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Abstract 

Hub networks have always been acritical issue in locating health facilities. Recently, a study has been investigated by Cocking et al. (2006) 
in Nouna health district in Burkina Faso, Africa, with a population of approximately 275,000 people living in 290 villages served by 23 
health facilities. The travel times of the population to health services become extremely high during the rainy season, since many roads are 
unusable. In this regard, for many people, travelling to a health facility is a deterrent to seeking proper medical care. Furthermore, in real 
applications of hub networks, the travel times may vary due to traffic, climate conditions, and land or road type. To handle this challenge  
this paper considers the travel times are assumed to be characterized by trapezoidal fuzzy variables in order to present a fuzzy green 
capacitated single allocation p-hub center system (FGCSApHCP) with uncertain information. The proposed FGCSApHCP is redefined into 
its equivalent parametric integer nonlinear programming problem using credibility constraints. The aim is to determine the location of pc 
apacitated hubs and the allocation of center nodes to them in order to minimize the maximum travel time in a hub-and-center network in 
such uncertain environment. As the FGCSApHCP is NP-hard, a novel algorithm called opposition biogeography based optimization is 
developed to solve that. This algorithm utilizes a binary opposition based learning mechanism to generate a diversity mechanism. At the 
end, both the applicability of the proposed approach and the solution methodologies are demonstrated using GAMS/BARON Software 
under several kind of problems. Sensitivity analyses on the number of hubs and center nodes are conducted to provide more insights as 
well. 
 
Keywords: Capacitated p-hub center system, Single allocation, Fuzzy travel time, Opposition based learning, Biogeography based 
optimization, Uncertain information. 

1. Introduction 

Hub networks are utilized in health facilities, emergency 
services, computer networks, and transportation systems 
such as airline, railway, and so on. In these networks, 
instead of generating direct links between origin and 
destination pairs (OD pairs), the hubs serve as 
transshipment or switching points for flows between 
center nodes (non-hub nodes) (Parvaresh et al. 2013). 
These networks called either hub-and-center or hub-and-
spoke provide services via a specified set of hub 
nodes.Generally,in a hub-and-center network, many 
origins and destinations can be connected with fewer 
links, based on which smaller transportation rates and a 
reduction in total transportation costs can be 
provided(Kratica et al. 2007). Hub-and-spoke networks 
play a substantial role in the performance of today’s 
transportation companies. According toUnited Nations 
conference on trade and developmentUNCTAD (2012), 
approximately 80% of global trade (by volume) and 70% 
(by value) is transported through sea and is mainly 
accomplished by hub ports worldwide. Besides, nearly 
40% of the costs are involved in road planning and in 
transportation operations and management(Haridass et al. 
2014), which is often associated with fixed costs 
(additional costs)  along   with   transportation   (shipping)  
 

Cost (Kundu et al. 2014). Furthermore, as governments 
impose more tax regulations promoting so-called 
environment-friendly policies in transportation activities, 
investment in such networks became even more 
important. In these networks, flows departing from an 
origin node are collected in a hub, transferred between 
hubs if necessary, and then distributed to a destination 
node by combining flows (Kratica et al. 2007). The hub 
facilities consolidate flows in order to utilize the concept 
of economies of scale in transportation between the hubs. 
In real world, hub location is one of the most important 
issues in hub-and-center network problems. For instance, 
integration of Taiwanese and Chinese air networks for 
direct air cargo services was studied by Lin and Chen 
(2003) in a pure hub-and-spoke network. In addition, Fig. 
1 shows an instance of hub airport location of Iranian 
aviation between 37 cities in which Tehran and Kerman 
as active airports are hubs. Thisis called as the Iranian 
aviation dataset (IAD) (Karimi and Bashiri 2011).Hub 
location problems deal with the location of hubs from a 
set of candidate hubs and assigning center nodes to the 
located hubs. If  the number of hub nodes is fixed to p, we 
are dealing with p-hub location problems.. The prominen 
tp-hub median is to distinguish a set of phubs to serve the  
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center nodes so that the total transportation cost of the 
network is minimized. Nevertheless, the generic p-hub 
center location problem pursues equity among the centers, 
as opposed to the p-hub median, which pursues an 

economic efficiency. This approach requires minimizing 
the maximum objective function; so it becomes a min–
max problem (Lin et al. 2012). 

 
 

 
Fig. 1.The hub-and-center network in Iranian Aviation Dataset 

 
In hub location problems, a center node can usually be 
assigned either to one or more hubs. Therefore, these 
problems can be classified into single and multiple 
assignment types (Bryan and O’Kelly 1999). In the single 
assignment scheme, each center node is assigned to one 
and only one hub, while all of the centers can be assigned 
to several hubs in the multiple assignment schemes 
(Vidović et al. 2011). These types can also be categorized 
either uncapacitated or capacitated. Recently, the p-hub 
center problem has received an extensive attention of both 
researchers and practitioners. In this regard, this paper 
deals with the capacitated single allocation p-hub center 
problem,which has a widerange of applications in 
clustering along sidede signing transportation and 
telecommunication networks (Garey and Johnson 1979). 
As a result, the literature related to the current research 
can be presented into the limited works of the p-hub 
center problem. 
O’Kelly and Bryan (1998)studied the multi-assignment p-
hub problem with economies of scale on the trunk lines in 
an uncapacitated networks. Ebery et al. (2000)and Ebery 
(2001) proposed formulations and solution approaches for 
a capacitated multiple allocation hub location problem 
based on the shortest path. Kara and Tansel (2000) 
presented several linearization of quadratic programs and 
provided a NP-completeness proof to single allocation p-
hub center problem. Integer programming formulations 
for both uncapacitated and capacitated p-hub center 
problem was developed by Campbell et al. (2007). A bi-
criteria approach in a p-hub problem was proposed by 

Costa et al. (2008). They presented two models, the first 
minimizes the time to processing flows and the second 
minimizes the maximum service time at the hubs. 
Moreover, Camargoa et al. (2008)introduced Benders 
decomposition algorithms to solve the multiple 
assignment uncapacitated  p-hub problem. 
A p-hub center problem with stochastic time and service-
level constraints was modeled by Sim et al. (2009) using 
mutually independent normal distributions.Ernst et al. 
(2009)presented two uncapacitated p-hub center problems 
with either single or multi-allocation to minimize the 
maximum total cost and solved them using a branch-and-
bound approach.Yang et al. (2011) studied a p-hub center 
problem with discrete random travel to minimize efficient 
time point. In addition, Yaman and Elloumi (2012) 
introduced the star p-hub center problem and the star p-
hub median problem, where two mixed integer 
programming formulations with bounded path lengths 
were proposed for the first problem in order to minimize 
the total routing cost. In this matter,Liang (2013) 
investigated the hardness of the star p-hub center 
problem. He presented a purely combinatorial 3.5-
approximation algorithm for this problem. In addition, 
two mixed-integer programming for a fuzzy p-hub center 
problem were presented by Yang et al. (2013). They 
solved the problem by utilizing an improved hybrid 
particle swarm optimization algorithm by combining 
genetic operators and local search. However, they did not 
take into account the capacity restrictions of the hubs. On 
the other hand, Bashiri et al. (2013) proposed a hybrid 
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approach for a p-hub center problem using both 
qualitative and quantitative parameters to minimize the 
longest travel time. They utilized a fuzzy VIKOR to 
model a hybrid solution and then solved the problem 
using a genetic algorithm. Interested readers are referred 
to Farahani et al. (2013)for a more extensive review of the 
studies on p-hub problems. 

