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Abstract 
This paper proposes a mathematical model as the bi-objective capacitated multi-vehicle allocation of customers to distribution centers. An 
evolutionary algorithm named non-dominated sorting ant colony optimization (NSACO) is used as the optimization tool for solving this 
problem. The proposed methodology is based on a new variant of ant colony optimization (ACO) specialized in multi-objective 
optimization problem. To help the decision maker to choose the best compromise solution from the Pareto front, the fuzzy-based 
mechanism is employed. For ensuring the robustness of the proposed method and giving a practical sense of this study, the computational 
results are compared with those obtained by NSGA-II. Results show that both NSACO and NSGA-II algorithms can yield an acceptable 
number of non-dominated solutions. In addition, the results show that while the distribution of solutions in the trade-off surface of both 
NSACO and NSGA-II algorithms do not differ significantly, NSACO algorithm is more efficient than NSGA-II with regard to optimality, 
convergence and the CPU time. Also, the results in some small cases are compared with those obtained by LP-metric method. The error 
percentages of objective functions in comparison to the LP-metric method are less than 2%. Furthermore, it can be seen that with 
increasing size of the problems, while the time of problem solving increases exponentially by using the LP-metric method, the running time 
of NSACO and NSGA-II are more stable. 
Keywords: Bi-objective optimization, Capacitated allocation, Multi-vehicle, Distribution centers, Non-dominated sorting ant colony 
optimization,  NSGA-II, LP- metric method. 

1. Introduction 

In today’s business environment, the competitiveness of a 
firm heavily depends on its ability to handle the challenges 
of reducing cost, increasing customer service, and 
improving product quality. In this competitive market, 
customer satisfaction is the most important factor for the 
success of the firm. In this regard, the supply chain 
network among different business entities like 
manufacturers, suppliers and distribution centers (DCs) 
needs to be effective enough to handle the changing 
demand patterns. Nowadays, efforts have been made to 
design and develop a more conducive and profitable 
supply chain network. Efficient allocation of customers to 
DCs always plays an important role in developing a 
flawless and reliable supply network.  
     One of the most active topics in manufacturing research 
over the last 10 years has been supply chain management 
(SCM). SCM is the management of material and 
information flows both in and between facilities, such as 
vendors, manufacturing, assembly plants and distribution  
 

 
 
 
centers (Thomas & Griffin, 1996). Transportation network 
design is one of the most important fields of SCM. It 
offers great potential to reduce costs. In the several 
decades, there have been many researchers reported new 
models or methods to determine the transportation or the 
logistics activities that can lead to the least cost (Gen & 
Cheng, 1997). One of the important factors which 
influences on logistic system is to decide regarding the 
number of distribution centers. Geoffrion and Graves 
(1974) were the first researchers studied on two-stage 
distribution problem. Pirkul and Jayaraman (1998) 
presented a new mathematical formulation called 
PLANWAR to locate a number of production plants and 
warehouses and to design distribution network, so that the 
total operating cost can be minimized. They developed an 
approach based on Lagrangian relaxation to solve the 
problem. Hindi et al. (1998) stated a two-stage distribution 
planning problem. They supposed that each customer must 
be served from a single distribution center. The authors 
gave mathematical model for the problem and developed a 
branch and bound algorithm to solve the problem. Zhou et * Corresponding author Email address: jbagheri@alzahra.ac.ir 
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al. (2003) proposed a mathematical model and an efficient 
solution procedure for the bi-criteria allocation problem 
involving multiple warehouses with different capacities. 
Hajiaghaei-Keshteli (2011) considered two stages of 
supply chain network including distribution centers (DCs) 
and customers. His proposed model selects some potential 
places as distribution centers in order to supply demands 
of all customers and in order to solve the given problem, 
two algorithms, genetic algorithm and artificial immune 
algorithm, were developed. Chan and kumar (2009) 
discussed a multiple ant colony optimization (MACO) 
approach in an effort to design a balanced and efficient 
supply chain network that maintains the best balance of 
transit time and customers service. The focus of their 
paper is on the effective allocation of the customers to the 
DCs with the two-fold objective of minimization of the 
transit time and degree of imbalance of the DCs.  

2. Preliminaries 

2.1. Multi-objective optimization problems 

     Many optimization problems in the real world involve 
the optimization of several objectives at the same time. To 
obtain the optimal solution, there will be a set of optimal 
trade-offs between the conflicting objectives, where the set 
of optimal solution is known as Pareto front (Abido & 
Bakhashwain, 2005). A multi-objective optimization 
problem is defined as the maximization or the 
minimization of many objectives subject to equality and 
inequality constraints. The multi-objective optimization 
problem can be formulated as follows: 

Max. /Min. fi(x), i=1, … , Nobj                                          (1) 

Subject to constraints: 

gj(x) = 0,  j=1,…, M 

 hk(x) ≤ 0, k=1,…, K                                                         (2) 

where fi is the ith objective function, x is the decision 
vector, Nobj is the number of objectives, gj is the jth 
equality constraint, and hk is the kth inequality constraint. 
     There are techniques such as weighting method and ε-
constraint method which transfer multi-objective problems 
to a single-objective one, using different combinations of a 
weighting vector and constraints. Thus, each optimal 
solution can be assigned to a specific combination of 
weighting vector and constraint. Hence, in each run of the 
algorithm, a single solution can be achieved. However, 
multi-objective evolutionary algorithms are capable of 
finding almost all candidate solutions (Pareto) in a single 
run. 
     Figure 1 shows dominated and non-dominated relations 
between objective values in a bi-objective problem in 
which both objectives are optimized. In this figure, 
solutions labeled by 1 or 2 have non-dominating 

conditions individually. Note that the set labeled 1 
dominates the set labeled 2. In the optimization procedure, 
the best set of non-dominating solutions is called Pareto 
front. Thus, there are two Pareto in the Fig 1, in which the 
one labeled 1 is the Pareto front. 

