighted completion time in 
which the weight of each job was proportional to its 
processing time (Huo et al. 2014). They showed that 
the simple a LPT rule and its variation had 
competitive approximation ratios for the situations 
with known unavailability and unknown 
unavailability information, respectively. Yin et al. 
(2017) considered parallel machine scheduling problems 
with possible disruptions and deteriorating 
processing times. They assumed that some of the 
machines might be disrupted at known times, but the 
duration of disruption was stochastic. They analyzed 
two cases of immediate maintenance after disruption, 
which returned the machine to its original efficient state, 
and not performing maintenance. They developed some 
pseudo-polynomial time approximation algorithms and 
polynomial-time approximation schemes for these 
problems. Agnetis et al. (Agnetis et al., 2017) studied a 
parallel machine scheduling problem under unrecoverable 
interruptions. They assumed that if such an interruption 
(failure) happened on one machine, all jobs scheduled on 
that machine and not processed yet could not be 
completed or moved to another machine. Their objective 
was finding the sequence maximizing the expected 
number of the completed jobs on all machines. They 
proposed a pseudo-polynomial time exact algorithm and 
an efficient list scheduling heuristic. Kacem and Kellerer 
(Kacem and Kellerer, 2016) addressed three semi-online 
single machine scheduling problems under a single 
unexpected breakdown. The first two problems were the 
minimization of makespan with/without jobs' release 
times; while the third problem was the minimization of 
the maximum lateness without considering the release 
times. They provided three approximation algorithms with 
tight solutions, as compared with the optimal offline 
solutions with known start time and duration of 
breakdown. 
 The contributions of the paper are as follows:
(1) To the best of our knowledge, the novel problem of 
due date setting, considering stochastic machine 
unavailability, either with or without the required service 
level constraints, is studied for the first time. 
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(2) The optimal due date formula is derived for any 
arbitrary sequence.  
(3) A dynamic programming-based heuristic, called 
dynasearch, is proposed to find efficient solutions. 
(4) A tight lower bound is developed for the evaluation of 
the heuristic solutions. 
The paper is organized as follows. In Section 2, the 
problem is formally defined and the notations are 
introduced. Section 3 derives the optimal due dates in any 
arbitrary given sequence. Further, in this section, it is 
proved that the problem is NP-hard in the strong sense. 
By using the optimal due date formula, the mathematical 
programming formulation of the problem is developed in 
Section 4. Section 5 describes the iterated dynasearch 
algorithm used to solve the problem.  In order to evaluate 
the quality of this heuristic algorithm, a lower bound is 
developed in Section 6.  The performance of the proposed 
algorithm and the tightness of the lower bound are 
evaluated numerically in Section 7. Finally, Section 8 
summarizes the results. 
 
 

2. Problem Definition and Notations 

This paper studies an integrated due date setting and 
machine scheduling problem. Each job has an acceptable 
lead time. Setting due dates later than these acceptable 
lead times are penalized. The objective is the 
minimization of total long due date penalties. The 
machine is subject to an unexpected unavailability. This 
uncertainty does not allow for the quotation of 100% 
guaranteed due dates. In other words, breakdown may 
cause tardiness. However, due dates should be reliable. 
Hence, due dates not satisfying the required service level 
constraints are not allowed. As mentioned above, service 
level is the probability that the processing of the job is 
completed by its quoted due date. Each job has a specific 
required service level. It is assumed that the length of the 
time interval before the start of unavailability and the 
length of unavailability follow exponential distributions. 
All jobs are available at time zero. Further, it is assumed 
that preemption is allowed. In other words, the processing 
of the interrupted job is resumed as soon as the machine is 
repaired.   
The parameters and decision variables are as follows. 

