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Abstract 

This paper studies multiple cross-dockings where the loads are transferred from origins (suppliers) to destinations (customers) through cross-
docking facilities. Products are no longer stored in intermediate depots and incoming shipments are consolidated based on customer demands 
and immediately delivered to them to their destinations. In this paper, each cross-docking has a covering radius that customers can be served by 
at least one cross-docking provided. In addition, this paper considers the breakdown of trucks. We present a two-stage model for the location of 
cross-docking centers and scheduling inbound and outbound trucks in multiple cross-dockings. We work on minimizing the transportation cost 
in a network by loading trucks in the supplier locations and route them to the customers via cross-docking facilities. The objective, in the first 
stage, is to minimize transportation cost of delivering products from suppliers to open cross-docks and cross-docks to the customers; in the 
second-stage, the objective is to minimize the make spans of open cross-dockings and the total weighted summation of completion time. Due to 
the difficulty of obtaining the optimum solution to medium- and large-scale problems, we propose four types of metaheuristic algorithms, i.e., 
genetic, simulated annealing, differential evolution, and hybrid algorithms. The result showed that simulated annealing is the best algorithm 

between the four algorithms. 

Keywords: Cross-docking, Transhipment, Location of cross-docking centers, Metaheuristic. 

1. Introduction 

The operation of a distribution center consists of five basic 
functions: receiving, sorting, storing, retrieving, and 
shipping. The best way to reduce cost and improve 
efficiency is not by simply improving a function, but by 
eliminating it if feasible (Yu and Egbelu, 2008).In a 
traditional distribution center, goods are first received, and 
then stored. When a customer requests an item, workers 
pick it from the storage and ship it to the destination. From 
these four major functions of warehousing, storage and 
order picking are usually the most costly ones. Storage is 
expensive due to the inventory holding costs; the same is 
true for order picking because it is labor-intensive. One 
approach to reduce costs could be to improve one or more 
of these functions or to improve how they interact. Cross-
docking is a material handling and distribution concept in 
which items move directly from receiving dock to shipping 
dock without being stored in a warehouse or distribution 
center which has  the  potential  of  eliminating  storage  and  

recovery and the two most expensive warehousing 
operations. One innovative warehousing strategy that has 
great potential for controlling the logistics and distribution 
costs while simultaneously enhancing the level of customer 
service is cross-docking (Apte and Viswana than, 2000).As 
the timing of delivery and pickup is becoming increasingly 
crucial in a supply chain, the use of “cross-docking” has 
become synonymous with rapid consolidation and 
processing (Chen et al., 2009). Different from a warehouse, 
a cross-docking is a  transshipment center rather than an 
inventory warehouse. Cargos can be delivered, 
consolidated, and picked up in across-docking; also, delayed 
transshipments are allowed, but the delay allowance is 
usually no more than 24 hours and even less than 1 hour in 
some cases (Li et al., 2004). 
The location and scheduling problems with cross-docking 
identified new areas of research, which take account of two 
main components of cross-docking distribution networks, 
namely cross-docking centers location and scheduling of 
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trucks. The location and scheduling problem involves the 
strategic (i.e., location) and tactical/operational (i.e., 
scheduling) decision levels in supply chain management. 
This paper presents a two-stage mixed-integer programming 
(MIP) model for the location of cross-docking centers and 
scheduling trucks for the cross-docking distribution 
networks in the supply chain. In the strategic stage, we 
define the location of possible cross-docks and allocation 
suppliers to open cross-docks and cross-docks to customers 
considering coverage radius. In the tactical stage, we 
consider a bi-objective problem in which the first objective 
is to minimize the total weighted summation of completion 
time, and the second objective is to minimize the make 
spans of open cross-dockings. Due to the difficulty of 
obtaining the optimum solution to medium- and large-scale 
problems, we propose four types of  metaheuristic 
algorithms. 