 
Fig1. Schematic of dominated and non-dominated conditions of 

solutions in a biobjective problem (Fallah-Mehdipour et al. 2012) 

2.2. Multi-objective evolutionary algorithms 

     Evolutionary algorithms are based on evolutionary 
computations which can perform optimal/near-optimal 
solutions in all types of problems (linear/nonlinear, 
discrete/continuous, convex/ non-convex) using validated 
experimental theories of biological evolution and natural 
processes, particularly through activities of different 
species of animals. A set of solutions without using any 
techniques, are directly related to the decision-makers’ 
opinions, is the most important advantage of evolutionary 
algorithms in the field of multi-objective optimization. 
Thus, these algorithms are used as optimization tools in 
the multi-objective optimization problems (Deb, 2001). In 
these algorithms, random decision variables are used as 
input data for a simulation model. Output data from the 
simulation model are then used as input data for an 
optimization model. In such a process, newly-generated 
decision variables, based on previously calculated ones, 
have been improved. This process continues up to the 
maximum number of iterations for determining the best 
solution. In traditional optimization methods, techniques 
such as the weighting approach are used in linear and non-
linear programing (LP and NLP) to produce a single 
optimal solution. However, evolutionary algorithms can 
yield a set of non-dominated solutions, Pareto, as the 
optimal solutions. 
Chen and Ting (2006) applied a multiple ant colony 
system and also developed a hybrid ant colony and 
lagrangian heuristic for the single source capacitated 
location problem (SSCFLP). Also, for discrete location 
problems in graphs, ant-based algorithms have been 
successfully applied, (e.g. Venables & Moscardini, 2006). 
Non-dominated Sorting Genetic Algorithm (NSGA), 
multi-objective ACO (MOACO), and multi-objective PSO 
(MOPSO) are few examples of multi-objective 
evolutionary optimization algorithms of this type (Xing & 
Qu, 2013). Kalhor et al. (2011) proposed a non-dominated 
archiving ant colony approach to solve the stochastic 
time–cost tradeoff optimization problem. Mostafavi and 
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Afshar (2011) used a powerful ant colony algorithm 
known as non-dominated archiving multi-colony ant 
algorithm (NAACO) to solve the optimal Waste Load 
Allocation as a multi-objective optimization problem.  

     In this paper, two-stage supply chain networks 
including the distribution centers and the customers, are 
considered. There are potential places which are candidate 
to be as distribution centers, called potential DCs, and 
customers with particular demands. Each of the potential 
DCs can ship to any of the customers. The two 
optimization objectives are to minimize transit time and 
total cost involving opening cost, assumed for opening a 
potential DC and shipping cost per unit from DC to the 
customers. The proposed model selects some potential 
places as distribution centers in order to supply demands 
of all customers, i.e. the model selects some potential DCs 
in such a way that the customer’s demand can be satisfied 
at minimum DCs’ opening cost and minimum shipping 
cost with minimum transit time. It is assumed that 
distribution centers have unequal capacities and each 
customer must be served from a single distribution center.  
Also in this paper, considering different types of vehicles 
caused more conflicting in these two objectives. We 
proposed an evolutionary algorithm, Non-dominated 
Sorting Ant Colony Optimization (NSACO) to tackle with 
the problem in this paper. In contrast to the traditional 
multiple objective programming techniques such as goal 
programming that require the decision maker to arbitrarily 
determine weighting coefficients and/or preferences on 
multiple criteria and consequently produce a dominated 
solution, the proposed algorithms was designed to generate 
a wide range of non-dominated solutions without the 
arbitrary determination of weights. 

3. Description of Model  

     In this paper the allocation-based model on Zhou et al. 
(2003) is considered as a basic model. In their paper, 
optimization objectives are to minimize total transit time 
and total shipping cost. Since the shipping cost depends on 
distance and the value of the goods, both of these objective 
functions (minimizing time and cost) lead to allocation of 
customers to the nearest distribution centers to them. It 
means that both functions are aimed in one direction. 
While adding a decision criterion increases precision of 
the model, it increases the complexity of the problem, too. 
Therefore, there should be a balance between resolution 
and efficiency. In other words, in the multi-objective 
optimization, the aims are (1) to find Pareto optimal 
solutions and (2) to analyze the trade-off between 
conflicting objectives.  