1.1. Result of literature review 

The majority of existing studies in the capacitated p-hub 
center problem assume deterministic parameters. This 
often leads to inadequate and unreliable results in real 
world, especially when decision makers encounter 
uncertain information in making their decisions about a 
hub-and-center network, in particular, in the travel times 
due to uncertain traffic and climate condition (Farahani et 
al. (2013).  Therefore, it is essential to rely on the 
decision-makers’ subjective judgment or the experts’ 
experience to estimate the value of these uncertain 
parameters. In this way, the fuzzy set theory is an 
appropriate representation of the imprecision involved in 
the travel times. Here, it is worth mentioning that the only 
work on the fuzzy p-hub center problem is the one 
proposed by Yang et al. (2013), while capacity 
restrictions of the hubs were not considered.  
Moreover, there is a little discussion about uncertain 
environments in p-hub center problems especially on the 
travel time. Note that most of the works on the p-hub 
center problem only aim to optimize either the fixed cost 
of the selected hubs or the transportation cost and less 
attention has been paid to the total travel time in the 
network with uncertain information; a critical factor that 
has been overlooked. To understand the importance of the 
total travel time better, consider a case study investigated 
by Cocking et al. (2006). In this work, the Nouna health 
district in Burkina Faso, Africa, with a population of 
approximately 275,000 people living in 290 villages 
served by 23 health facilities is involved. The travel times 
of the population to health services become extremely 
high important during the rainy season, as many roads are 
unusable. For many people, In other words, travelling to a 
health facility is a deterrent to seeking proper medical 
care.Nonetheless, although there are similar p-hub studies 
in the literature, to the best of author’s knowledge, there 
is no p-hub model that takes into account both the travel 
time and most important features of real-world together in 
hub network transportations such as uncertain travel 
times. Furthermore, with increasing the global 
consciousness of environmental protection and the 
corresponding growth in legislation and regulations, green 
transportation has become an essential issue. Today’s, 
numerous carriers have begun to perform green 
transportation and have taken into account environmental 
concerns and greenhouse gas (GHG) emissions. 
Nonetheless, unfortunately, the necessary attention has 
not been paid to the green HLP in depth up to now. Thus, 
it is critical to study the green transportation approach in 
HLPs.Additionally, as the HLP belongs to the class of 
NP-hard problems, exact methods are not appropriate to 
solve large problems in a reasonable computational time. 

Consequently, an effective meta-heuristic approach is 
needed to solve large competitive HLPs. 

1.2. Motivation and contribution 

Now, this paper tries to overcome this shortcoming by 
considering the uncertain travel times characterized by 
trapezoidal fuzzy variables. The objective is to determine 
the locations of p capacitated hubs and the allocations of 
center nodes to the located hubs such that the maximum 
travel time in a fuzzy green capacitated single allocation 
p-hub center problem (FGCSApHCP) is minimized. As 
the proposed problem is nonlinear and NP-hard, exact 
methods are not proper to solve large-scale problems. 
Therefore, a novel meta-heuristic algorithm called 
biogeography-based optimization (BBO) is developed. As 
there is no benchmark available in the literature, the 
popular genetic algorithm (GA) with a multi-parent 
crossover is designed in order to validate the results 
obtained. 
Moreover, to enhance the performance of the proposed 
BBO, this paper intends to extend the opposition-based 
learning (OBL) algorithm proposed as an opposition BBO 
in a binary solution space. To do so, instead of a pure 
random generation, the objective of OBL implementation 
is to consider two approaches of randomness and 
oppositions in generating the solutions simultaneously. In 
other words, after generating the population of solutions, 
a second chance is given to the population by checking 
the opposite solutions, represented as opposite population. 
Therefore, a novel algorithm namely oppositionBBO 
(OBBO) is presented. Afterward, to tune the parameters 
of the algorithms, the Taguchi method is performed. 
Besides, sensitivity analyses on the number of hubs and 
center nodes are conducted to provide more insights as 
well. This study is motivated by the need of considering 
GHG emissions and their consequences in making the 
decisions related to HLP in a real environment. In short, 
the highlights of the differences of this study with the 
mentioned studies are as follow: 

 Developing a fuzzy HLP with uncertain 
transportation time; 
 Redefining the problem into its 
equivalent parametric integer nonlinear 
programming; and  
 Proposing an opposition binary BBO; 

 
The application of this study is to generate additional 
opportunities and cost effective alternatives for 
companies that operate in the hub transportation networks 
under such uncertain environment.The remainder of the 
paper is organized as follows. Section 2 describes the 
problem definition while Section 3 contains the solving 
methodologies. Opposition-based learning will be 
introduced in Section 4. In order to demonstrate the 
application of the proposed model, several problems are 
investigated in Section 5. Moreover, a sensitivity analysis 
is performed in this section. At the end, conclusion and 
future researches are provided in Section 6. 
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2. Problem Definition 

The proposed problem is useful especially for delivery of 
perishable or time sensitive items such as the ones in 
express mail services, emergency services, and 

healthcare’s, where aminimum service (travel) time is 
desirable for all customers. Here, consider areal 
transportation network in city logistics including multiple 
center nodes and candidate hubs. For instance, a network 
for two hubs and four center nodes is illustratedin Fig. 2. 

 

 Fig. 2.Problem definition 
 

Let H be the set of candidate hubs ,h m H  in the 
design network with a provided capacity for handling to 
the center node ,i j N . Collectively, the design 
network contains a set { }O N H  . This network 
contains a set of directed links that connect from all of the 
origin center nodes to all of the hub nodes; all of the hub 
nodes to all of the other hub nodes; and all of the hub 
nodes to all of the destination center nodes with no 
intermediate nodes. A center pickup node i  with a center 
delivery node j forms an origin–destination pair (OD).A 
discount factor is assumed on the hub-to-hub trunk 
transportation links to provide reduced time on arcs 
between hubs for reflecting economies of scale. In 
addition, a capacity limitation is considered on the 
volume of traffic entering a hub. In real applications of 
hub-and-center networks, the travel times may vary 
because of traffic or climate conditions, speed 
ambulances, land or road type. To handle this uncertainty, 
an appropriate representation of the imprecision can be 
described by using  fuzzy variables. There by, due to the 
uncertainty of relevant data, the uncertain travel times are 
associated with fuzzy features characterized by 
trapezoidal fuzzy variables. 
The aim is to locate p  hubs from the set H  and allocate 
the center nodes from set N  to them, in order to 
minimize the maximum travel time with fuzzy travel 
times determined by experts’ experience in practice. To 
do so, an integer nonlinear programming model is 
developed based on the following assumptions: 

1- The number of hubs to be located is 
predetermined ( )p . 
2- Each center node is only assigned to a 
single hub. 
3- All hubs are connected to one another. 
4- Direct transportation between center 
nodes is not allowed. 
5- The installation cost of the hub nodes is 
not considered. 

The mathematical notations usedin the proposed 
formulation are: 
Indices 

,i j   Index for center nodes , 1,...,i j N  
,k m   Index for hub , 1,...,k m H  

Input parameters 

ijW   Flow between center node i and center 
node j (unit) 

ikt   Fuzzy transfer time for commodity to 
travel from center nodei to hub k (second) 

kmt   Fuzzy transfer time for commodity to 
travel from hub k to hub m (second) 

jmt Fuzzy transfer time for commodity to travel from hub 
mto center node j (second) 
  Discount factor for trips between two hub nodes 

iO Total commodity to be transferred from center nodei
(unit) 

Center 1 

Center i 

Center 2 

Center j 

Hub k Hub m 

i kt

kmt

jmt

ikX jmX
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kC Capacity of hub k (unit) 

Decision variables 

ikX  A binary variable, set equal to 1 if center nodei is 
allocated to hub k, 0 otherwise 

kY  A binary variable, set equal to 1 if a hub is 
established at node k, 0 otherwise 
Then, the proposed FCSApHCP without considering 
green approach is formulated as follows: 

  
, , ,

;ij ik ik km ik jm jm jmi j k m
Min Z Max W t X t X X t X    

                  (1) 
Subject to: 

1, ;ik
k H

X i N


      (2) 

, ;ik k
i N

X Y k H


     (3) 

, , ;k ikY X i N k H   
      

(4) 

,k
k H

Y p


                    (5) 

, ;i ik k
i N

O X C k H


     (6) 

, {0,1}, , ;ik KX Y i N k H     (7) 

The objective function ( )Z  presented in Eq. (1)deals 
with minimizing the maximum of travel time including 
the travel time between origin- hub, hub-hub, and hub-
destination associated with each flow, respectively. 
Constraint (2) shows that every center node is assigned to 
one and only one hub. Constraints (3) and (4) ensure that 
the flow is sent only via open hubs. They prevent direct 
transmission between center nodes.Constraint (5)ensures 
that exactly p hubs are chosen. Constraint (6) guarantees 
that the total flow into hub k via collection cannot exceed 
its maximum capacity.Finally, Constraint (7) ensures 
binary values for decision variables where ikt , kmt , and 

jmt are fuzzy numbers. Note that the capacitated p-hub 
center problem is a well-known nonlinear model in the 
literature(Farahani et al. (2013)).Moreover, it is clear that 
the above formulation is a fuzzy integer nonlinear 
programming (FINLP). In the next section,  this model is 
then converted to a parametric integer nonlinear 
formulation. 
 