 
Parameters 

n:  the number of jobs 

Tb: the stochastic variable of time interval before the 

start of unavailability 

βb: the average time before the start of unavailability 

Tr :  the stochastic variable of the duration of 

unavailability 

β r: the average time of the duration of unavailability 

aj:  the acceptable lead time of job j  

pj: the processing time of job j  

P: the total processing times of all jobs 

p : the average processing time of all jobs  

wj: the weight of job j  

slj: the required service level of job j 

Decision variables 

[j]: the index of job scheduled as the jth job  

Cj: the stochastic variable of the completion time of job j  

dj: the due date of job j  

xij: the binary variable which is 1 whenever job i 

precedes job j in the sequence or i=j 

yj: the completion time of the jth job in the sequence 

when unavailability does not occur 

 

As mentioned above, the objective is the minimization of 
the total long due date penalties:  
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 wherein (Χ)+ refers to the maximum of zero and Χ.  
In an arbitrary sequence of jobs, the completion time of 
the jth job in the sequence is computed through 
expression (2). 
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The first term in (2) is the summation of the processing 
times of jobs from the beginning of the sequence to the jth 
job. This situation happens when the unavailability does 

not occur before completing the jth job. The second term 
is the complementary situation. In this case, the 
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completion time of the 
jth job includes the stochastic

variable of the repair time (Tr). 
Each customer has a required service level, which must be 
respected. The service level constraint of job j is 
Pr(Cj≤dj)≥slj, which means that the probability of 
violating each due date should be less than or equal to the 
corresponding required service level. When this inequality 
holds, job j is called stochastically on time; else, it is 
called stochastically tardy (Baker, 2014). In order to 
minimize the due date costs, djs should have the minimum 
possible values. Therefore, equation (3) meets the 
required service levels and minimizes the long due date 
effects. 

( )Pr ; 1,...,j j jC d sl j n≤ = =    (3) 

3. Finding the Optimal Solutions 

The problem under study (SSRU) has two parts: 
determining the due dates and sequencing the jobs. In this 
section, first, the optimal due dates are derived for the 
known sequences of jobs. Then, it is proved that the 
problem is NP-hard in the strong sense. 

3.1 Optimal due dates in the known sequences 

In this subsection, it is proved that in any given sequence 
of jobs, the optimal due dates can be calculated by a 
closed form expression. This result is used to develop the 
solution approach and the lower bound in the subsequent 
sections. To derive the optimal due dates, two 
complementary cases of the required service levels are 
handled in the following lemmas. As shown in Lemma 1, 
in the first case, the unexpected unavailability can be 
omitted.  
Lemma 1. In an arbitrary sequence, for each job [j] with  
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the optimal due date is [ ]1

j
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Proof. 
In this case, the probability that the unavailability starts 
after the completion of job [j] is larger than the required 
service level. Thus, with neglecting the unexpected 
unavailability, the required service level is satisfied, and 
the due date costs are minimized. 
                                                                                                               
The second lemma presents a closed-form expression of 
the optimal due dates for the complementary case. In this 
case, the probability of the occurrence of random 
breakdown affects the optimal due date of job [j]; hence, 
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Lemma 2. In an arbitrary sequence, for each job [j] with 
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the optimal due date is  
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Proof.  
See appendix A.   
The following theorem is a straightforward combination 
of the above lemmas. 
Theorem 1. In an arbitrary sequence, the optimal due date 
of job [j] is 
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In case condition (4) is held, the natural logarithm in (7) is 
negative; so, d[j] equals the resultant of lemma 1. On the 
other hand, in case where condition (5) is held, the 
logarithm is positive and the above expression equals the 
resultant of lemma 2.  
                                                                      
3.2 Computational complexity 

In this section, it is proved that SSRU is NP-hard in the 
strong sense. The proof is proceeded by showing that the 
problem contains the single machine total weighted 
tardiness problem as a special case. Hence, according to 
the widely conjectured assumption P≠NP, developing an 
algorithm to find the optimal solution in the polynomial or 
pseudo-polynomial time seems impossible. Therefore, in 
Section 5, an efficient heuristic is developed to find near 
optimal solutions in reasonable times.  
Theorem 2. SSRU is strongly NP-hard. 

Proof.  
It should be proved that there is a strongly NP-hard 
problem, which is reducible to SSRU. Single machine 
total weighted tardiness problem, denoted by 1||∑wT, is 
strongly NP-hard (Pinedo, 2012). Here, based on the 
following transformation, it is shown that 1||∑wT is 
reducible to SSRU. 
slj=0; j=1,…,n 
   According to Lemma 1, in any schedule, the optimal 
due dates would be: 

[ ][ ] 1

j

j kk
d p

=
= ∑  

Hence, the problem can be regarded as a 1||∑wT in which 
the due date of job j is aj and the weight of job j is wj.                    