     In this paper, different types of vehicles are considered 
to transport demand. In fact, considering heterogeneous 
vehicles lead to a more realistic model and cause more 
conflicting in the two objectives of the proposed model, 

since a fast vehicle (because of high technology or having 
low capacity) has more cost and a vehicle with low cost 
can lead to higher transit time. Moreover, the choice of 
location of potential sites for the DCs also has been 
considered in the model. Then, in this paper, a location-
allocation model for multi-vehicle single product in two-
stage supply chain network is developed. This model 
includes distribution centers and customers with respect to 
two conflicting objectives consist of minimizing total 
transit time and total cost. The total cost here, involves 
opening cost, assumed for opening potential DCs and 
shipping cost from DCs to the customers. It is assumed 
that distribution centers have unequal capacities and each 
customer must be served from a single distribution center. 
It's possible that among potential DCs, all or some of them 
will be opened and deployed. Also, in this model the 
customers’ demand is assumed to be deterministic. 
Let us denote I as a set of nodes representing m customers, 
J as a set of nodes representing p potential distribution 
centers, V as  a set of types of vehicles for transferring 
process so that the number of vehicles is assumed to be 
unlimited, and E as a set of edges representing a 
connection between customers and DCs. di denotes the 
demand of customer i, fj the fixed cost for opening a 
potential DC at site j, sv the capacity of type of vehicle v, v 

V, and the associated capacity sj for such DC; dij the 
distance between DC j and customer i;  cij

v  is the cost of 
assigning customer i to DC located at site j with type of 
vehicle v, tijv is the transit time between customer i to DC 
located at site j with type of vehicle v. All parameters 
introduced above are assumed to be non-negative. The 
binary variable yj is 1 if a DC is located at site j and 0 
otherwise. Similarly, binary variable xij

v is equal to 1 if 
customer i is served by the DC located at site j with type of 
vehicle v V and 0 otherwise. In fact, here the dimension 
of vehicle type is added to the allocation variables and the 
allocation variables are considered as three-dimensional 
variables. 
          The bi-objective capacitated multi-vehicle allocation 
of customers to distribution centers problem can be 
formulated as the following binary integer programming: 

min z1= ∑v=1
V ∑j=1

p ∑i=1
m  di dij cij

v xij
v+ ∑j=1

p fj yj        (3) 

min z2= ∑v=1
V ∑j=1

p∑i=1
m  tijv xij

v                                       (4) 

                                                         Subject to: 

∑v=1
V ∑j=1

p xij
v = 1       i=1, …, m                                (5) 

∑v=1
V ∑i=1

m di xij
v ≤ sj yj         j=1, …, p                        (6) 

∑v=1
V∑j=1

p di xij
v ≤ ∑v=1

V∑j=1
p xij

v sv        i=1, …, m     (7) 

xij
v , yj {0,1},  i=1, …, m ,   j=1, …, p    v=1, …, V  

    (8) 
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     The first objective function (Eq.3) minimizes the total 
cost of opening distribution centers and assigning 
customers to such distribution centers, while the second 
objective function (Eq.4) minimizes total transit time 
between distribution centers and customers allocated to 
them. Constraints (Eq.5) guarantee that each customer is 
served by exactly one DC and also guarantee that each 
customer’s demand on each edge between a customer and 
a DC is transferred by a vehicle type and exactly one of it, 
and capacity constraints (Eq.6) ensure that the total 
demand assigned to a DC cannot exceed its capacity. The 
constraints (Eq.7) ensure that the total demand transferred 
by a vehicle cannot exceed its capacity. In this paper, 
capacity constraints of DCs have been relaxed considering 
penalty function. 

In general, a penalty function approach is as follows. 
Given an optimization problem: 

min f(X)                                                                            (9) 

s.t.    X  A 

        X  B 

where X is a vector of decision variables, the constraints 
“X A” are relatively easy to satisfy, and the constraints 
“X B” are relatively difficult to satisfy, the problem can 
be reformulated as: 

min f(X) + p(d(X,B))                                                      (10) 

s.t.        X  A 

where d(X, B) is a metric function describing the distance 
of the solution vector X from the region B, and p(0) is a 
monotonically non-decreasing penalty function such that   
p(0) = 0. Furthermore, any optimal solution of (Eq.10) will 
provide an upper bound on the optimum for (Eq.9), and 
this bound will in general be tighter than that obtained by 
simply optimizing f(X) over A. 

In this paper, the objective functions are as follows: 

min  = z1 + δ1 . Vi                                                       (11) 

min  = z2 + δ2 . Vi 

where δ1.Vi and δ2.Vi are penalty functions. δ1and δ2 are 
two positive coefficients where usually are considered 
greater than max (z1) and max (z2), respectively. Also, Vi 
represents relatively violation value of capacity constraints 
related to DCs (Eq.6): 

Vi= (∑v=1
V∑i=1

m di xij
v - sj yj) / sj yj      if  ∑v=1

V ∑i=1
m di 

xij
v>sj yj   j=1, …, p       

And also 

Vi = 0        if  ∑v=1
V ∑i=1

m di xij
v ≤ sj yj    j=1, …, p      (12) 

     Besides fulfilling other constraints (Eq. 5 and Eq. 7), 
the solutions with Vi= 0 are feasible and otherwise the 
solutions are infeasible.  

4. Solution Approach 

      In this paper, MATLAB platform, along with two 
evolutionary algorithms, NSACO and NSGA-II are used 
as the optimization tools in extracting the solution of the 
bi-objective capacitated multi-vehicle allocation of 
customers to distribution centers problem. In order to more 
validation of the proposed algorithms, the LP-metric 
method is used. In this section, the LP-metric approach 
and the NSACO algorithm are described to solve the 
problem. 

