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Abstract 

Conventional data envelopment analysis (DEA) models are used to measure efficiency score of production systems when they are considered as 

black boxes and their internal relationship is ignored. This paper deals with a common special case of network systems called multi-stage 

production system and can be generalized to many organizations. A multi-stage production system has some stages in which the outputs of each 

stage are used as the inputs of the next stage to produce the final outputs of the system. Most of the approaches handling multi-stage systems in 

DEA evaluate efficiency measure of a production system considering the interrelationship between its stages; however, they do not present their 

ranking or impact of each stage on ranking of a special multi-stage system through comparison with the others. In this paper, considering the 

series internal structure of the multi-stage systems and their efficiency measures, we propose some new ratio-based DEA models to determine 

the best and worst ranks of the multi-stage systems over all sets of feasible weights. In order to improve the performance of the whole system, 

the proposed models are used to recognize the stages with the most important role in the system’s inefficiency. Some numerical examples are 

presented to illustrate the approach. 
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1. Introduction 

Data envelopment analysis (DEA) is a mathematical 

programming technique introduced by Charnes et al. (1978) 

for measuring the relative performance of a set of decision-

making units (DMUs) which exploit multiple inputs to 

produce multiple outputs. Conventional DEA models deal 

with efficiency evaluation of the production units without 

considering the operations of sub-processes. As a result, 

they may generate inaccurate information about the 

performance and inefficient sources of the systems with 

network structures. 

Series structure is one of the most common cases of the 

network production systems in which outputs of each stage, 

named intermediate products, are used as inputs of the next 

one to produce the final outputs of the system. In real world, 

there are many systems, such as industrial, educational, 

agricultural, etc., which can be shown in series structure to 

have accurate information about their performance. In 

recent DEA literature, many studies are devoted to two-

stage production systems as a special case of series systems 

in both modeling and applications. The first attempt for 

handling two-stage systems is reported by Charnes et al. 

(1986) in which army recruitment was analyzed. Wang et al. 

(1997) proposed two independent models for each stage of  

 

 

 

two-stage systems. Seiford and Zhu (1999) presented a two-

stage system to measure the profitability and marketability 

of US commercial banks. Chen and Zhu (2004) claimed that 

dependence of two stages is not considered in Wang et al. 

(1997); so, they solve the problem with the assumption that 

intermediate products are unknown variables. Kao and 

Hwang (2008) took into account a series relationship of 

two-stage systems and developed a different approach to 

estimate the overall efficiency of the units. Kao (2009) 

generated the model of Kao and Hwang (2008) for systems 

with multi stages which are connected in series. Azizi and 

Kazemi Matin (2010) analyzed two-stage systems under 

variable returns to scale technology. Kao (2014) considered 

general multi-stage systems as the systems in which 

exogenous inputs are consumed in addition to intermediate 

products. Kazemi Matin and Azizi (2015) introduced a 

unified general model for efficiency evaluation of network 

production systems when arbitrary relations between 

individual sub-processes are allowed. Kazemi Matin and 

Azizi (2016) used a unified general model for performance 

analysis of Iran’s provinces in producing wheat. All of the 

above approaches evaluate efficiency score of systems with 

network structure, but they do not present their ranking. 
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Having information about the rank of a production system 

helps a decision-maker to make logical decisions about the 

ways to improve system’s performance. In traditional DEA, 

many approaches were presented to discriminate and rank 

units. For example, super efficiency approach was 

introduced by Andersen and Petersen (1993) in order to 

distinguish efficient units. Cross efficiency method, 

proposed by Sexton et al. (1986) and generalized by Doyle 

and Green (1994), is also used to rank units. Both 

approaches have some deficiencies which were analyzed 

and improved in some other ranking techniques (Rodder 

and Reucher, 2011; Lee and Zhu, 2012; Chen, 2013; Yang 

et al. 2013). Recently, Salo and Punkka (2011) introduced a 

novel ranking interval method based on the efficiency 

measure of a DMU with considering all feasible 

input/output weights in evaluation.  

All the mentioned studies for ranking units treat the system 

as a black-box without considering internal sub-processes. 

To the best of our knowledge, there are a few studies in 

DEA literature that deal with ranking network production 

systems. Liu et al. (2009) and Liu and Lu (2010) proposed a 

discriminate method for network production systems 

applied to rank the performance of R&D organizations. As 

the most recent work, Liu and Lu (2012) introduced a 

network ranking approach to increase discrimination among 

efficient two-stage production systems. Most of these 

approaches are based on optimal efficient input/output 

weights in which production unit has its best performance 

under evaluation. As a result, since they failed to make a 

complete comparison between the units, they could not be 

considered as complete ranking methods. 