2.1.Equivalent parametric integer nonlinear 
programming 

As mentioned before, fuzzy travel times are characterized 
by trapezoidal fuzzy variables. In order to solve the 

proposed problem, the FCSApHCP is then redefined into 
its equivalent parametric integer nonlinear programming 
problem using credibility constraints (Cr) where they are 
transformed to their equivalent forms. In the following, 
the framework of credibility constraints is briefly 
described (Liu and Liu 2002; Yang et al. 2013). The fuzzy 
set theory introduced by Zadeh (1965) is increasingly 
applied to a wide variety of practical problems. In fuzzy 
decision making environments, possibility and necessity 
measures are prominent fuzzy measures (Davari et 
al. 2013). 
 

Definition 2.1 Let X  be a universe of discourse, A is a 
fuzzy subset of X if for all x X  there is a 
number ( ) [0,1]A x  assigned to represent the 

membership of x  to A . ( )A x is called the membership 
function of A . 
Definition 2.2 The (crisp) set of elements that belongs to 
the fuzzy set A  for which the degree of its membership 
function exceeds the level  is called  -cut and denoted 
by [ | ( ) ]AA x X x     . 
 

Definition 2.3 (Zimmermann 1978). A fuzzy decision is 
defined in an analogy to non-fuzzy environments as the 
selection of activities that simultaneously satisfies 
objective functions and constraints. In fuzzy set theory, 
the intersection of sets normally corresponds to the 
logical ‘‘and’’. In addition, the ‘‘decision’’ in a fuzzy 
environment can be viewed as the intersection of fuzzy 
constraints and fuzzy objective functions. 
 
Definition 2.4 Let ξ be a fuzzy variable along 
with membership function of : [0,1]  . A fuzzy 
variable  is said to be normal if there exists a real 
number r such that ( ) 1r  . 
 
Definition 2.5 (Liu and Liu 2002). Let u and r be two 
real numbers. Then, the possibility degree of occurrence 
of a fuzzy event, characterized by r  , is defined by: 
 

  sup ( )u rPos r u    
 
While the necessity degree of occurrence of this fuzzy 
event is introduced using: 
 

   1 1 sup ( )u rNec r Pos r u       
 

 

Therefore, the credibility measure ( )Cr  is then defined as 
an average of possibility and necessity measures as 
follows: 
 

1{ } ( { } { })
2

Cr r Pos r Nec r        
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It should be noted that a fuzzy event might fail even 
though its possibility achieves 1, and holds even though 
its necessity is 0. However, the fuzzy event must hold if 
its credibility is 1 and fails if its credibility is 0. 
Let us consideraga in the sample network shown in Fig. 2. 
The travel time from nodes i  to j must route through only 
two installed hubs. Consider the travel 
times 1 2 3 4( , , , )ik ik ik ik ikt r r r r , 1 2 3 4( , , , )km km km km kmt r r r r , 

and 1 2 3 4( , , , )jm jm jm jm jmt r r r r .Then, the total travel time 
on   

this path of i k m j    is ik km jmt t t    where 

the discount factor 0 1  represents the scale 
economies on the inter-hub linkage. 
 

Theorem. Let the travel times ikt , kmt , and jmt  be 
mutually independent trapezoidal fuzzy variables. Then, 
the proposed FCSApHCPis equivalent to the following 
parametric integer nonlinear programming problem: 
 
 
  

Minimize      
Subject to:    ( , ) ,        ,   ,

                    (2)-(7);
ik jm

Z
f X X Z i j N k m H   

                                      

(8) 

Where the term of ( , )ik jmf X X is the following piecewise function as: 
 

1 1 1 2 2 2

3 3 3 4 4 4

1((1 2 )( ) 2 ( )),    
2( , )

1((2 2 )( ) (2 1)( )),   
2

ij ik ik km ik jm jm jm ik ik km ik jm jm jm

ik jm

ij ik ik km ik jm jm jm ik ik km ik jm jm jm

W r X r X X r X r X r X X r X
f X X

W r X r X X r X r X r X X r X

    

    

       
 
        
  

 
Proof. Asthe travel times ikt , kmt , and jmt are mutually in dependent by the properties of trapezoidal fuzzy 

variables, ik km jmt t t    is a trapezoidal fuzzy variable and can be denoted by 
 

1 1 1 2 2 2 3 3 3 4 4 4( , , , )ik km jm ik km jm ik km jm ik km jmr r r r r r r r r r r r           .Denote ikmj ik km jmt t t      for simplicity of 
presentation. Therefore, the credibility constraints (Cr) can be obtained as follows: 

{ } ,          , , , .ikmjCr Z i k m j     
 
where 0 1  is apre scribed credibility level. It should be noted that if 0 1/ 2  , then 

2{ }  Z ( )  L
ikmj ikmjCr Z        

in which 2( )  L
ikmj  is the left extreme point of the term of 2 cut  of ikmj . Hence, { }ikmjCr Z    is equivalent to 
1 1 1 2 2 2(1 2 )( ) 2 ( ) .ik km jm ik km jmr r r r r r Z           

 
It follows that the credibility constraint { ( ) }ij ik ik km ik jm jm jmCr W t X t X X t X Z        can be expressed equivalently 
as follows 

1 1 1 2 2 2((1 2 )( ) 2 ( )) .ij ik ik km ik jm jm jm ik ik km ik jm jm jmW r X r X X r X r X r X X r X Z           
 
On the other hand, if the credibility level1/ 2 1  , then one has 

2 2{ }  Z ( )  R
ikmj ikmjCr Z        , 

 
where 2 2( )  R

ikmj   is the right extreme point of the (2 2 ) cut   of ikmj . Finally, the credibility constraint 

{ ( ) }ij ik ik km ik jm jm jmCr W t X t X X t X Z       is then equivalent to 
3 3 3 4 4 4((2 2 )( ) (2 1)( )) .ij ik ik km ik jm jm jm ik ik km ik jm jm jmW r X r X X r X r X r X X r X Z            

This concludes the proof. 
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2.2. Green approach 

Green transportation is a critical issue in particular in road 
freight transportation that is a major contributor to emit 
carbon dioxide (CO2) equivalent emissions. Many carriers 
have started taking into account the negative externalities 
of their activities such as pollution, accidents, noise, 
resource consumption, climate change risk, and land use 
deterioration to reduce carbon dioxide emissions that are 
harmful for both human health and environment,  (Demir 
et al. 2014b). Meanwhile, most trucks use diesel engines 
for running, which are major sources of emissions such as 
nitrogen oxides (N2O), particulate matter (PM) and CO2. 
In this regard, N2O-based smog and PM have been related 
to a wide range of human health problems. Particularly, 
greenhouse gases (GHGs) significantly contribute to 
global warming at the global level. According to a review 
of recent research on the green transportation approach 
studied by Demir et al. (2014b): 
 

“The selection of the right vehicles from an available set 
is a promising area to minimize CO2 emissions”. 
 