4.1.  LP-metric method 

     LP-metric method which is usually discussed in multi-
objective decision making (MODM) references such as 
(Hwang & Masud, 1979) is among optimization 
techniques that combine multiple objectives into a single 
objective. In this approach, the decision maker must define 
the reference point z to attain. Then, a distance metric 
between the referenced point and the feasible region of the 
objective space is minimized. The aspiration levels of the 
reference point are introduced into the formulation of the 
problem, transforming it into a mono-objective problem. 
For instance, the objective function can be defined as a 
weighted norm that minimizes the deviation from the 
reference point. Using the LP-metric, the problem can be 
formulated in the following way: 

MOP (λ, z) = min (∑j=1
n λj| fj(x)-zj|p) 1/p 

s.t.   x S                                                                         (13) 

where 1 ≤p≤ ∞, λj is the weight of jth objective function 
and z is the reference point. When p =1 is used, the 
resulting problem reduces to a weighted sum of the 
deviations. When p = 2 is used, a weighted Euclidean 
distance of any point in the objective space from the 
referenced point is minimized. When p = ∞ is considered, 
the largest deviation is minimized. Chankong and Haimes 
(1983) showed that when LP method is used then all 
solutions corresponding to 1 ≤p≤ ∞ and λj > 0 are efficient 
solutions. 

4.2. Non-dominated sorting ant colony optimization 
(NSACO) algorithm 

     Ant Colony Optimization (ACO) algorithms are the 
most successful and widely recognized algorithmic 
techniques based on real ant behaviors (Dorigo & Stutzle, 
2004). Several papers proposed to extend the ant colony 
optimization (ACO) method in order to handle a multi-
objective optimization problem, (e.g. Chen &  Ting, 2006; 
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Chan & Kumar, 2009; Kalhor et al. 2011; Mostafavi & 
Afshar, 2011). 
     In this paper, an evolutionary algorithm named Non-
dominated Sorting Ant Colony Optimization (NSACO) is 
proposed to tackle the bi-objective capacitated multi-
vehicle allocation of customers to distribution centers 
problem. NSACO algorithm is based on the same non-
dominated sorting concept used in NSGA-II (Deb et al. 
2000).The proposed methodology is based on a new 
variant of ant colony optimization (ACO) specialized in 
multi-objective optimization problem. Steps of the 
NSACO are as follows: 
In the first step, for a better search of the solution space, a 
colony of ants with the size of 2×nAnt (nAnt is the original 
population size) is considered. Then, ACO parameters 
such as α, β, ρ, etc. are initialized, which α and β are 
parameters used for controlling the exponential weight of 
the pheromone trail and the heuristic exponential weight 
and ρ is evaporation rate (Dorigo & Stutzle, 2004). Also in 
this step, the value of the initial pheromone trail, τ0, is 
determined and the Tabu lists of all ants are constructed, 
which contain all the unvisited nodes for each ant and the 
list of optimal paths traversed by the ants. The initial 
pheromone intensity, τij or the path from nodes i to j is set 
equal to τ0, that is τij = τ0 and Δτij = 0.   
     In the second step, for each ant of the colony, a new 
solution using ACO probabilistic rule is created. It means 
that, for each ant a DC vector, an allocation matrix and a 
vehicle vector are assigned. The DC vector is a binary 
vector that indicates the opening or not opening DCs, the 
allocation matrix is a binary matrix that indicates the 
allocation of customers to the located DCs and the vehicle 
vector is an integer vector that indicates the vehicle type 
for transferring customers’ demand. The allocation matrix 
and vehicle vector form a three-dimensional decision 
variable named xij

v. Then objective values for this solution 
are calculated and evaluated. 

     In order to construct the solution, ant k currently at 
node i determines the next node to visit, node j, by 
applying the sampling approach known as the Roulette 
Wheel Selection (Xia, 2012). For this purpose, first, 
movement probability for ant k from node i to other nodes 
including the neighbors of the node i, must be calculated. 
Sk(i) is a Tabu list, to avoid creating a loop, containing 
those unvisited nodes for ant k currently at node i. 
Therefore, node j Sk(i) is the node randomly chosen from 
the list Sk(i) according to the pseudo random proportional 
distribution rule Eq.14 and the roulette wheel selection: 

Pij
k= τij

α ηij
β / ∑u Sk(i) (τiu

α ηiu
β)     if  j Sk(i) and otherwise  

Pij
k = 0                                                                            (14) 

where Pij
k is the probability that ant k chooses to move 

from node i to node j and ηij is a heuristic value which 
equals to the inverse of the length from node i to node j, τij 
is the amount of pheromone trail of the path from node i to 
node j, α and β  are two parameters used for controlling 

the exponential weight of the pheromone trail and the 
heuristic value. Then, after calculating probability values, 
the roulette wheel selection is used to select next node 
among these existing neighbor nodes (Xia, 2012). In this 
paper, this process is occurred three times for constructing 
the DC vector, the allocation matrix and the vehicle vector.  
     In the third step, after all the ants of the colony 
traversed their paths, the non-dominated sorting method is 
applied, where the entire population is sorted into various 
non-domination fronts. In a minimization problem, a 
vector x(1) is partially less than another vector x(2), 
(x(1)<x(2)) when no value of x(2) is less than x(1) and at least 
one value of x(2)is strictly greater than x(1) (Tamura and 
Miura, 1979). A solution which is not partially less is a 
dominated solution and a solution which cannot be 
dominated throughout an existing solution set is called a 
non-dominated solution or Pareto front. The first front 
being completely a non-dominant set in the current 
population and the second front being dominated by the 
individuals in the first front only and the front goes so on. 
Each individual in each front is assigned fitness values or 
based on front in which they belong to. Individuals in the 
first front are given a fitness value of 1 and individuals in 
the second are assigned a fitness value of 2 and so on. 
Therefore, in addition to the fitness value, a parameter 
called crowding distance is calculated for each ant to 
ensure the best distribution of the non-dominated 
solutions. The crowding distance is an important concept 
proposed by Deb et al. (2000) in his algorithm NSGA-II. It 
serves for getting an estimate of the density of solutions 
surrounding a particular solution in the population. Fig 2 
shows the calculation of the crowding distance of point i 
which is an estimate of the size of the largest cuboid 
enclosing i without including any other points. In fact, the 
crowding distance is a measure of how close an individual 
is to its neighbors. Consequently, all ants of a colony are 
sorted based on quality and discipline factors, 
simultaneously.  