In this paper, we generalize the proposed models of Salo 

and Punkka (2011) to discriminate multi-stage systems to 

have accurate information about the rank, performance, and 

inefficiency sources of systems to make proper decisions in 

order to improve systems’ performance. The new ratio-

based DEA models consider all feasible input/output 

weights in the evaluation not just the self-appraisal optimal 

weights. As a result, we can derive a ranking interval for 

each unit (efficient and inefficient) in which the best and 

worst rankings of multi-stage systems are determined. 

Simultaneously, considering the interrelationship of the 

stages, we can also evaluate the performance of each stage 

of a production unit through comparing the corresponding 

stage of the other units. This helps decision-makers to 

recognize the stages responsible for the inefficiency of the 

whole system. The contributions of this paper are as 

follows: 

 For the first time, we determine the best and worst 

ranks of DMUs with a multi-stage structure. 

 We determine the stages with more effect on 

inefficiency of the corresponding system in 

comparison with that of  another system. 

 A numerical example shows the applicability and 

efficiency of the proposed model in agriculture 

industry. 

The rest of this paper is organized as follows. Section 2 is 

devoted to giving a brief review of basic DEA models for 

multi-stage systems. Section 3 presents the provided ratio-

based ranking technique including a simple algorithm and 

some new DEA models for multi-stage production systems. 

Section 4 includes an illustrative example. Conclusions are 

given in section 5. 

2. Efficiency Measure of Multi-Stage Production Units 

In DEA, each observed DMUl (l=1,…,n) is specified by 

some non-negative inputs and outputs. Throughout this 

paper, inputs and outputs vectors are denoted by xl= 

(x1l,…,xml) and yl= (y1l,…,ysl), respectively. Regarding these 

notations, the ratio form of CCR model is presented by 

Charnes et al. (1978) to measure the efficiency score of 

DMUk as follows:      

   𝐸௞ = 𝑀ܽݔ ௞࢛࢟  ⁄௞࢞࢜                                             (1) 

s.t.       ࢛࢟௟ ⁄௟࢞࢜ ൑ ͳ,   ݈ = ͳ, … , 𝑛    
࢛            ൒ Ͳ, ࢜ ൒ Ͳ 
 

Now, suppose that all production units are composed of q 

stages connected to sub-processes in series relation as 

depicted in Fig 1. In these systems, intermediate products 

zl=(z1l,…,zdl) are the  outputs of each stage as well as the 

inputs of the next stage.  

 

 

Fig. 1. Multi – stage (series) production units. 

Note that the conventional DEA models do not take 

intermediate products into account in estimating the 

efficiency of multi-stage production units. To obtain the 

ratio CCR efficiency score of the first, p
th (p=2,…,q-1) and 

the last stage of DMUk, models (2), (3) and (4) are used, 

respectively. Besides, model (1) estimates the efficiency 

score of the whole system without considering its 

interrelationship. 
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𝐸௞ଵ = 𝑀ܽݔ ଵ࢑ࢠଵ࢝ ⁄௞࢞࢜                                                                   

s.t.      ࢝ଵ࢒ࢠଵ ⁄௟࢞࢜ ൑ ͳ                 ݈ = ͳ, … , 𝑛         ࢝ଵ ൒ Ͳ, ࢜ ൒ Ͳ 

 

(2) 

𝐸௞௣ = 𝑀ܽݔ ௣࢑ࢠ௣࢝ ⁄௣−ଵ࢑ࢠ௣−ଵ࢝ ݌           = ʹ, … , ݍ − ͳ                    

s.t.      ࢝௣࢒ࢠ௣ ⁄௣−ଵ࢒ࢠ௣−ଵ࢝ ൑ ͳ      ݈ = ͳ, … , 𝑛 , ݌ =ʹ, … , ݍ − ͳ        ࢝௣ ൒ Ͳ                                ݌ = ʹ, … , ݍ − ͳ 

 

(3) 

𝐸௞௤ = 𝑀ܽݔ ௞࢛࢟  ⁄௤−ଵ࢑ࢠ௤−ଵ࢝                                                                                                   

s.t.       ࢛࢟௟ ⁄௤−ଵ࢒ࢠ௤−ଵ࢝ ൑ ͳ         ݈ = ͳ, … , 𝑛    
࢛             ൒ Ͳ, ௤−ଵ࢝ ൒ Ͳ 

 

(4) 

To present the precise overall efficiency score for a multi-

stage production unit, the operation of the stages was 

embedded into model (1) by adding constraints of models 

(2), (3), and (4). In this way, the following ratio model was 

proposed by Kao (2009). 