Now that the selection of the appropriate vehicles from an 
available is an area in need of more effort for 
comprehensive investigations, unfortunately, this fact has 
not been investigated much and there exist only a few 
studies carried out about it. To fill this gap, the carriers 
not only should select right vehicle so that the total 
penalty due to the delivery schedule violations is to be 
minimized,  but also they should take into account the 
green transportation approach in their planning, especially 
in road freight transportation connected to the hubs. Thus, 
in the proposed problem, vehicle selection and its speed 
level for transportation is investigated. Obviously, 
decreasing these emissions in transportation planning 
requires an understanding of vehicle emission models. So, 
the vehicle emission model proposed in this paper is 
based on a comprehensive modal emission model
(CMEM)1 developed by Scora and Barth (2006), Barth et 
al. (2005), and Barth and Boriboonsomsin (2008), which 
is an instantaneous model estimating fuel consumption for 
heavy-goods vehicles. According to the model described 
by Demir et al. (2012), the fuel rate is calculated using: 
 

( / ) / ,FR kNV P       (9) 
 

where  is fuel-to-air mass ratio, k is the engine friction 
factor, Nis the engine speed, V is the engine displacement, 
and  and  are constants. Besides, P denotes the 
second-by-second engine power output and can be 
obtained as follows: 
 

/ ,tract tf accP P P 
                                                

(10)
 

where tf denotes the vehicle drive train efficiency, and 

accP  is the engine power demand associated with the 
operation of vehicle accessories such as air conditioning 
and running losses of the engine. Usually, this parameter 
is assumed to be zero. Moreover, tractP  is the total 
tractive power requirement on the wheels of vehicle:  

 
2(  sin 0.5

 cos ) /1000,
tract d

r

P M Mg C A
MgC

   
 

  


 
 

Fig. 3. Behaviour of إFuel consumption versus speed 
(Demir et al. 2014a) 

 

In Eq. (11), M is the total vehicle weight (kilogram),   is 
the vehicle speed (meter/second),   is the acceleration 
(meter/second 2),  is the road angle, g is the gravitational 
constant, and Cd and Cr are the coefficient of the 
aerodynamic drag and rolling resistance, respectively. 
Besides,   is the air density and A is the frontal surface 
area of the vehicle. It is supposed that for a given route (i, 
j) connected to hub k and mwiththe length d,   be the 
speed of a vehicle speed traversing. Now, if all variables 
in FR except for the vehicle speed  remain constant,the 
fuel consumption (in liter) on this route can be calculated 
as follows: 
 

( ) / / ,F kNV d P d        (12) 
 

by considering / /     and 

1/1000 tf   where  is the conversionfactor of 
fuel from gram/second to liter/second. If 

sin cosrg gC      be a vehicle-arc specific 

constant and 0.5 dC A  be avehicle specific 

constant, Then, ( )F  given in Eq. (12) can be rewritten 
as 

3( ) ( ) / .F kNV w f d           (13) 
 

where w is the curb weight (i.e., the weight of an empty 
vehicle) and f is the vehicle load. The value of these 
parameters are obtained from the MEET reported table by 
Demir et al. (2012). Thus, the vehicle speed  is a 
variable in the proposed emission model, which is 
important tool in a wide-area emission assessment. It is 
worthwhile to mention that the CO2emissions are directly 
related to fuel consumption and therefore can be easily 
calculated if the amount of fuel consumption is 
known (Demir et al. 2014b). Fig. 3 presents how 
fuel consumption (liter/100 kilometer) changes with 
respect to speed (kilometer/hour) for an empty and 
fully loaded medium-duty vehicle using the Eq. (13). It 
can be seen that the vehicle speed that minimizes fuel 
consumption is around 55 kilometer/hour using the 
assumed values. Note that as the vehicle speed  is a 
variable in the proposed emission model, the model 
works with a discrete speed 

(11)
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function defined by R non-decreasing speed levels ( 1,..., )r r R   . 
 

 
Fig. 3. Behaviour of إFuel consumption versus speed (Demir et al. 2014a)

  
To do so, a binary decision variable ijtU  is defined to 
show if route (i, j) is visited by vehicle t to serve the 
request where t T . Secondly, it is not a necessity that 
all requests must be served by the carriers. In this matter, 

a binary variable {0,1}r
ijtS   indicates whether or not 

route (i,j) connected to the hubs is traversed by vehicle t
at a speed level r with respect the discrete speed function 
defined by R . Thereby, the CO2 emissions of the 
vehicles, which are directly related to fuel consumption, 

can be easily calculated based on the value of ( )rF  if 
the speed level is known. Therefore, the fuel consumption 
is a function of the speed level and as a result, the carriers 
should choose a good speed level for their vehicles. The 
following constraint ensures that one and only one speed 
level should be selected for each vehicle t in each route 

(i,j), and 1r
ijtS  only if that vehicle has already been 

selected for that route where 1ijtU  :  

1
,                     , ,

R
r
ijt ijt

r
S U i j t T



                                                              (14) 

In this regard, the following constraints can be considered: 

 
, , 1,..., , ,ijt ik jm

k m
U X X i j N j i t T    

                             
(15)

 
 , , 1,..., ,  ,  ijt jit

t T t T
U U i j N j i t T

 

                     (16) 

 
Constraint (15)expresses a route (i,j) can be allocated to a 
vehicle if the center nodes i and  j are assigned to the hubs 
k and m, respectively, i.e., if there exists a route (i,j) 
connected to the hubs k and m where both ikX and 

jmX would take a value of 1. In addition, it ensures that 
each route is visited at most once by vehicles of carriers. 
Finally, Constraint (16)ensures that if vehicle tis selected 
by its owner (carrier) to serve the route (i,j), conversely, 
that vehicle should be chosen to serve the route (j,i). The 
proposed objective functions will be presented later.   

Finally, based on what was assumed and derived above, 
the total fuel cost in the green approach can be modeled 
by: 

 
2

1 1, 1l

N N R
r r

CO ijt
i j j i t V r

f F S
    
    

Consequently, the objective of the proposed 
FGCSApHCP can be redefined as: 
 
 

Minimize    Z +  
2

1 1, 1l

N N R
r r

CO ijt
i j j i t V r

f F S
    
         

                                      

   (17) 

Subject to:   ( ) ,       ,  , ,ij ik ik km ik jm jm jmCr W t X t X X t X Z i j N k m H             (18) 
 
               

     (2) - (7); 

    
 

      
where Equation (18)together with objective function (17) 
is to minimize the  -efficient time point of the travel 
time. 

 3. Solving Methodologies 
 
As the proposed problem is an INLP and belongs to the 
class of NP-hard problems, a novel algorithm, called
opposition biogeography-based optimization (OBBO) is 
presented in this section. 
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3.1. The BBO 

In this section, a brief description of the BBO algorithm is 
first given. Afterward, BBO will be extended to OBBO. 
BBO is a type of evolutionary algorithm that was firstly 
introduced bySimon (2008). As its name implies, 
biogeography is the study of the migration, speciation, 
and extinction of species. Biogeography has often been 
considered as a process that enforces equilibrium in the 
number of species in habitats. Moreover, it has been 
inspired by the study of the distribution of animals and 
plants over time and space. BBO has demonstrated good 
performance when used in various unconstrained and 
constrained benchmark functions(Ergezer et al. 2009; 
Simon 2008). In this algorithm, the habitat suitability 
index (HSI) is a measure of the goodness of the solution 
that

 

is

 

represented

 

by

 

the

 

habitat,

 

which

 

is

 

also

 

called

 
fitness. Therefore, a high value of HSI means large 
number of species and low value of HSI means less 
number in habitat. In BBO, each habitat contains several 
features called suitability index variables (SIVs) that are 
similar to genes of chromosomes in genetic algorithm. 
These SIVs emigrate from high-HSI habitats to low-HSIs 
during several iterations under emigration process with an 
emigration rate ( )i .On the other hand, low-HSI habitats 
accept new SIVs from high-HSI habitats through an 
immigration process with an immigration rate ( )i . 
Hence, BBO utilizes a migration operator that includes 
two sub-operators of the emigration and immigration. Fig. 
4 illustrates the linear BBO immigration and emigration 
curves.