 

Fig 2. Crowding distance computation (Deb et al. 2000) 

     Then, the population with the size of 2×nAnt is 
truncated to a population with the size of nAnt. At the end 
of each iteration, pheromone trails are updated and 
evaporation process occurs according to non-dominated 
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solutions. In this paper, three pheromone trails matrix are 
designed for DC vector, allocation matrix and vehicle 
vector. The pheromone trails matrix for DC vector is a 2 × 
p dimensions matrix, in which 2 is identified as open or 
closed state of the each DC, which the first row and the 
second row are considered for closing and opening the 
DCs, respectively, and  p is identified as the number of 
DCs (Eq. 15). The pheromone trails matrix for allocation 
matrix is a p × m dimensions matrix, in which p and m are 
identified as number of DCs and number of customers, 
respectively (Eq. 16) and the pheromone trails matrix for 
vehicle vector is a V × m dimensions matrix, in which V 
and m are identified as types of vehicles and number of 
customers, respectively (Eq. 17). 

tau1= ቂ
߬ଵଵ		.		. ߬ଵ
߬ଶଵ		.		. ߬ଶቃ

                                                                (15) 

tau2= 
߬ଵଵ ⋯ ߬ଵ
⋮ ⋱ ⋮
߬ଵ ⋯ ߬

൩                                                           (16) 

tau3= 
߬ଵଵ ⋯ ߬ଵ
⋮ ⋱ ⋮
߬௩ଵ ⋯ ߬௩

൩                                                     (17) 

     The heuristic information matrix for DC vector is a 2×p 
dimensions matrix, in which 2 is identified as closed or 
open state of the each DC, which the first row and the 
second row are considered for fixed cost for opening 
potential DCs and inverse of fixed cost for opening 
potential DCs, respectively and p is identified as the 
number of DCs (Eq. 18). The heuristic information matrix 
for allocation matrix is a p× m dimensions matrix, in 
which p and m are identified as number of DCs and 
number of customers, respectively, which it contains 
inverse of distance values between customers and DCs 
(Eq. 19) and the heuristic information matrix for vehicle 
vector is a V × m dimensions matrix, in which V and m 
are identified as types of vehicles and number of 
customers, respectively which it contains inverse of 
shipping cost from DCs to customers. There is one 
heuristic information matrix j=1, ..., p (Eq. 20). 

eta1= ቈ ଵ݂							.		. ݂

1 ଵ݂		.		.⁄ 1 ݂⁄                                                    (18) 

eta2= 
1 ݀ଵଵ⁄ ⋯ 1 ݀ଵ⁄
⋮ ⋱ ⋮

1 ݀ଵ⁄ ⋯ 1 ݀⁄
                                       (19) 

eta3= 
1 ܿଵଵ⁄ ⋯ 1 ܿଵ⁄
⋮ ⋱ ⋮

1 ܿଵ௩⁄ ⋯ 1 ܿ௩⁄
                                      (20) 

     The pheromone trails are updated according to the non-
dominated solutions in the Pareto Front and in order to 
prevent unlimited accumulation of the pheromone trails 
and help the algorithm to forget bad decisions of formers, 
evaporation process is applied on pheromone trails. This 
updating process affects selection of new solutions using 
ACO probabilistic rule in the next iteration. This cycle is 
repeated for a predefined number of iterations known as 
Cycle Iteration. At the end of running this algorithm, the 
present non-dominated solutions in the last iteration are 
the optimal solutions of the multi-objective problem. Fig 
3, shows a graphical representation of NSACO. 

 

Fig 3. Graphical representation of NSACO 

4.3.  Best compromise solution 

     Once the Pareto optimal set is obtained, it is possible 
to choose one solution from all solutions that satisfy 
different goals to some extent (Niimura & Nakashima, 
2003). Due to the imprecise nature of the decision 
maker’s (DM) judgment, it is natural to assume that the 
DM may have fuzzy or imprecise nature goals of each 
objective function (Dhillon et al. 1993). Hence, the 
membership functions are introduced to represent the 
goals of each objective function; each membership 
function is defined by the experiences and intuitive 
knowledge of the decision maker (Bo and Yi-jia, 2005). 
In this study, a simple linear membership function is 
considered for each of the objective functions. The 
membership function is defined as follows: 
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μi = 1            if         Fi ≥ Fi max 

μi = (Fi
max - Fi)/(Fi

max - Fi
min)         if         Fi

min < Fi < Fi
max 

μi = 0                    if         Fi ≤ Fi
min                                (21) 

where Fi
min and Fi

max are the minimum and the maximum 
value of the ith objective function among all non-
dominated solutions, respectively. The membership 
function μ is varied between 0 and 1, where μ= 0 
indicates the incompatibility of the solution with the set, 
while μ= 1 means full compatibility (Dhillon et al. 1993). 
For each non-dominated solution k, the normalized 
membership function μk is calculated as 

μk = ∑i=1 Nobj μi
k/ ∑k=1

M∑i=1
Nobj μi

k                                (22) 

where M is the number of non-dominated solutions and 
Nobj is the number of objective functions. The function μk 
can be considered as a membership function of non-
dominated solutions in a fuzzy set, where the solution 
having the maximum membership in the fuzzy set is 
considered as the best compromise solution. 