 𝐸௞ = 𝑀ܽݔ ௞࢛࢟  ⁄௞࢞࢜                                                                                                

s.t.       ࢛࢟௟ ⁄௟࢞࢜ ൑ ͳ,   ݈ = ͳ, … , 𝑛    
ଵ࢒ࢠଵ࢝             ⁄௟࢞࢜ ൑ ͳ                 ݈ = ͳ, … , 𝑛       

௣࢒ࢠ௣࢝                  ⁄௣−ଵ࢒ࢠ௣−ଵ࢝ ൑ ͳ      ݈ = ͳ, … , 𝑛 ,݌ = ʹ, … , ݍ − ͳ   
௟࢛࢟                   ⁄௤−ଵ࢒ࢠ௤−ଵ࢝ ൑ ͳ         ݈ = ͳ, … , 𝑛    

࢛              ൒ Ͳ, ࢜ ൒ Ͳ, ࢝௣ ൒ Ͳ       ݌ =ʹ, … , ݍ − ͳ 

 

               (5)
 

In this model, u, v, and  ࢝௣, ݌ = ʹ, … , ݍ − ͳ are non-

negative vectors of inputs weights, outputs weights, and 

intermediate product weights, respectively.  

Since the same weights are exploited for intermediate 

products of the stages whose intermediate products are 

produced as outputs and are consumed as inputs, 

decomposition relationship 𝐸௞ = 𝐸௞ଵ × … × 𝐸௞௣ × … × 𝐸௞௤ 

can be established. That is, the efficiency of q-stage 

production unit is the product of the efficiencies of q stages. 

Note that aggregating of the last three constraints of model 

(5) equals to the first constraint, so the first set of 

constraints is redundant and can be omitted.  

In the next section, the introduced model of Kao (2009) is 

used to present a complete ranking method based on the 

best and worst efficiency scores of multi-stage production 

units.   

 

 

3. Presenting a Ratio-Based Ranking Interval 

The stages of a series system and the whole production 

system can be ranked for all feasible input, output, and 

intermediate product weights. We aim to present ranking 

interval for each multi-stage production system by 

computing the best and worst rankings of each system.  

Following the proposed definition in the paper of Salo and 

Punkka (2011), the worst ranking of DMUk indicates the 

maximum number of DMUs which have at least as high 

efficiency score as the under evaluated one and the best 

ranking of DMUk shows the minimum number of DMUs 

with higher efficiency score than DMUk. Using the 

presented decomposition of Kao (2009) for efficiency 

scores, it is obvious that 𝐸௟ሺ࢛, ,࢝ ሻ࢜ > 𝐸௞ሺ࢛, ,࢝  ሻ may࢜

happen when at least the efficiency score of one of the 

stages of DMUl is strictly higher than the efficiency score of 

the corresponding stage of DMUk. Furthermore, 
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𝐸௟ሺ࢛, ,࢝ ሻ࢜ ൒ 𝐸௞ሺ࢛, ,࢝  ሻ may happen when at least the࢜

efficiency score of one of the stages of DMUl is at least as 

high as the efficiency score of the corresponding stage of 

DMUk. 
 

Now, we want to attain the best ranking of each multi-stage 

system through comparing the other ones. To simplify our 

method which will be presented further, the following 

algorithm is introduced for a set of feasible weights. Our 

method will analyze all sets of feasible weights. 

Input: an arbitrary set of feasible weights and n DMUs with 

q stages, m inputs, d intermediate products, and s outputs. 

Initialization: set i:=1, and   l:=1 

Step 1:  Solve �̃�ଵ௟ = 1࢑ࢠ1࢝ 1࢒ࢠ1࢝⁄ೖ࢞࢜ ⁄೗࢞࢜          ݈ ≠ ݇ 

If �̃�ଵ௟ > ͳ, set ௟ܾଵ = ͳ.  

Else if, set ௟ܾଵ = Ͳ.  