 

 Fig .4. The immigration and emigration curves in BBO 

 
In Fig. 4, the worst solution has the highest immigration 
rate; hence, it has a very high chance of borrowing 
features from other solutions to improve the next 
generation. Meanwhile, the best solution has a very low 
immigration rate, indicating that it is less likely to be 
altered by other solutions(Simon 2008). As the number of 
species increases, more species are able to leave the 
habitat and the emigration rate increases. In addition to 
the migration operator, the BBO utilizes another operator 
called mutation, similar to GA. Now that each habitat has 
been characterized by its rank, in BBO, the ranks are 
utilized to implement the migration operator in which the 
emigration rate ( )i  and the immigration rate ( )i  for 
habitat iare calculated as follows: 

1 ( / )i iR nPop       (19) 

1 (1 / )i iR nPop        (20) 

where iR represents the rank of the habitat i (or its front 
position) after sorting all habitats according to sorting 
strategy and nPoprepresents the size of the population. 

 

3.1.1. The habitat representation 

In this research, thehabitatsare generated in a way that 
they satisfy all constraints all times; hence, all of their 
corresponding solutions are feasible. The proposed habitat 
is structured as a ( 2 ( ))lN H N V    matrix 
provided in four sections to satisfy all constraints all the 
times and hence to avoid generating infeasible solutions. 
The fourth three sections of a habitat are: 
Section 1: A N H  matrix of the ikX ; 

Section 2: A ( )lN N V   matrix of the ijtU ; 

Section 3: A ( )lN N V   matrix of the ijtS ; 
Hereby, each section of the habitat is related to a decision 
variable. In Section 1 as an example,each row and column 
of the matrix represents a center node and a hub, 
respectively. Therefore, each cell represents a 
bitthatrefers to an arc between a hub and a center node. It 
takes 1 ifcenternodeiis allocated to hub k,and 0 otherwise. 
By applyingConstraint (3), all bits except one in each  
row are zero.   Fig. 5  illustrates  the  general form  of  the  
 

Best Solution Solutions sorted by HSI Worst Solution 

Migration rate 

Immigration 
rate (λ) 

Emigration 
rate (μ) 
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proposed habitat for five geographically dispersed center 
nodes ( 5)N  and three candidate hubs ( 3)H  , 
where p is equal to two. In this figure, it can be seen that 

hub 1 and 3 are located, center nodes 1-3 are allocated to 
hub 3, and center nodes4-5are allocated to hub 1. In 
addition, hub 2 is not located due to the value of p. 

 
 
 

 
Fig. 5. The habitat representation 

 
 3.1.2. The migration and mutation operators 

The mutation operator makes a mutated habitat randomly 
by modifying its SIVs. This operator helps to generate a 
reasonable level of diversity in the habitats. It also serves 
the search by jumping out of local optimal solutions. For 
this operator, a predetermined parameter mP  that 
represents the probability of mutation operator is applied. 
This operator randomly selects a habitat and then 
randomly selects one of its center node and reassigns it to 

another hub selected at random (an exchange mutation.) It 
is worthwhile to mention that the exchange mutation had 
a good performance in binary-coded solution(Ramezanian 
et al. 2012).More precisely, as shown in Fig. 6 for the 
initial habitat, the operator generates a mutated habitat 
such that it switches the assignment of a single node 
(center node5) from one hub to another.

 
 

 
Fig. 6. Illustration of the exchange mutation 

 
In the migration operator, some characteristics swap 
directly within the emigrating habitats that share their 
information to immigrating habitats that accepts shared 
characteristics due to binary space. Thus, habitat with 
appropriate suitability index variables (SIVs) are scattered 
throughout the population. 

4. Opposition-Based Learning 

Opposition-based learning (OBL)was originally 
introduced by Tizhoosh (2005)and was first proposed as 
machine intelligence scheme for reinforcement learning. 

Afterward, it  has been employed to improve soft 
computing methods such as fuzzy systems (Tizhoosh 
2009)and artificial neural networks(Shokri et al. 2007; 
Ventresca and Tizhoosh 2006). In addition, Rahnamayan 
et al. (2008)illustrated the capabilities of OBL by 
combining it with differential evolution to solve 
continuous optimization problems. OBL has been 
employed in a wide range of evolutionary algorithms such 
as biogeography-based optimization(Ergezer et al. 2009), 
particle swarm optimization(Wang et al. 2011), ant 
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colony optimization (Malisia 2008),and simulated 
annealing (Ventresca and Tizhoosh 2007). 
Most of the evolutionary algorithms start with an initial 
random population without any preliminary knowledge 
about the solution space. Additionally, the computation 
time is directly related to the quality and distance of the 
solutions in the initial population from the optimal 
solution. Here, two questions arise as follows: how to 
enrich the initial population and the population generated 
in each it eration? what advantage is between 
simultaneous consideration of randomness and 
oppositions versus pure randomness? To answer these 
questions, this paper tries to explore the simultaneous 
implementation of two approaches (randomness and 
oppositions) in generating the solutions instead of pure 
randomness. After generating the population of solutions, 
a second chance is given to this population by checking 
the opposite solutions (opposite population)and select the 
best solutions (fittest) among them to start the algorithm. 
The aim of the OBL algorithm as a diversity mechanism 
is to enhance the performance of the proposed meta-
heuristic algorithms and to enrich the Pareto-fronts. 
However, as the solution space of this paper is binary, a 
new version called the binary opposition-based scheme is 
proposed. To do this, the concept of OBL in continuous 
spaces is first presented. Then, it will be modified to be 
used in a binary solution space. 

4.1. Opposition in continuous space 

The continuous space encompasses the variants of 
opposition, quasi-opposition, and quasi-reflection defined 
below. 
Definition 1.The opposite of any real number x∈[a, b], 
denoted by x , is generated using x a b x  

. This 
definition can easily be extended to higher dimensions. 

Definition 2.The quasi-opposite of any real number 
x∈[a, b], denoted by qox , is defined as 

( , )qox rand c x 
.  

Definition 3. The quasi-reflected point, qrx  , of any 
real number in [a, b] is calculated using  

( , )qrx rand x c
. 

In other words, quasi-opposition reflects a variable to a 
random point between the center of the range (c) and its 
opposite point, whereas quasi-reflection shifts the variable 
x to a random point between the center of the domain and 
x, as illustrated in Fig. 7(Ergezer et al. 2009).   
 

 
Fig.7. Opposite points in continuous space 

 
Among of the above opposite points, it has been 
mathematically proved that the quasi-reflection with an 
expected probability of11 16  has a higher chance of 

 
being closer to the solution than the quasi-opposite with 
an expected probability of 9 16 . This means the quasi-
reflection point yields the highest probabilityof  being 
closer to the solution of an optimization problem(Ergezer 
et al. 2009). 

4.2. Opposition in binary space 

To extend the use of opposite points in a binary space, 
this paper utilizes a binary OBL as follows: 

Definition 4.The opposite point of 1 2( , ,..., )dX x x x  in a 
d-dimensional binary space with 

{0,1},    1,2,...,ix i d  is  obtained by 

1 2( , ,..., )dX x x x
   

, where 1 ,    1,2,..., .i ix x i d  
 

(Seif and Ahmadi 2015) 
Definition 5.The Hamming distance between t wod-
dimensional binary vectors , {0,1}x y is calculated 

by
1

( , ) ( ) ( )
d

i
HD x y x i y i



  . Another alternative to 

obtain the Hamming distance is the use of the absolute 
value of the arithmetic subtraction as ( ) ( )x i y i . 

Proposition 1.There is a unique opposite point 
for 1 2( , ,..., )dX x x x denoted by 1 2( , ,..., )dX x x x

   
. 

Proof. If there are two opposite points of 

1 2( , ,..., )dX x x x
   

and 1 2( , ,..., )dX x x x    , then based on 

Definition 4, 1i ix x 
 and 1i ix x   for 

1,2,...,i d . Therefore, X X 


.         