4.4. Parameter tuning 

     In this paper, an evolutionary algorithm, NSACO is 
proposed as the optimization tool. NSACO algorithm is 
coded in MATLAB software and tested on a Core 2 
Duo/2.66 GHz processor. As shown in Table 2, eight 
numerical cases in small scale and eight numerical cases in 
large scale are provided to demonstrate the application of 
this method. To obtain the best parameters, an auto tuning 
approach is used. First, some numbers, for example, 10 
numbers in the range 0.8 to 1.8 are selected randomly for 
α1, pheromone exponential weight for DC vector, and the 
program runs for each value of α1. Then by observing the 
best answer, we tried the next random number to be close 
to the α1 related to the best answer. In fact, the Beginning 
and the end of the range is updated according to the α1 
corresponding to the best answer in each iteration (see Fig 
4). Exactly the same procedure in the range 0.05 to 0.6 is 
repeated for β1, heuristic exponential weight for DC 
vector. These initial ranges are considered according to 
both existing literature in the field of ACO algorithm and 
some tentative running of NSACO program. This 
procedure is repeated for other parameters, 
simultaneously. Simultaneous tuning of all parameters 
causes considering the interaction effect of the parameters 
on each other. This process is performed by an external 
NSACO program for auto tuning parameters. Fig 5 shows 
auto tuning of two parameters among all, for instance. As 
shown in Fig 5, these two parameters are tuned in 10th 
iteration approximately. It means that if we consider 10 
random numbers in each range in each iteration, these 
parameters are tuned with considering 100 times running 
of algorithm.  

 

 

Fig 4. Schematic of updationg α1 in each iteration of auto tuning 
parameter process                     

 

Fig 5. Auto tuning of two parameters of NSACO algorithm 
(Pheromone exponential weight for DC vector, 

Heuristic exponential weight for DC vector) 

As mentioned above, the parameters of NSACO for all 
optimization cases are summarized in Table 1. 
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Table1 
NSACO parameters 

α1 (Pheromone exponential weight for DC vector) 1.30 

β1 (Heuristic exponential weight for DC vector) 0.40 

α2 (Pheromone exponential weight for allocation matrix) 1.58 

β2 (Heuristic exponential weight for allocation matrix) 0.33 

α3 (Pheromone exponential weight for vehicle vector) 1.34 

β3 (Heuristic exponential weight for vehicle vector) 0.52 

ρ (Evaporation rate) 0.05 
 
Table 2 
Some specification of small and large problems 

Small Scale Cases Large Scale cases 
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Problem1 21 7 3 Problem1 32 7 3 

Problem2 8 3 2 Problem2 40 11 3 

Problem3 15 3 2 Problem3 34 8 2 

Problem4 10 4 2 Problem4 70 9 3 

Problem5 12 5 2 Problem5 62 9 3 

Problem6 14 6 3 Problem6 80 7 3 

Problem7 20 5 2 Problem7 68 11 3 

Problem8 26 4 2 Problem8 60 10 3 

In this paper, initial population size nAnt is assumed 100 
and 200 for small and large scales, respectively.  

5. Performance Evaluation of the Algorithms 

     To illustrate the performance of the used procedures to 
optimize the proposed model, problem 1 in small scale is 
considered, (see Figs 6 and 7). Fig 8, presents the Pareto 
front of problem 8 in small scale by NSACO and NSGA-II 
for instance.  
     To check the quality of solutions obtained by these 
algorithms, five performance metrics including: (1) 
number of Pareto solutions (NOS), (2) diversity metric 
(∆) (Zitzler et al. 2000), (3) mean ideal distance (MID) 
metric measuring convergence, (4) hypervolume indicator 
(HVI) and (5) CPU time have been used. The ∆ and MID 
metrics are formulated as follows: 

∆ =√ ∑j=1
m (maxn fn

j – minn fn
j) 2                                    (23) 

 MID = ∑i=1
nCi/n                                                           (24) 

where in Eq.23, m is the number of objectives, n is the 
number of Pareto solutions and in Eq.24, n is the number 
of Pareto solutions and Ci is the distance of ith Pareto 
solution from ideal point ((0,0) in bi-objective 
minimization). Fig 9 shows MID metrics comparison for 
problem 5 in small scale. For better display, MID axis is 
considered under Logarithmic scale. As shown in Figure 
9, in the first iterations, there are more infeasible solutions 
and they cause adding large penalty functions to objective 
values, but during the process of algorithm, the infeasible 
solutions because of great objective values are discarded 
and objective values are more real and then convergence 
process goes smoothly. Also, to view the output of the 
decision variables, one Pareto member of problem 6 in 
small scale is given in the appendix. 