4. Mathematical Programming Formulation 

In order to formulate the problem, we use the optimal due 
date formula. According to the proof of Theorem 1, 
expression (7) can be rewritten as follows: 
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Therefore, the mathematical formulation of the problem is as follows: 
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Expression (9) minimizes total long due date effects. 
Constraints (10-12) calculate zjs. Constraint (10) sets yj

equal to the total processing times of jobs [1] to [j]. On 
the other hand, constraints (11) and (12) force that zj

 

≥

 

d*
j

 

– aj. Also, the non-negativity of zj and minimization of 
∑wjzj guarantee that zj equals (d*

j – aj)+, that is, the 
amount by which the optimal due date of job j violates its 
acceptable lead time. Constraint (13) is similar to the 
subtour elimination constraint in MTZ formulation of the 
traveling salesman problem (Öncan et al. 2009). However, 
in MTZ formulation, xij =1 if and only if job j precedes job 
j

 

immediately. Nevertheless, the proof that constraints 
(13-16) discard all subtours and exclude no feasible 
sequence is similar to that of MTZ formulation. So, for the 
sake of brevity, it is not repeated here, and the interested 
readers are referred to (Miller et al. 1960).    

5. Iterated Dynasearch Algorithm 

As shown in Subsection 3.2, there are similarities between 
the problem under study and the total weighted tardiness 
problem. Dynasearch is a heuristic that uses a dynamic 
programming approach in order to search exponential size 
neighborhoods in a polynomial time. According to the 
literature, this algorithm has been used several times for 
machine scheduling problems with total tardiness and 
total weighted tardiness objectives. For instance,

 

Angel 
and Bampis (2005), Congram et al. 

(2002), Kedad-Sidhoum and Sourd (2010), Grosso et al. 
(2004), and Sourd (2006) used dynasearch for solving 
machine scheduling problems in which the objective 
function includes sum or total weighted tardiness. In 
another study, Ding et al. combined dynasearch with 
an adaptive perturbation strategy to solve the total 
weighted tardiness problem on a single machine (Ding 
et al. 2016). The efficiency of dynasearch in these 
studies promised successful application to the problem 
under study.  Congram et al. introduced dynasearch 
heuristic as a powerful local search algorithm capable 
of searching the exponential size neighborhood in the 
polynomial time (Congram et al., 2002). Typically, while 
the neighborhood gets larger, the quality of solutions 
found by the traditional local search approaches is 
decreased. As a powerful local search algorithm, 
dynasearch mitigates this deficiency using a dynamic 
programming approach (Dumitrescu and Stützle, 2010). 
By employing dynamic programming, dynasearch 
conducts a series of moves in each iteration. This feature 
makes dynasearch superior to traditional local search 
algorithms in which a single move is made in each 
iteration. Neighborhood in dynasearch is built by a 
combination of independent move operations (Kedad-
Sidhoum and Sourd, 2010). Two move operations are 
called independent when they work on separate parts of 
the sequence. This concept is exemplified in Table 1.  
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Table 1 
Examples for the description of independent moves 

Original sequence Move Independent? 

1-2-3-4-5-6-7-8 
swap jobs 1 and 5 
swap jobs 7 and 8  YES 

1-2-3-4-5-6-7-8 
swap jobs 1 and 2 
swap jobs 4 and 5   YES 

1-2-3-4-5-6-7-8 swap jobs 2 and 5 
swap jobs 4 and 8 

 NO 
 

The dynasearch neighborhood comprises all sequences 
that can be derived from the current solution by a 
combination of pairwise independent moves. The 
dynamic programming used in dynasearch checks all 
these neighbor solutions and returns the best one. The 
detailed pseudo-code of this dynamic programming for 
SSRU is presented in appendix B. 