Proposition 2.Reconsider 1 2( , ,..., )dX x x x and its 

opposite point 1 2( , ,..., )dX x x x
   

. Then, for each 

{0,1}dY  we have ( , ) ( , )HD X Y d HD X Y 


. 
Proposition 2 that has been mathematically proved by 
Seif and Ahmadi (2015), represents that the distance 
between X and Y, generated at random, is equal to the 
difference between the size of dimension space and the 
Hamming distance between the opposite point X and 
YwhereHD denotes the Hamming distance presented in 
Definition 5. Thus, after generating a binary solution X, 
its opposite point can be created and evaluated in order to 
give another chance to explore a candidate solution closer 
to the global optimum. Recently, it has been claimed that 
an opposite point is more effective and beneficial than an 
independent random point by the following proposition 
(Seif and Ahmadi 2015): 
Proposition 3.Consider 1 2( , ,..., )dX x x x  as a binary 

solution for objective function ( )y f x where 1d  . 

Suppose 1 11 12 1( , ,..., )dX x x x and 

a x c x b

q rx q ox
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2 21 22 2( , ,..., )dX x x x are two random solutions in the solution space. Then 

   

1 2 2 1( , min{ , , , }) ( , min{ , , , })Pr X X X X X X Pr X X X X X X  
 

 

 

This proposition states that the probability the distance 
between X and X


to be less than or equal to the distance 

between 1 2{ , }X X  with X is more than the probability 

the distance between 2X  and X is less than or equal to 

the distance between 1{ , }X X


and X . Thus, X


is more 

probable than 2X  to be the closest to X among 

1 2{ , , }X X X


. That is why an opposite solution is more 
effective than an independent random solution. Although 
Proposition 3 is true for an arbitrary objective function, 
this paper seeks to exhibit its beneficial application in 
multi-objective optimization problems where more than 
one criterion is considered and therefore the non-
dominated solution concept is displayed. For instance, 
consider a multi-objective optimization problem 
involving P ,  1P  , objective functions to be 
optimized simultaneously. In this problem, 

  ; 1, 2,...,if x i P , is the i- th objective function 
and x is a feasible solution. Then, a typical multi-
objective maximization problem is defined as: 
Maximize      1 2, ,..., Pf x f x f x   (21) 
As some objective functions in (21) may conflict each 
other, there is not a unique solution that maximizes all the 
objectives, simultaneously. Hence, the non-dominated 
concept is used, in which solution x is said to dominate 
y , ( x y ) , if and only if (Pasandideh et al. 2014): 

     
      

 ,      1, 2, ,  and

,       1, 2, ,
i i

i i

f x f y i P

f x f y i P

   

   
       

(22) 

This provides a set of optimal solutions called Pareto-
optimal. These Pareto-optimal solutions create the Pareto 
front(Kubotani and Yoshimura 2003). Under these 
considerations, this paper tries to show that the binary 
OBL works well in multi-objective optimization schemes. 

4.3. Opposition BBO(OBBO) 

Now, the OBL algorithm is added to BBO as a diversity 
mechanism to enhance the performance and to enrich the 
convergence rate. In OBBO, the opposite population is 
created based on the Definition 4 of the binary OBL 
proposed in Section 3.Here,it is concluded that the 
proposed OBBO first generates an opposite population 
(OP0) of the initial population (P0) with the same size (n 
Pop). In other words, an opposite habitat is made for each 
habitat in the initial population. Afterward, both P0 and 
OP0 are merged and then habitats with the best fitness are 
preserved with respect to n Pop. Note that this procedure 
is also implemented during each iteration of OBBO. 

Nevertheless, to save the computational time, the opposite 
population of the current population has a chance of being 
generated %OJR (usually 30%) of the time during each 
iteration. This probability is determined by the Opposition 
Jumping Rate ∈[0, 1] parameter as specified in Fig. 8.  At 
the end, the generated population in iteration t, ( )tP , the 

new population ( )tQ , and the opposite population of the 

new population ( )tOQ  are merged and truncated 
according to. Afterward, the sorting procedure is done to 
recognize the habitats, similar to BBO steps. 
 
Step 1: Set the parameters 
Step 2: Create population P0 of size with randomly 
created habitats and set t=0. 
Step 3: Calculate the habitats HIS 
Step 4: Calculate  and  based on the habitats 
Step 5: If the stopping criterion is met, stop and return Pt. 
Step 6: In population Pt, for each habitat i: 
               a. If Rand [0,1] <=  
               b. Select a source habitat using the binary 
tournament selection as habitat j 
               c. Do the migration operator and transfer the 
SIVs from habitat j to habitat i 
               d. If Rand [0,1] <=  
               e. Perform the mutation operator 
Step 7: Calculate the generated habitats HIS 
Step 8: Put the generated habitats in Qtas a new 
population 
Step 9:SetRt= Pt  

Step 10:Usesortingprocedure 
Step 11:Set Pt+1= | and i=1. 
Step 12:Until + < nPop: 
a. Add all solutions in Fi to Pt+1.  
b. Set i=i+1. 
Step 13:Sortsolutionsin Fi according to the sorting 
strategy. 
Step 14:Addfirst N- solutions of Fito Pt+1. 
Step 15: Calculate  and  based on the habitats’ rank 
Step 16:Set t=t+1, and go to Step 5. 

 
Fig .8. The pseudo-code of the OBBO 

4.4. Parameter tuning 

To obtain better solutions, the parameters of the proposed 
algorithms are calibrated using the Taguchi method. This 
method is a fractional factorial experiment that is known 
as an efficient alternative for full factorial experiments 
(Peace 1993). It uses a special set of arrays called 
orthogonal arrays. These arrays stipulate the way of 
conducting the minimal number of experiments that can 
give the full information of all the factors that affect the 
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performance parameter. There are two groups of factors 
including signal and noise, where maximizing the signal 
to noise (S/N) ratio is the aim. As a “smaller-is-better 
“objective is appropriate, the S/N ratio is defined as: 

2( )10 logS S Y
N n

 
    

 
   (23) 

where Y represents the response and n denotes the number 
of orthogonal arrays. To employ the Taguchi method, the 
multi-objective coefficient of variation (MOCV) measure 
(Rahmati et al. 2013)is utilized as the response. In this 
response, MID and MS are used in Eq. (24). 

MIDMOCV
MS

     (24) 

 
Where MID is a representation of the first goal 
(convergence) and MS is a representation of the second 
goal (diversity). Hence, two mentioned goals of multi-
objective optimization are considered simultaneously.  In 
order to run the Taguchi method, the levels of the factors 
(algorithms parameters) such as the maximum generation 
(MaxG), population (Pop), and the opposition jumping 
rate(OJR) are determined in Table 1. The values given in 
Table 1 are chosen based on some trial experiments and 
literature.

                Table 1 
                 The levels of algorithms parameters 

Algorithm Parameter  Range Low (1) Medium (2) High (3) 
GA MaxG 100-400 100 250 400 

Pop 50-250 50 150 250 
Pc 0.6-0.8 0.6 0.7 0.8 
Pm 0.1-0.2 0.1 0.15 0.2 

OBBO Max G 100-400 100 250 400 

 50-250 50 150 250 
Pm 0.1-0.25 0.1 0.15 0.25 
OJR 0.1-0.3 0.1 0.2 0.3 

 
To set the parameters of the model, 15 test problems with 
random parameters are generated. Then, the L29 design is 
used for ONSGA-II while L9 is designed for OMOBBO 
using the Minitab Software. Figs. 9 and 10 illustrate the 
S/N ratio resulted by OMOBBO and ONSGA-II, 

respectively. In these figures, the best level of each 
parameter is selected to be the one with the highest S/N 
ratio. As a result, the proper values of the parameters are 
shown in bold in Table 1.   