Step p:for p=2,…,q-1 Solve  �̃�௣௟ = ೛࢑ࢠ೛࢝ ೛࢒ࢠ೛࢝⁄೛−1࢑ࢠ೛−1࢝ ⁄೛−1࢒ࢠ೛−1࢝          ݈ ≠݇ 

If �̃�௣௟ > ͳ, set ௟ܾ௣ = ͳ.  

Else if, set ௟ܾ௣ = Ͳ.  

Step q: Solve  �̃�௤௟ = ೖ࢛࢟  ೗࢛࢟ ⁄೜−1࢑ࢠ೜−1࢝ ⁄೜−1࢒ࢠ೜−1࢝          ݈ ≠ ݇ 

If �̃�௤௟ > ͳ, set ௟ܾ௤ = ͳ.  

Else if, set ௟ܾ௤ = Ͳ.  

Step q+1: Solve  �̃�௟ = ೖ࢛࢟  ೗࢛࢟ ⁄ೖ࢞࢜ ⁄೗࢞࢜          ݈ ≠ ݇ 

If �̃�௟ > ͳ, set ݐ௟ = ͳ, 𝑖: = 𝑖 + ͳ  

Else if, set ݐ௟ = Ͳ.  

Step q+2: if ݈ ൑ 𝑛 − ͳ, set l:=l+1. Go to step 1. 

Else if, stop. 

Output: i, ௟ܾ௣ and ݐ௟ (݌ = ͳ, … , , ݍ ݈ = ͳ, … , 𝑛  ; ݈ ≠ ݇ ). 
In the above q+2 step procedure, i shows ranking of DMUk 

and ܾ௟௣  (p=1,…,q), and ݐ௟ show the performance of each 

stage of DMUl and the whole system compares the 

corresponding DMUk ones, respectively. For instance, ܾ௟௣ = ͳ means that the efficiency score of p
th

 stage of DMUl
 

is higher than that of DMUk, and ܾ௟௣ = Ͳ means that the 

efficiency score of p
th

 stage of DMUk is at least as high as 

that of DMUl. 

In step 1, the efficiency score of the first stage of DMUk and 

DMUl will be compared and 1 will be set for ܾ௟ଵ if DMUl
 

performs better than DMUk in its first stage. The same case 

will be done for p
th (p=2,…q-1) stage of the DMUs, and ܾ௟௣ = ͳ is set if the ratio efficiency score of p

th
 stage of 

DMUl is strictly higher than p
th

 stage of DMUk. In step q, 

the last stage will be analyzed and ܾ௟௤ = ͳ shows that the 

ratio efficiency score of the last stage of DMUl is strictly 

higher than the one of DMUk. In step q+1, the same 

comparison will be done for the overall efficiency score of 

the DMUs and ݐ௟ = ͳ shows that the whole ratio efficiency 

score of DMUl is strictly higher than that of DMUk. Also, 

this step accounts for the number of DMUs with higher 

efficiency score than DMUk. If ݐ௟ = ͳ, 1 will be added to 

the counter. The last step is the final step of the algorithm. If 

there is still a DMU which is not compared with DMUk, it 

will be under scrutiny from the first step to the end. If all the 

DMUs are considered, the algorithm will be stopped. 

Note that to attain the worst ranking of each multi-stage 

system considering an arbitrary set of feasible weights, it is 

sufficient to convert (>) to (൒) in the above procedure. 

Using this algorithm, not only the ranking of the individual 

production systems will be determined, but also the status of 

each stage of DMUl (݈ = ͳ, … , 𝑛  ; ݈ ≠ ݇) will be achieved 

by comparing it to the corresponding stages of DMUk. This 

is used to determine the stages which need performance 

improvement to boost the performance of the whole system.  

Now, we exemplify how the algorithm works. Let us run 

the algorithm with six two-stage DMUs, which have two 

outputs and a single input and a single intermediate product, 

as given in Table 1. We use the new procedure to obtain the 

best rank of DMUF. The optimal weights of model (5) for 

DMUC are considered as a set of arbitrary feasible weights.  
 

 

 Table1 

  Data of 6 two-stage production systems 

Output 1 
Output 

2 
Input 

Intermediate 

product 

2 4 3 3 

5 7 3 4 

6 5 5 3 

7 3 4 5 

3 6 5 4 

5 4 4 3 
 

The computed results of the algorithm are shown in Table 2. 