Dynasearch starts with an initial sequence as the input. In 
this paper, expression (17) is proposed to construct the 
initial solution. To this end, in each step, the non-
sequenced job with the highest MAUj is sequenced as the 
next job. 
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(17) 

This expression is a modified version of the apparent 
urgency used in (Congram et al. 2002) for the single-
machine total weighted tardiness scheduling problem. In 
this expression, k is the parameter of the dispatching rule. 
We call this dispatching rule the modified apparent 
urgency. 
Figure 1 depicts the proposed iterated dynasearch for 
SSRU. The algorithm starts by a sequence generated by 
the modified apparent urgency rule. Then, the dynamic 
programming algorithm is run within a loop until the 
stopping condition is met. In each iteration of the loop, the 
dynamic programming algorithm is recalled from the 
solution found in the previous step. If the objective 

functions of two calls are the same, the found solution is a 
local optimum. In such a case, the search is repeated 
based on a perturbed solution generated from the previous 
local optimal solution or the best found solution until now 
(Congram et al., 2002). The perturbation is conducted by 
applying a random number of non-necessarily 
independent moves on the selected solution. As 
mentioned in (Congram et al., 2002), the dominance of 
dynasearch over traditional local search algorithms 
becomes more prominent when the search is repeated 
from the previous near local optimal solutions. The 
algorithm is stopped when the number of loops in which 
local optima happen becomes a predefined number.

 

 

Fig. 1. Flowchart of iterated dynasearch algorithm for SSRU 
 

 

Generate initial solution using 
modified apparent urgency  

Run dynamic programming
as described in appendix B

Algorithm is caught 
in local optimum?

Apply the perturbation

Stopping 
condition is met?

Start

End 

YES

NO

YES

NO 

swap jobs 6 and 7 
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6. Lower Bound Solution 

In order to evaluate the quality of the solutions of the 
dynasearch algorithm, either the optimal or lower bound 
should be available. Problem (9-16) is a non-convex 
mixed integer nonlinear programming one. Therefore, 
general optimization packages cannot guarantee finding 
global optimum solutions even for small-sized problems. 
Further, as shown in subsection 3.2, the problem is 
strongly NP-hard. Thus, finding the optimal solution to 
this problem in a reasonable time seems impossible. A 

lower bound is, therefore, developed in this section to 
measure the quality of the heuristic solutions.  
The lower bound is developed through replacing the 
nonlinear part of constraint (12) by a piecewise under-
estimator. This replacement results in a mixed integer-
programming problem with additional continuous and 
binary variables. Thanks to the modern codes for solving 
pure and mixed integer programming problems, piecewise 
linear approximations, even with extra continuous and 
integer variables, are more manageable than the original 
nonlinear problems (Bergamini et al. 2008). Let fj(yj) be 
defined as 

( ) ( )ln 1 1 ; 1,...,
j

b

y

j j j r jf y y e sl j nββ
−⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟= + − − =
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(18) 

This is the first and second parts of the right-hand side of 
Constraint (12). By derivation, it can be easily proved that 
fj(yj) is strictly increasing and concave with respect to yj. If 
it is replaced with a piecewise linear under-estimator in 
problem (9-16), the solution space is expanded. Hence, 
solving the resultant problem finds a lower bound for the 
optimal solution. The following approach for building the 

piecewise linear under-estimator lower bound is called 
delta method (Bergamini et al. 2008). 
Let yj

a be the value of yj, for which fj(yj) equals aj. yj
a can 

be found numerically by simple arithmetic algorithms. 
Further, assume that Ψj = max{pj, yj

a }. Consider a set of 
K grid points gkj, k=1, … , K, which divides the interval 
[Ψj, P] into K-1 equal subintervals. Figure 2 shows an 
example with K=4.  

Fig. 2. Division of [Ψj, P] to equidistant intervals 

Theorem 3 shows the modification in problem (9-16), 
resulting in replacing the non-convex curve fj(yj) with a 
piecewise linear under-estimator. This replacement 
expands the feasible solution space and, hence, generates 
the lower bounds for the optimal solutions. 

Theorem 3. By replacing fj(yj) with expression (19) and 
adding Constraints (21-25) in problem (9-16), the 
optimal solution to the resultant mixed integer linear 
programming problem gives a lower bound for the 
optimal solution of SSRU. 