 
 

 
Fig. 9. The S/N ratio plot for parameters of OBBO 

 

 
Fig. 10. The S/N ratio plot for parameters of GA 
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5. Computational Results  

To assess the applicability of the proposed methodology, 
several problems with different numbers of hubs, center 
nodes, and p are designed. These problems are randomly 
generated according to the given information of a case 
study inBashiri et al. (2013), which are classified into four 
classes. The values of the parameters of each problem are 
obtained using the last column of Table 2. In order to 
validate the results obtained using the proposed 
algorithms, these problems are solved using 
GAMS/BARON 23.5 software on an Intel (R), core (TM) 
i7, 3.23 GHz lap top with 512 Mb RAM. Note that the 
branch-and-reduce optimization navigator (BARON) 
presented by Tawarmalani and Sahinidis (2005) is 
algorithms for the global solutions of NLP and MINLP. 
They also showed this algorithm reduces root-node 
relaxation gaps by up to 100% and expedites the solution 
process, often by several orders of magnitude. BARON 
implements the branch-and-bound approach enhanced 
with a variety of a constraint propagation and duality 
techniques in order to reduce the ranges of variables in 
the course of the algorithm (Sahinidis 2013).The GA and 
OBBO are first implemented in 20independent runs to 
solve each problem with the same input parameters. 
Afterward, the best fitness value of the problem and its 
corresponding CPU time (seconds)are considered for 
comparison. The solutions of 30 different problems of 
various sizes obtained using GA, OBBO, and BARON 
are reported in Table 3.The main aims of the results 
reported in Table 3 are:  
(i) Validating the results obtained using OBBO and GA,  
(ii) Comparing their performance together; and  
(iii) Performing sensitivity analyses on the impact of the 
number of hubs, center nodes, and p.  
Note that the second column in Table 3 represents the size 
of the problems. For example, 5*6*6 means there are five 
potential hubs vendors, six center nodes, and p=6.  
 
Table 2  
The sources of random generation  

Value  Parameter  

 (5,15) 
ikW  

 (1,3),  (4,5),  (6,8)) 
ikt  

 (0.5,2),  (3,4.5),  
(5,6.5)) kmt  

 (0.5,3),  (4,6),  
(7,8)) jmt  

 (2,4) 
iO  

 (25, 50) 
kC  

 (100, 200) 
2COf  

 
 
 

 
 

 5.1. Validation and sensitivity analyses 
 
 In order to validate the results obtained using OBBO and 
GA, they are compared to the ones obtained by BARON. 
To make the comparisons, a quality measure namely the 
percent deviation of the objective function is defined for 
each solution as follows: 

.% 100algorithm BARON
Obj

BA RON

z z
Deviation

z


    (25) 

A lower value of this measure implies a good 
performance of the proposed algorithm. The first class 
contains Problems 1-8, where the number of hubs and p 
both are equal to two. The aim of the problems of this 
class is to analyze the influence of center nodes variety on 
the objective function and computation time where the 
number of the hubs and p are fixed. The solutions in this 
class reveal that when the number of center nodes is 1, the 
percentage deviations of the objective function for both 
OBBO and GA are zero, as they both find the lowest cost 
obtained using BARON ($884,645). However, GA 
requires more CPU time as compared to OBBO. 
Furthermore, as the number of center nodes increases 
from one to two, the minimum total cost of the firm 
increases up to $901,984 for all algorithms. Considering 
the percent deviations in the above two problems are zero, 
it can be interpret that the results obtained by both GA 
and OBBO are optimal. This ascending trend can also be 
seen in the other problems of this class and that the 
percentage deviations of the solutions obtained by OBBO 
and GA are slightly greater than zero. Besides, as the 
number of center nodes increases, the required CPU times 
of all algorithms increases as well. In other words, 
increasing the number of center nodes can lead to increase 
in the objective function and the required computation 
time simultaneously. Meanwhile, while the percent 
deviations of the objective function in OBBO are 
relatively good, they are better than those obtained by 
GA.  
The second class contains Problems 9-14, where the aim 
is to analyze the influence of center nodes variety on the 
total cost and CPU when the number of hubs and p are 
increased from 2 to 3. When the number of center nodes 
is one in this class, OBBO is able to find the optimal 
solution, while GA is not. Note that the minimum cost 
obtained for this problem is lower than the one obtained 
for the first problem of Class 1. Besides, similar to Class 
1, as the number of center nodes increases from one to 
two, the total cost of the firm obtained by GA and OBBO 
increases from $823,989 to $1,027,541 and from 
$818,257 to $1,026,000, respectively. It should be noted 
that the amount of this increase is higher than the one in 
Class 1. Moreover, the maximum percent deviation of the 
objective function for GA and OBBO are1.469 and 3.50, 
respectively. Similarly, increasing the number of center 
nodes can lead to an increase in the total cost of the firm 
and the required computation time of the proposed 
algorithms.  
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Table 3 
The results obtained using the algorithms 

Class Proble
m Size 

BARON GA OBBO 

z ($) CPU 
time(s
) 

Best  z($) CPU 
time(s) 

% Dev of 
Obj. function 

Best  z($) CPU 
time(s) 

% Dev of 
Obj. 
function 

1 

1 2*2*1 884,645 0.180 884,645 19 0.000 884,645 25 0.000 

2 2*2*2 901,984 1 901,984 46 0.000 901,984 29 0.000 

3 2*2*3 1,046,498 4 1,055,113 51 0.823 1,050,925 44 0.423 

4 2*2*4 1,417,948 35 1,420,300 64 0.166 1,420,300 75 0.166 

5 2*2*5 2,955,391 74 2,965,004 62 0.325 2,957,000 66 0.054 

6 2*2*7 3,263,983 69 3,289,487 77 0.781 3,265,000 82 0.031 

7 2*2*8 3,628,335 71 3,645,005 89 0.459 3,631,000 93 0.073 

8 2*2*1
0 7,482,371 73 7,526,355 107 0.588 7,485,355 115 0.040 

2 

9 3*3*1 818,257 5 823,989 22 0.701 818,257 34 0.000 

10 3*3*2 1,024,060 49 1,027,541 67 0.340 1,026,000 72 0.189 

11 3*3*3 1,364,750 125 1,382,227 222 1.281 1,368,112 189 0.246 

12 3*3*4 2,787,128 209 2,828,058 776 1.469 2,792,310 556 0.186 

13 3*3*5 3,106,475 240 3,119,255 900 0.411 3,215,200 803 3.500 

14 3*3*6 3,789,984 338 3,804,000 1,005 0.370 3,801,000 1,102 0.291 

3 

15 4*1*2 269,874 3 275,444 25 2.064 269,874 37 0.000 

16 4*2*2 572,010 9 578,689 58 1.168 572,010 66 0.000 

17 4*3*2 800,267 68 815,005 145 1.842 803,600 130 0.416 

18 4*4*2 1,336,156 603 1,352,565 1,127 1.186 1,338,110 905 0.146 

19 4*5*2 1,756,363 632 1,769,797 1,200 0.765 1,761,000 1,011 0.264 

20 4*6*2 2,000,458 647 2,030,800 1,408 1.517 2,009,451 1,334 0.450 

21 4*10*
2 2,900,054 640 2,905,330 1,882 0.182 2,900,700 1,665 0.022 

22 4*12*
2 3,000,444 709 3,001,000 2,056 0.019 3,000,550 2,001 0.004 

23 4*15*
2 3,405,900 716 3,411,200 2,794 0.156 3,405,900 2,455 0.000 

24 4*18*
2 Infeasible - 4,380,000 3,211 - 4,100,220 3,007 - 

25 4*22*
2 Infeasible - 5,298,610 4,420 - 5,009,120 3,905 - 

4 

26 1*8*5 4,390,181 1 4,405,477 24 0.348 4,395,000 15 0.110 

27 3*8*5 338,993 2 341,511 36 0.743 338,993 44 0.000 

28 4*8*5 271,886 2 274,050 43 0.796 271,886 55 0.000 

29 5*8*5 231,746 3 231,856 43 0.048 231,746 49 0.000 

30 6*8*5 219,057 10 220,117 45 0.484 219,900 40 0.385 
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The third class contains Problems 15-25. Unlike the 
previous two classes, the number of center nodes and p in 
this class are fixed at 4 and 2, respectively while the 
number of hubs varies between 1 and 22. Note that as the 
number of hubs in Problem 23 increases from 12 to 15 
stores, the total cost of the firm obtained using GA 
increases from $3,001,000 to $3,411,200, while the cost 
varies from $3,000,550 to $3,405,900 in OBBO. In 
addition, the solutions of the problems in this class show 
that OBBO has a relatively good performance in terms of 
the cost, because the maximum percent deviation of the 

objective function is 4.861 (lower than the one of GA). 
This result is valid for the other problems of this class that 
can better be confirmed by Fig. 11. It is worth noting that 
while BARON was not able to find a feasible solution for 
Problems 24 and 25 with the number of stores of 18 and 
22, respectively, the proposed algorithms were able to 
find solutions. This is the advantage of employing the two 
meta-heuristics over BARON, as they are able to find 
solutions of larger problems in reasonable computational 
times.