In the first step, we compare the efficiency score of DMUA
 

with DMUF in their first stage by calculating �̃�ଵ௟. Table 2 

shows that achieved result is more than 1, so we set ܾ௟ଵ = ͳ. 

In the next step, we do the same for the second stage. So, ܾ௟ଶ = Ͳ because �̃�ଶ௟ < ͳ. In the third step, comparison is 

done for the efficiency score of the whole DMUA and 

DMUF. We set ݐ௟ = Ͳ due to �̃�௟ < ͳ. Finally, in step 3, i 

remains 1 and does not increase because the whole 

efficiency score of DMUA is less than the whole efficiency 

score of DMUF. Step 4 makes the same procedure done for 

other units except DMUF until all of them are analyzed.   

 

 Table 2    

 The results of the implementation of the  algorithm 

b_l^1 
Second 

stage 
b_l^2 

Whole 

system 
t_l i 

1 0.333 0 0.25 0 1 

1 0.625 0 0.625 1 2 

0 1 1 0.45 0 2 

1 0.670 0 0.656 1 3 

1 0.375 0 0.225 0 3 

- 0.8338 - 0.469 - - 

So, the same procedure is performed for DMUB and the 

other DMUs to obtain the ranking of DMUF. In conclusion, 
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the best rank of DMUF for the used feasible weights is 3. If 

we run the algorithm with the same feasible weights to 

obtain the worst rank of DMUF, it will be equal to 3. In 

general, DMUs B and D have better performance than that 

of DMUF  because they perform better than DMUF in their 

first stages. So, performance improvement of the first stage 

of DMUF is needed to upgrade its best ranking. The same 

best rank is obtained for DMUF by the model which will be 

subsequently provided. In addition, the new model estimates 

5 as the worst rank of DMUF because it analyzes all sets of 

feasible weights, and not just the optimal weights of (5). 

Thus, the ranking interval of DMUF is [3, 5]. This suggests 

that there is at least one set of feasible weights which makes 

DMUF as the fourth DMU and at least one set of feasible 

weights which makes DMUF as the fifth DMU over six. 

Now, to achieve the best and worst rankings of multi-stage 

systems considering all feasible weights, we present models 

(6) and (7), respectively. In these models, applying cone 

ratio method presented by Charnes et al. (1989) or 

assurance region method introduced by Thompson et al., 

(1986), we assume that the weights belong to special sets ሺܷ, ܸ, ܹሻ ⊆ ሺℜ++𝑠 , ℜ++௠ , ℜ++𝑑 ሻ to impose the preference 

information of decision-makers on inputs, outputs, and 

intermediate products. 

 min      ∑ ∑ ௟ܾ௣ +௣௟≠௞                         ௟ݐ
s.t.     ݓଵݖ௟ଵ − ௟ݔݒ ൑ 𝑀 ௟ܾଵ                 ݈ ≠ ݇            

௟௣ݖ௣ݓ           − ௟௣−ଵݖ௣−ଵݓ ൑ 𝑀 ௟ܾ௣    ݈ ≠ ݇            

݌                                                       = ʹ, … , ݍ − ͳ            
௟ݕݑ           − ௟௤−ଵݖ௤−ଵݓ ൑ 𝑀 ௟ܾ௤       ݈ ≠ ݇             

௟ݕݑ           − ௟ݔݒ ൑ 𝑀ݐ௟                     ݈ ≠ ݇ 
           

         ௟ܾ௣, ௟ݐ  ∈ {Ͳ,ͳ}           ݌ = ͳ, … , ݈    ݍ ≠ ݇               
௞ݔݒ              = ௞ݕݑ  = ௞௣ݖ௣ݓ = ͳ   ݌ = ͳ, … , ݍ − ͳ                                         
     ሺݑ, ,ݒ ௣ሻݓ ∈ ሺܷ, ܸ, ܹሻ 

               (6) 

(6.1) 

(6.2) 

 

(6.3) 

(6.4) 

max      ∑ ∑ ௟ܾ௣ +௣௟≠௞                         ௟ݐ
s.t.   −ݓଵݖ௟ଵ + ௟ݔݒ ൑ 𝑀ሺͳ − ௟ܾଵሻ              ݈ ≠ ݇      

௟௣ݖ௣ݓ−        + ௟௣−ଵݖ௣−ଵݓ ൑ 𝑀ሺͳ − ௟ܾ௣ሻ  ݈ ≠ ݇      

݌                                                       = ʹ, … , ݍ − ͳ            
௟ݕݑ−       + ௟௤−ଵݖ௤−ଵݓ ൑ 𝑀ሺͳ − ௟ܾ௤ሻ      ݈ ≠ ݇      