( )
( ) ( ) ( )( )1,1

1

1 j k j j kjK

j j kjk
j

K f g f g
f

P
ψ δ

ψ
+−

=

⎛ ⎞− −
⎜ ⎟+
⎜ ⎟−
⎝ ⎠

∑ (19) 

1

1

K

j j kjk
y ψ δ−

=
≤ +∑  (20) 

1 1 ; 1,...,
1 1

j j
j j

P P
v j n

K K

ψ ψ
δ

− −
≤ ≤ =

− −
 (21) 

1, ; 1,..., , 2,..., 1
1 1

j j
kj kj k j

P P
v v j n k K

K K

ψ ψ
δ −

− −
≤ ≤ = = −

− −

(22) 
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1, 2, ; 1,...,
1

j
K j K j

P
v j n

K

ψ
δ − −

−
≤ =

−
(23) 

0 ; 1,..., , 1,..., 1kj j n k Kδ ≥ = = − (24) 

{ }0,1 ; 1,..., , 1,..., 2kjv j n k K= = = −  (25) 

Proof.   
The following fraction is the slope of the piecewise linear 
under-estimator of fj(yj) between gkj and gk+1,j. 

( ) ( ) ( )( ) ( )1,1 j k j j kj jK f g f g P ψ+− − −

So, if δ kj equals min{yj-gkj,gk+1,,j-gkj}, expression (19) 
truly calculates the under-estimator. Whenever δk-1,j is less 
than (P-Ψj)/(K-1), binary variables vkj in constraints (21-
23) force δ kj to be zero. This shows that fj(yj) is 
underestimated truly on the piecewise linear under-
estimator.                            
Note that, as shown in Figure 2, by increasing the value 
of K, the under-estimator is tightened. However, this 
improvement is done under the cost of adding more 
additional binary and continuous variables into the model.  

7. Numerical analysis 

In this section, numerical results are reported. The aim of 
this section is two-fold. First, the performance of the 
proposed dynasearch algorithm is evaluated. Second, the 
tightness of the provided piece-linear lower bound is 
assessed. To this end, the solutions of dynasearch 
algorithm are compared with those of the lower bounds. 
In order to conduct this comparison, 1100 instances, i.e., 
100 instances for 11 problem sizes, were generated. The 
parameter values were selected randomly from the 
following intervals. 

slj∈U[0.2,0.95] 
βr∈U[10n,30n] 

βb∈U[30n, 100n] 
pj∈U[50,200]
aj∈U[pj, pj +300] 

All the experiments were implemented on a laptop 
computer with 2.40GHz of CPU and 2.00GB of RAM. 
Dynasearch was coded in C++ and the lower bound model 
was solved by GAMS/CPLEX.    
A popular index for analyzing the quality of a solution 
approach is the average relative percentage deviation, 
RPD% for short. This index calculates the relative 
difference between heuristic solutions and the reference 

ones. The reference solutions can be optimal, best known, 
or lower bound. As shown in expression (26), RPD% is 
defined here as the relative difference between the 
dynasearch and lower bound solutions. In this expression, 
Dyna denotes the dynasearch solution and LB implies the 
lower bound. 

% 100%Dyna LB
RPD

LB

−
= × (26) 

The summary of the numerical results is reported in Table 
2. As shown in this table, the numerical studies were 
performed on 11 different problem size categories ranging 
from 20 to 70 jobs (n=20 to 70). Each category included 
100 randomly generated problem instances 
(#Instances=100). Since the proposed lower bound is a 
mixed integer linear programming problem, the optimal 
solutions may not be found in a reasonable time.  GAMS 
has some stopping criteria. In this paper, we used reslim
and optcr. When using optcr, GAMS stops as soon as the 
proportional difference between the incumbent solution 
and the best possible solution is less than the optcr
parameter. On the other hand, reslim limits the execution 
time spent for solving the problem. The best found and 
best possible, i.e., the lower bound, solutions are reported 
at the termination time. Obviously, the lower bounds of 
the proposed model, can be used as the bounds for the 
original problem. These best possible values are used as 
LB is expression (26). 
As shown in Table 2, the average run time of dynasearch 
algorithm is less than a few seconds for all problem sizes. 
Moreover, the average RPD% over all problems is less 
than 2%. Note that this gap is measured between the 
lower bound and heuristic solutions. Therefore, the 
average proportional difference between dynasearch and 
optimal solutions may be even less than 2%.  
Box plots can provide more information about the 
distribution of data than average. These plots include the 
minimum, first quartile, median, third quartile, and 
maximum of data, respectively. Further, in the presence of
extreme values, the median may be preferred over the 
simple average. In the last column of Table 2, the box plot 
of each problem category is depicted. For instance, 
according to the last row of this table, 75% of test 
problems with 70 jobs have the RPD% of less than 3. 
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Table 2 
Gap between the dynasearch and the lower bound 

n 

# Grid 

points 

(K) 