 

 
Fig. 11. Percentage of deviations for the algorithms 

 
Finally, the number of the hubs and center nodes in the 
fourth class are fixed at 8 and 5, respectively. The aim of 
this class is critical because the impact of the p-hub center 
problem can be demonstrated. Note that the total cost for 
this class of problems is higher than the ones in the 
previous classes. Moreover, while the average CPU times 
of GA and OBBO to solve the problems of this class are 
almost equal, the percentage deviations of the objective 
function are lower with OBBO compared to the ones 
obtained by GA. That is, they could verify the optimality 
of solutions. On the other hand, as the number of p 
increases from one to three in Problems 26 and 27, the 
total cost of the firm obtained by GA and OBBO 
decreases from $4,405,477 to $341,511 and from 
$4,395,000 to $338,993, respectively. This descending 
trend is noticeable and continues by increasing the 
number of pin the next three problems. This is a good 
implication of the effect of p-center strategy that 
decreases the total cost of the firm. In other words, the 
solutions of the problems in fourth class with multiple p 
indicate that the proposed fuzzy p-hub center model can 
reduce the total transportation cost. At the end, regarding 

the percent dev. % columns, it can be seen that that the 
results obtained by GA and OBBO are valid and near 
optimal. 
 
5.2. Comparison 

Table 4 summarizes the worst, the mean, and the best 
fitness function and computation time obtained by 
implementations of both OBBO and GA on 11 large-size 
problems (Problems 31-41), each independently 
replicated 20 times. The number of p in all of these 
problems is 50. As BARON is not able to solve any of 
these problems in reasonable computation time, the 
proposed algorithms are compared together based on the 
same input parameter of each problem. In the second 
column of Table 4, 70*60 means there are 70 potential 
hubs and 60 center nodes.  
The results in Table 4not only show that required 
computation times of OBBO is less compared to the ones 
in its counterpart, but also OBBO is the better algorithm 
in terms of the best, the mean, and the worst total costs  
obtained. In addition, a comparison based on the fitness 
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values and CPU times reveals that increasing the number of potential vendors increases the required computation 
times, as expected.  

Table 4  
The optimization results in large size problems   
Problem Size GA  OBBO 

Best Mean Worst CPU 
time(s) 

 
 

Best Mean Worst CPU 
time(s) 

31 75*60 1,435,356 1,438,465 1,438,736 1,324 1,433,000 1,434,154 1,434,420 1,220 

32 100*80 2,014,000 2,014,598 2,014,911 1,708 2,007,000 2,008,804 2,010,137 1,528 

33 140*120 2,651,652 2,657,139 2,657,203 2,111 2,640,101 2,642,322 2,644,006 2,000 

34 145*130 2,854,554 2,858,424 2,863,000 2,249 2,842,000 2,848,426 2,900,229 2,355 

35 150*150 3,066,455 3,060,322 3,067,988 2,805 3,057,562 2,904,684 3,067,652 2,669 

36 170*160 3,411,188 3,413,543 3,414,940 4,546 3,395,884 3,397,736 3,401,622 3,497 

37 185*180 3,770,900 3,778,341 3,778,900 4,993 3,462,910 3,469,125 3,476,000 3,799 

38 195*190 4,208,841 4,209,471 4,213,262 5,844 4,184,851 4,197,405 4,222,514 4,431 

39 210*200 4,680,554 4,682,708 4,689,924 6,202 4,600,036 4,606,006 4,610,110 4,929 

40 250*240 5,719,702 5,721,112 5,722,578 7,112 5,378,912 5,379,000 5,379,222 5,524 

41 300*280 9,005,012 9,008,270 9,012,738 8,804  6,900,679 6,905,736 6,907,325 6,630 

 The convergence curves of both algorithms on Problems 
31 and 32 are drawn in Fig. 12andFig. 13, respectively. 
As illustrated in these figures, it is obvious that OBBO 

searches out the better solutions and converges faster than 
GA, where it can provide better global searching ability 
and can prevent trapping in the local optima. 
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Fig 12. Convergence curvesof GA and OBBOon Problem 31 
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Fig. 13. Convergence curves of GA and Obion Problem 32 

 
In order to assess the performance of OBBO and compare 
it to GA statistically, the results obtained in Table 3 are 

analyzed using paired samples t -tests to test the equality 
of the means of the two algorithms in terms of total cost, 
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computation time, and percentage deviation of the 
objective function at 95% confidence level. The null 
hypotheses for the equality of the means of these metrics 
are: 

1- The mean of the total cost of the firm 
obtained  by GA is equal to one of  OBBO.  
2- The mean of computation times in GA 
is equal to one of OBBO.  

3- The mean of the percent deviation of 
the objective function obtained by GA is equal to 
one of OBBO.  

The alternatives in all the above tests refer to OBBO to be 
a better algorithm. The summary results of the tests are 
presented inTable5, based on which the above null 
hypotheses are rejected in favor of OBBO. In other 
words, OBBO is the better algorithm and can provide less 
cost in less CPU time on average. Fig. 14 shows this 
effectiveness, better.

 
Table 5.    
The P-values of paired sample t-tests  

Chosen algorithm Test results P-value T-value Metric 
OBBO Null hypothesis is rejected 0.042 2.13 Best fitness 
OBBO Null hypothesis is rejected 0.009 2.82 Computation time 
OBBO Null hypothesis is rejected 0.001 5.32 Percent deviation 
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Fig 14. Box and interval plots of the percentage of deviationsfor OBBO and GA 

 
 

6. Conclusion and Future Research 

Hub networks are utilized in telecommunications, 
transportation systems, postal delivery systems, computer 
networks, etc. In these networks, instead of generating 
direct links between origin and destination pairs, the hubs 
serve as switching or transshipment pointsf or flows 
between center nodes. The hub facilities consolidate 
flows in order to utilize the concept of economies of scale 
in transportation between hubs. In a hub-and-center 
network, many origins and destinations can be connected 
with fewer links. In this paper, a fuzzy green capacitated 
single allocation p-hub center problem was presented in 
order to select the hubs and to assign the center nodes to 
located hubs. The aim of this paper was to minimize the 
maximum travel time in a hub-and-center transportation 
network under green consideration. In order to solve the 
problem, the proposed FGCSApHCP was re defined in to 
its equivalent parametric integer nonlinear programming 

problem usingcredibilityconstraints.Due to the NP-
harness of the problem,an opposition BBOwas proposed 
to improve the performance of BBO in obtaining better 
solutions. Then,theTaguchimethodwas applied to tune the 
parameters of both GA and OBBO, based on which their 
results were compared together using several randomly 
generated problems. In addition, the performanceof these 
proposed algorithmswere statistically analyzed.  
Computational results showed that OBBO had desirable 
performance in terms of the maximum travel time and 
percent deviation, while GA had better performance to 
solve the test problems in terms of required computation 
times at 95% confidence level. In addition, the solutions 
obtained by OBBO provided better maximum travel time 
than those obtained by the GA. Therefore, it can be 
concluded that OBBO outperforms GA. Finally, the 
results confirm the applicability of the proposed model 
and the solution methodologies taken to solve the 
problem. For future work extensions, the use of OBBO to 
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solve redundancy allocation and clustering problems is 
recommended. Besides, multiple allocation schemes in p-
hub center problem can be considered and that the hub 
location model can be extended to include competition 
environments. 
 
1Note:This model is based upon second-by-second 
tailpipe emissions data collected from 343 light-duty 
vehicles(LDVs) tested using a variety of laboratory 
driving cycles (Demir et al. 2014b). 
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