௟ݕݑ  −       + ௟ݔݒ ൑ 𝑀ሺͳ − ݈               ௟ሻݐ ≠ ݇  

            ௟ܾ௣, ௟ݐ  ∈ {Ͳ,ͳ}           ݌ = ͳ, … , ݈    ݍ ≠ ௞ݔݒ                       ݇ = ௞ݕݑ  =  ௣ݓ

(7)
 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

 

In these models, the weight sets are considered to be closed 

and bounded by the constraints ࢞࢜௞ = ௞࢛࢟  = ௞௣ࢠ௣࢝ =ͳ,   ݌ = ͳ, … , ݍ − ͳ.
 

The first, second, third, and fourth 

constraints are related to the first, p
th

, last stage, and the 

whole production unit, respectively. M is a sufficiently large 

positive constant.  

By means of the following theorems, we access the best and 

worst rankings of observed multi-stage production units 

based on their efficiency scores for all feasible weights.   

Theorem 1: The best rank of DMUk is 𝑖 = ͳ + ∑ ௟௟≠௞ݐ  

based on the optimal solution of model (6). 

Proof: constraints (6.1)-(6.4) allow model (6) to evaluate 

all the optimal DEA weights in the series model of all the 

DMUs. Besides, (6.1) identifies the performance of the first 

stage of DMUl in comparison with DMUk. It means that it 

determines all DMUl (l=1,...,n; ݈ ≠ ݇) that have efficiency 

score lower than, higher than, or equal to DMUk in the first 

stage. Therefore, for every choice of weights, if 𝐸௟ଵ ൑ 𝐸௞ଵ 

for some DMUl (݈ ≠ ݇), then ܾ௟ଵ will be necessarily 0 due to 

the minimizing model. While if 𝐸௟ଵ > 𝐸௞ଵ for some DMUl
 

(݈ ≠ ݇), then ܾ௟ଵ will be necessarily 1 associated with M
 

establishes the feasible constraint. The same procedure is 

established for constraints (6.2), (6.3), and (6.4) for p
th

 stage 

(p=2,…,q-1), the last one, and the whole system, 
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respectively. Finally,
 

𝑖 = ͳ +  ∑ ௟௟≠௞ݐ  is 1+ minimum 

number of DMUs with higher efficiency score than DMU
k. 

Theorem 2: The worst rank of DMUk is 𝑖 = ͳ +  ∑ ௟௟≠௞ݐ  

based on the optimal solution of model (7). 

Proof: The procedure of proof in this theorem is similar to 

that of theorem 1.              

Note that the existence of the first, second, and third 

constraints in both models is necessary to preserve the 

series relationship between the stages and also help DMs to 
simply decide which stages need improvement to boost the 

overall efficiency of the system. 
 

4. An Illustrative Example 
 

One of the main primary foods of humans of the world, 

such as the Iranian people, is wheat. Wheat production is so 

important in terms of income. Hence, performance analysis 

and comparison of provinces in which wheat is produced 

are so important to increase the amount of production and to 

provide the needs of Iranian people and even to export.   

This section presents the best and worst rankings of 20 

provinces of Iran in wheat production in 2008-2009 crop 

year which is started on 22 September, 2008 and ended on 

22 September, 2009. Each province is considered as a series 

system with three stages: preparing-sowing, growing, and 

harvesting, respectively.  
 
 

Table 3. 

Descriptive statistics on a data set of 20provinces 

Cosumed  

seed 

Cultivated 

 area 

Harvested 

 area 

Wheat 

production 

1009 7700 7656 11611 

160755 821189 612064 1396649 

40240.9 233844.8 192809 408474.4 

 