# 

Instances 

Termination 

conditions for LB 

Average run time 

of LB (seconds) 

Average run time 

of dynasearch 

(seconds) 

Average 

RPD% 
Boxplot for RPD%  

20 11 100 
reslim=600 

optcr=0.000 
<1 <1 1.16 

25 11 100 
reslim=600 

optcr=0.000 
2.4 <1 0.86 

 

30 11 100 
reslim=600 

optcr=0.000 
<1 <1 0.72 

 

35 11 100 
reslim=600 

optcr=0.000 
24.1 <1 0.72 

 

40 11 100 
reslim=120 

optcr=0.0005 
44.0  <1 0.82 

 

45 5 100 
reslim=600 

optcr=0.0005 
30.9 <1 1.21 

 

50 5 100 
reslim=600 

optcr=0.0005 
46.3 1.1 1.63 

 

55 5 100 
reslim=180 

optcr=0.002 
47.8 1.4 1.57 

 

60 5 100 
reslim=180 

optcr=0.002 
70.1 1.8 1.76 

 

65 5 100 
reslim=180 

optcr=0.002 
88.8 2.4 1.90 

 

70 5 100 
reslim=180 

optcr=0.002 
124.0 2.9 2.37 
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difference between dynasearch solutions and lower 
bounds for problems with 70 jobs was not greater than 
2.1%. Hence, the mean difference of heuristic solutions 
and optimal solutions was strictly less than 2.1%. 
Regarding the complexity of the problem discussed in 
Subsection 3.2, the proposed dynasearch heuristic seems 
efficient.  