 

 
Fig 6. Pareto front of problem 1 in small scale by NSGA-II  a) 3rd and b) 100th  iteration with nPop=200 
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Fig 7. Pareto front of problem 1 in small scale by NSACO a) 3rd  and b) 100th iteration with nAnt=200 

 

Fig 8. NSACO and NSGA-II comparison of Pareto front of problem 8 in small scale (nAnt= 200 and 100th iteration) 

 

Fig 9. MID metric comparisons for problem 5 in small scale 
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 The hypervolume indicator measures the volume of the 
dominated portion of the objective space. The 
hypervolume was first introduced for performance 
assessment in multi-objective optimization by Zitzler and 
Thiele (1999). One key point is that a set of solutions 
achieving the maximum hypervolume for a specific 
problem covers the entire Pareto front (Fleischer, 2003). 
Since the computation of the HVI has been widely 
studied, there is a range of algorithms that compute the 
exact hypervolume and others that compute an 

approximation (Bader & Zitzler, 2011). In this paper, we 
use the MATLAB codes that are written by Kruisselbrink 
(2011) for computing an approximation hypervolume by 
means of a Monte-Carlo approximation method.   
     Tables 3 and 4 show the algorithms comparison results 
for some small and large scale cases with iteration 
number of 200. In this paper, in order to evaluate the 
performance of the proposed algorithms, the Mann-
Whitney test is done by Statistical Package for the Social 
Sciences (SPSS 16.0) software, as shown in Table 5. 

 
Table 3 
 Algorithms comparison results for small scale cases 

 NSACO with 200 iterations (nAnt=100) NSGA-II with 200 iterations (nPop=100) 

 NOS ∆ MID HVI Time (min) NOS ∆ MID HVI Time (min) 

Problem1 8 3.98e+05 1.81e+07 1.84e+21 8.07 11 1.96e+06 2.21e+07 4.06e+42 12.51 

Problem2 7 978.60 5.32e+04 3.67e+09 4.77 9 1.38e+04 6.61e+04 1.88e+19 13.17 

Problem3 7 2.73e+04 3.45e+05 1.15e+17 6.59 10 3.56e+04 4.74e+05 2.39+28 12.36 

Problem4 6 1.23e+04 2.14e+05 2.03e+07 5.18 9 6.60e+04 3.07e+05 8.78e+21 12.21 

Problem5 6 3.11e+04 2.90e+05 1.52e+11 6.52 7 4.96e+04 3.27e+05 9.99e+12 12.64 

Problem6 7 2.68e+04 2.48e+05 4.06e+16 9.63 7 8.55e+04 2.98e+05 8.85e+17 12.74 

Problem7 7 4.18e+03 9.13e+04 8.40e+14 8.60 8 4.76e+03 9.66e+04 9.01e+14 14.32 

Problem8 6 1.28e+04 2.75e+05 1.83e+10 10.43 11 2.93e+05 4.29e+05 5.19e+33 15.47 

Average 6.57 6.41e+04 2.45e+06 2.3e+20 7.47 9 3.31e+05 3.01e+06 5.8e+41 13.17 

 
Table 4 
Algorithms comparison results for large scale cases 

 NSACO with 200 iterations 

(nAnt=200) 

NSGA-II with 200 iterations 

(nPop=200) 

 NOS ∆ MID HVI Time (min) NOS ∆ MID HVI Time (min) 

Problem1 8 1.98e+04 4.29e+05 3.40e+17 47.19 9 5.31e+04 5.32e+05 1.26e+19 52.73 

Problem2 8 1.20e+05 2.04e+06 1.68e+25 47.53 12 3.52e+05 2.53e+06 6.58e+44 51.63 

Problem3 6 3.79e+03 5.01e+05 4.36e+11 29.16 7 4.58e+03 5.66e+05 3.63e+14 47.69 

Problem4 6 6.13e+03 4.91e+05 2.41e+11 44.52 8 9.29e+03 5.71e+05 1.86e+17 48.78 

Problem5 6 1.64e+04 1.02e+06 2.04e+12 46.44 7 6.86e+03 1.54e+06 2.09e+13 52.08 

Problem6 7 1.59e+04 2.04e+06 9.39e+12 48.53 7 4.33e+04 2.62e+06 6.19e+14 52.10 

Problem7 7 2.01e+05 1.26e+06 2.25e+12 47.39 8 2.52e+05 1.76e+06 2.44e+13 55.41 

Problem8 6 2.79e+04 1.39e+06 2.93e+12 50.03 8 2.39e+05 1.78e+06 5.81e+19 55.51 

Average 6.75 5.13e+04 1.15e+06 2.1e+24 45.09 8.25 1.20e+05 1.48e+06 8.2e+43 51.99 

 
Table 5 
Statistical comparison results of NSACO and NSGA-II (α= 5%) 

Mann-Whitney Test  

 
Small scale cases Large scale cases 

P-Value results P-Value results 

NOS 0.006 NSGA-II is preferred to NSACO 0.036 NSGA-II is preferred to NSACO 

Diversity 0.074 Both algorithms are similar 0.345 Both algorithms are similar 

MID 0.238 Both algorithms are similar 0.248 Both algorithms are similar 

HVI 0.028 NSGA-II is preferred to NSACO 0.064 Both algorithms are similar 

Time 0.001 NSACO is preferred to NSGA-II 0.002 NSACO is preferred to NSGA-II 
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For further validation of the proposed method, some small 
cases are solved with LP-metric by Lingo 13.0.Table 6 
shows the results of LP-metric method for problems 2,4 
and 5 in small scale with p=1, 2 and 3. The weights of 
objectives are assumed identical. In Table 7 the best 
solution of Pareto front (best compromise solution 
according to section 4.3) are shown for these small scale 
cases. Results show the average of error percentages of 
objective functions related to NSACO in comparison to 
the LP-metric method are 0.13% and 0.01%, respectively 
and the average of error percentages of objective 
functions related to NSGA-II in comparison to the LP-
metric method are 1.05% and 0.05%, respectively. 
Furthermore, it can be seen that with increasing size of 
the problems, while the time of problem solving increases 

exponentially by using the LP-metric method, the running 
time of NSACO and NSGA-II are more stable. 
Table 6 
Computational results of LP-metric method for some small scale cases 