Table 3 summarizes such descriptive statistics on a data set 

of 20 under evaluated provinces on Iran wheat farming in 

2008-2009 crop year. In preparing-sowing process, suitable 

land for wheat production is prepared with ploughing, clods 

crushing, and manuring. Manuring is done in two parts, first 

in preparing step, and second in growing step. In the 

preparing-sowing step, all the phosphate fertilizer and half 

of the nitrogen fertilizer are used. The inputs of the system 

are consumed fertilizer (based on kilogram) and consumed 

seed (based on ton). There is one intermediate product in the 

system which is the output of preparing-sowing process as 

well as the input of growing process and the output of the 

growing process as well as the input of the harvesting 

process. The intermediate product (land based on hectare) 

which is produced by preparing-sowing process is from a 

cultivated area and the one which is produced by growing 

process is from a harvested area. The output of the system is 

wheat production (based on ton). As it is shown in table 4, 

the best ranking of DMUs 9 and 20 is 1. It means that in the 

best position of these DMUs, there are no other DMUs 

which perform better than them. The worst ranking of 

DMUs 6 and 15 is 20 which denotes that there is at least one 

set of feasible weights that makes the efficiency score of all 

other units as high as the mentioned ones. The best rank 

position is assigned to province 9 because its best rank is 1 

and its worst rank is better than the other ones. It means that 

there is at least one set of feasible weights for which the 

minimum number of DMUs with strictly higher efficiency 

score than DNU9 is 0. Besides, there is at least one set of 

feasible weights for which the maximum number of DMUs 

with as high efficiency score as DMU 9 is 5.  

Now, we use these results to analyze each stage’s impact on 

the performance of the whole system. As a result, we can 

determine the improvements which should be done in a 

three-stage unit to upgrade its rank. 
 

Table 4 

 Shows the best and worst rankings of provinces achieved  

 by models (6) and (7). 

DMU 
Best 

rank 

Worst 

rank 

1. Azerbaijan, East 6 19 

2. Azerbaijan, West 4 15 

3. Ardabil 2 8 

4. Isfahan 6 11 

5. Ilam 10 19 

6. Bushehr 18 20 

7. Chahar Mahaal and Bakhtiari 12 16 

8. Khorasan, South 3 16 

9. Khorasan, Razavi 1 6 

10. Khuzestan 2 18 

11. Sistan and aluchestan 6 11 

12. Fars 2 14 

13. Qom 2 19 

14. Kerman 8 15 

15. Gilan 12 20 

16. Lorestan 7 16 

17.Mazandaran 2 12 

18. Markazi 3 9 

19.Hormozgan 5 17 

20. Yazd 1 16 
 

To illustrate, consider a specific province, say DMU2. The 

optimal solution computed by solving model (6) is: 
 {݈; ܾ௟ଵ = ͳ} = {ͳ,ͻ}, {݈; ܾ௟ଶ = ͳ}= {͹,ͺ,ͻ,ͳͳ,ͳ͵,ͳ͸,ͳ͹,ͳͺ,ͳͻ,ʹͲ}, {݈; ܾ௟ଷ = ͳ} = {͵,Ͷ,͹,ͺ,ͻ,ͳͲ,ͳͳ,ͳʹ,ͳ͵,ͳͶ,ͳ͹,ͳͺ,ͳͻ,ʹͲ}, {݈; =௟ݐ ͳ} = {͵,ͻ,ͳʹ}. 
 

Results show that the minimum number of DMUs with 

better performance than DMU2 is 3. This number is 2 for the 

first stage, 10 for the second, and 14 for the third one. Also, 

the best ranking of DMU2 is 4 because 3 other DMUs 

(DMUs 3,9 and 12) have better performance than DMU2. 

So, to upgrade the best ranking of DMU2, it should perform 

better than DMUs 3, 9, and 12. DMUs 3 and 12 have better 

performance than DMU2 in the third stage leading to have 
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better performance for the whole system, so DMU2 should improve the performance of its third stage to dominate 

them. DMU9 has better performance than DMU2 in its all 

stages, so DMU2 should improve the performance of its all 

stages to overcome DMU9. 
 

 

5. Conclusion 

 

This paper provides a ratio-based efficiency method for 

ranking network production units in DEA framework. In 

this paper, two DEA models are introduced to compute 

ranking intervals for multi-stage production systems 

considering all feasible input, output, and intermediate 

product weights. The lower bound of the achieved interval 

shows the minimum number of the units with strictly higher 

efficiency score than the under evaluated system. On the 

other side, the computed upper bound shows the maximum 

number of the systems with as high efficiency score as the 

under evaluated system. These provide required information 

to make a complete ranking of multi-stage systems. In 

addition, the results provide accurate information about the 

inefficient stages. Thus, they help DMs to improve the 

performance of their DMUs.  

To address more practical problems, we suggest further 

research to be conducted for determining ranking of multi-

stage units in variable returns to scale technology. It is also 

worth determining the best and worst rankings of network 

systems without series structure. 
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