n Results of hypothesis testing 

20 

Test of mu = 1.1 vs > 1.1 

The assumed standard deviation = 0.765489 

Variable    N    Mean   StDev  SE Mean     95% Lower Bound    Z     P 

rpd%      100  1.1572  0.7655   0.0765       1.0313         0.75  0.227 

25 

Test of mu = 0.8 vs > 0.8 

The assumed standard deviation = 0.531588 

Variable    N    Mean   StDev  SE Mean      95% Lower Bound     Z    P 

rpd%      100  0.8642  0.5316   0.0532           0.7768      1.21  0.113 

30 

Test of mu = 0.65 vs > 0.65 

The assumed standard deviation = 0.480157  

Variable    N    Mean   StDev  SE Mean      95% Lower Bound    Z     P 

rpd%      100  0.7244  0.4802   0.0480            0.6454     1.55  0.061 

35 

Test of mu = 0.65 vs > 0.65 

The assumed standard deviation = 0.480157   

Variable    N    Mean   StDev  SE Mean     95% Lower Bound   Z      P 

rpd%      100   0.7223  0.5164   0.0516         0.6373      1.40  0.081 

40 

Test of mu = 0.75 vs > 0.75 

The assumed standard deviation = 0.712152 

Variable    N    Mean   StDev  SE Mean    95% Lower Bound     Z      P 

rpd%      100   0.8192  0.7122   0.0712     0.7021          0.97  0.165 

45 

Test of mu = 1.1 vs > 1.1 

The assumed standard deviation = 0.714515 

Variable    N    Mean   StDev  SE Mean      95% Lower Bound  Z      P 

rpd%      100   1.2114  0.7145   0.0715           1.0939    1.56  0.060 

50 

Test of mu = 1.5 vs > 1.5 

The assumed standard deviation = 0.996387 

Variable    N    Mean   StDev  SE Mean      95% Lower Bound  Z      P 

rpd%      100   1.6300  0.9964   0.0996           1.4661    1.30  0.096 

55 

Test of mu = 1.5 vs > 1.5 

The assumed standard deviation = 0.936846 

Variable    N    Mean   StDev  SE Mean    95% Lower Bound    Z     P 

rpd%      100   1.5708  0.9368   0.0937       1.4167       0.76  0.225 

60 

Test of mu = 1.6 vs > 1.6 

The assumed standard deviation = 1.15098 

Variable    N    Mean   StDev  SE Mean    95% Lower Bound    Z     P 

rpd%      100   1.760  1.151    0.115           1.571       1.39  0.082 

65 

Test of mu = 1.7 vs > 1.7 

The assumed standard deviation = 1.26307 

Variable    N    Mean   StDev  SE Mean   95% Lower Bound    Z     P 

rpd%      100   1.899  1.263    0.126      1.691          1.57  0.058 

70 

Test of mu = 2.1 vs > 2.1 

The assumed standard deviation = 1.67306 

Variable    N    Mean   StDev  SE Mean   95% Lower Bound    Z     P 

rpd%      100   2.367  1.673    0.167         2.092       1.60  0.055 

Fig. 3. Z-test of RPD% measure 

In order to make statistical inference about the average 
RPD%, one sample z-test was performed for each 
problem size. The statistical tests were performed in 
Minitab 16. The results of these tests are reported in 
Figure 3. All p-values were less than 0.05. Hence, all null 
hypotheses were accepted at 95% confidence level. For 
instance, according to this figure, the mean of the average 
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8. Conclusion and Future Research 
 
In this paper, an integrated solution approach was 
developed for a machine scheduling problem with reliable 
due date setting by considering an unexpected 
unavailability. Given the sequence of jobs, the closed-
form formula of optimal due dates was derived. It was 
proved that the problem is NP-hard in the strong sense. 
The nonlinear mathematical programming formulation of 
the problem was built. The formulation was the base for 
designing a tight lower bound.  An iterated dynasearch 
algorithm was then proposed to solve the problem. Due to 
the proved NP-hardness and nonlinearity of the problem, 
it was very tough to find the optimal solutions to evaluate 
the efficiency of dynasearch algorithm. Hence, a mixed 
integer programming lower bound was developed. The 
small gaps between heuristic and lower bound solutions  
revealed the good quality of the proposed dynasearch as 
well as the tightness of the lower bound. 
To the best of our knowledge, this study is the first one 
dealing with due date setting by considering random 
unavailability within a scheduling environment. 
Therefore, a promising avenue for future research is to 
study various integrated due date setting and scheduling 
problems with the consideration of random unavailability 
intervals. Further, the proposed dynasearch heuristic has 
good quality solutions. Hence, this heuristic can be 
combined as an initial solution, i.e., upper bound, with a 
relaxation of the proposed lower bound to develop a 
branch and bound algorithm for the studied problem. 
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Appendix A: Proof of lemma 2. 
 
In this case, in order to satisfy the required service level, 
the probability of the occurrence of unavailability should 
be considered. Accordingly, the feasible due date should 
be 

[ ] [ ]1

j

kj k
d p

=
>∑     

Let ρ[j] be an extra time added to [ ]1

j

kk
p

=∑  to obtain an 
acceptable due date for job [j]. In other words, 
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kj jk
d p ρ
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The stochastic variable of  the completion time of job [j] 
before d[j] can be calculated in two ways. 
 
First, 
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p C d

=
< ≤∑  and 

[ ] [ ]1
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kj k
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≤∑  are 

mutually exclusive events. So, the general addition rule 
(Montgomery and Runger, (2014)) results in (27). 
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   Second, the definition of conditional probability 
(Montgomery and Runger, (2014)) results in (28). 
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(28) 

 
The left hand sides of equations (27) and (28) are equal. 
After putting the right hand sides in an equality and doing 
some calculations, it is concluded that 
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By the substitution of ρ[j] in 
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is completed. 
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Appendix B. The detailed pseudo-code of dynasearch 
heuristic 
 
Let σ be an arbitrary sequence and obj the value of its 
objective function. The pseudo-code of the dynamic 



Journal of Optimization in Industrial Engineering Vol.12, Issue 1, Winter and Spring 2019, 1- 13 

13 

 

programming algorithm for SSRU, which is a 
modification of one used in (Angel and Bampis, (2005)), 
is shown in Figure 4.  
As shown in Figure 1, the dynamic programming 
algorithm is called at each iteration with an input 
sequence. The search within this dynamic programming 
algorithm is conducted in a backward manner. This 

algorithm applies the best set of pairwise independent 
moves on the input solution. Symbols i, j and k denote the 
jobs in these positions of the sequence. dyna(i) is the best 
objective function of jobs in positions i through n. 
forward_cost[j] represents the total costs of jobs in 
positions i through n when jobs i and j are swapped.  
    

                                                                                     

Fig. 4. Detailed pseudo-code of dynasearch algorithm for SSRU 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