Some problems 
in small cases 

p First objective Second objective 

Problem 2 
1 58740 1.894 
2 59791 1.879 
3 59791 1.879 

Problem 4 
1 297399.63 1.850 
2 299489.48 1.825 
3 302801.48 1.817 

Problem 5 
1 237972.92 1.439 
2 252391.48 1.390 
3 252391.48 1.390 

 
Table 7 
Comparison of NSACO, NSGA-II and LP-metric method for solving some small scale cases 

Some 
problems in 
small cases 

Number of 
variables 

LP-metric method Best compromise solution by 
NSACO (500 iterations) 

Best compromise solution by 
NSGA-II (500 iterations) 

Error of NSACO 
(%) 

Error of NSGA-
II (%) 

First 
objective 

Second 
objective 

Time 
(min) 

First 
objective 

Second 
objective 

Time 
(min) 

First 
objective 

Second 
objective 

Time 
(min) Z1 Z2 Z1 Z2 

Problem 2 51 58740.0 1.89 2.26 58963.7 1.88 3.96 59147.0 1.88 5.25 0.38 0 0.69 0 
Problem 4 84 297399.6 1.82 3.08 299016.3 1.83 4.14 300419.5 1.85 5.53 0.06 0.54 1.01 0 
Problem 5 125 237972.9 1.44 5.07 238105.4 1.44 4.61 241403.4 1.45 5.76 0.00 0 1.44 0.14 
Average - 198037.5 1.72 3.47 198695.1 1.72 4.2 200323.3 1.72 5.51 0.13 0.01 1.05 0.05 

6. Discussion and conclusion 

     The importance of a quick and efficient service towards 
the customers has been identified in the competitive 
business environment during the past few decades. 
Distribution centers (DCs) play an important role in 
maintaining the uninterrupted flow of goods and materials 
between the manufacturers and their customers. In this 
paper, a bi-objective optimization model for capacitated 
multi-vehicle allocation of customers to distribution 
centers is proposed. The optimization objectives are to 
minimize transit time and total cost including opening 
cost, assumed for opening a potential DC and shipping 
cost per unit from DC to the customers. Results show the 
trade-off between total transit time and total cost, since 
considering heterogeneous vehicles lead to a more realistic 
model and cause more conflicts in the two objectives.  
     In this paper, an evolutionary algorithm named non-
dominated sorting ant colony optimization (NSACO) is 
presented as the optimization tool to solve this model. The 
proposed methodology is based on a new variant of ant 
colony optimization (ACO) specialized in multi-objective 
optimization problem. The crowding distance technique is 
used to ensure the best distribution of the non-dominated 
solutions. The computational Results of NSACO in 
comparison to NSGA-II show that while both algorithms 
are efficient to solve the model and the distribution of 
solutions in the trade-off surface of both algorithms does  

 
 
 
 
 
not differ significantly, NSACO algorithm is more 
efficient than NSGA-II in terms of optimality, 
convergence and running time saving (See Tables 5 and 
7). Also, for better validation of the proposed method, the 
computational results in some small cases are compared 
with those obtained by LP-metric method. As shown in 
Table 7, results show the error percentages of objective 
functions in comparison to the LP-metric method are less 
than 2%. Furthermore, it can be seen that with increasing 
the size of the problems, while the time of problem 
solving increases exponentially by using the LP-metric 
method, the running time of NSACO and NSGA-II are 
more stable. 
     Future research may develop hybrid approaches based 
on the used algorithm and other approaches available in 
the literature. Additionally, may be modeled location 
allocation for non-deterministic condition, such as 
stochastic demand. Moreover, given the successful 
application of NSACO to the bi-objective warehouse 
allocation problem, the used algorithm can be modified to 
obtain non-dominated solutions for warehouse allocation 
problems with more than two objectives. 
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Appendix 

One Pareto member for problem 6 in small scale in 200th 
iteration by NSACO approach is as follows (where 
number of customers = 14, number of DCs = 6, types of 
vehicles = 3): 
Number of Pareto front Members = 3 
Pareto front: 
For 1st element of Pareto front, depot vector is: 
y = 
     1     1     1     1     1     1 
For 1st element of Pareto front, Allocation matrix is: 
x = 

 DC
1 

DC
2 

DC
3 

DC
4 

DC
5 

DC
6 

Types 
of 
vehicles 

customer1 0 0 0 0 0 1 3 
customer2 0 0 1 0 0 0 3 
customer3 0 0 0 1 0 0 3 
customer4 0 0 0 1 0 0 2 
customer5 0 0 0 0 1 0 2 
customer6 0 1 0 0 0 0 3 
customer7 1 0 0 0 0 0 1 
customer8 0 1 0 0 0 0 3 
customer9 0 0 0 1 0 0 1 
customer10 0 0 1 0 0 0 3 
customer11 0 0 0 0 1 0 2 
customer12 0 0 0 0 1 0 2 
customer13 0 0 1 0 0 0 

0 
2 

customer14 1 0 0 0 0 1 
Final objective values: 
For 1st element of Pareto front, objective values are: 
Total Cost = 3.1560e+005 
Transit Time = 2.8400 
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