2. Literature Review 

Liao et al. (2012)  proposed to minimize total operation time 
in inbound and outbound truck sequencing in cross-docking 
problem; they proposed two hybrid differential evolution 
algorithms. They also suggested an operational policy that 
leads to shorter make span than suggested by older studies. 
To minimize the total weighted tardiness, Liao et al. (2013) 
studied the simultaneous dock assignment and sequencing 
of inbound trucks for a multi-door cross-docking under a 
fixed outbound truck departure schedule. They proposed a 
new model and solved it by six different metaheuristic 
algorithms. In this study, for evaluating the total weighted 
tardiness associated with any given inbound-truck sequence 
and dock assignment, an operational policy was developed. 
Kuo (2013) considered multi-door cross-docking problem 
with both inbound and outbound truck sequencing and both 
inbound and outbound truck dock assignment and make 
span objective function. He/she proposed a model integrated 
with a variable neighborhood search (VNS) to optimize the 
sequence of all inbound and outbound trucks. Four 
simulated annealing algorithms were also adopted for 
comparison. Mohtashami (2015) proposed a genetic 
algorithm-based framework for scheduling inbound and 
outbound trucks in cross-docking systems with temporary 
storage of product items at shipping dock for the second 
defined scenario, such that it minimizes the total operation 
time. 
Assadi and  Bagheri (2016) considered just-in-time 
philosophy in truck scheduling problem in which 
interchangeability of products, ready times for both inbound 
and outbound trucks, and different transshipment time 
between receiving and shipping doors were considered. To 
minimize the total earliness and tardiness for outbound 
trucks, a mixed integer programming model and two 
metaheuristic algorithms were developed. Amini and 
Tavakkoli-Moghaddam(2016) used bi-objective linear 
mathematical model for truck scheduling problem in a 
cross-docking center, with breakdowns during their service 
times which have Poisson distribution function. They also 

employed non-dominated sorting genetic algorithm II, 
multi-objective simulated annealing, and multi-objective 
differential evolutionary algorithms to solve the problem. 
Rahmanzadeh Tootkaleh et al. (2016) proposed an inbound 
truck scheduling model based on fixed outbound trucks’ 
departure times. This study assumed that delayed loads are 
stored in temporary storage until the next outbound trucks’ 
departure time with the same destination. To solve the 
model, they proposed a heuristic algorithm. 

3. Mathematical Modeling 

This paper makes the assumptions as those of Yu (2002) in 
the following: 

1. All inbound and outbound trucks are available at time 
zero. 

2. All products received must be shipped out; long-term 
storage is not allowed. 

3. The total number of units with a given product type must 
equal the number of units shipped of the same product 
type. 

4. The unloading sequence of the products from an inbound 
truck can be determined. 

5. It is permissible to unload only the required number of 
units of a particular product from an inbound truck. 

6. Only one unit count of a product can be loaded into the 
outbound truck at a time. Therefore, loading multiple 
counts simultaneously from a conveyor and the 
temporary storage into an outbound truck are 
prohibited. 

7. Truck changeover time is the same for all inbound and 
outbound trucks. 

8. There is one receiving dock and one shipping dock, and 
the docks are separate. 

9. The capacity of the temporary storage buffer is infinite. 
10. The following information is assumed to be known as a 

priori: 
(i) Product types and the quantity of each product 
loaded in an inbound truck; 
(ii) Product types and the quantity of each product 
needed for an outbound truck; 
(iii) Loading and unloading times for the products; 
(iv) Moving time of products from the receiving dock 
to the shipping dock; 
(v) Truck changeover time. 

In this paper, make span is defined as the total operating 
time of the cross-docking operation. The total operating 
time starts from the moment when the first product of the 
first scheduled inbound truck is unloaded onto the receiving 
dock to the moment when the last product of the last 
scheduled outbound truck is loaded from the shipping dock. 
The objective is to find the best truck docking sequences for 
both of the inbound and the outbound trucks to minimize 
the total cross-docking operation time (equivalent to 
maximizing the throughput rate) of the cross-docking 
process. The product assignments from inbound trucks to 
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outbound trucks as well as docking sequences of the 
inbound and outbound trucks are also determined, 
simultaneously (Yuand Egbelu, 2008). 

I: Set of suppliers 
P: Set of possible cross-dockings 
K: Set of customer zones 
L: Set of product families 
D: Truck changeover time 
V: Moving time of products for all trucks from the 

receiving dock to the shipping dock 
C: Capacity of each truck 
M: Big number 
Cip: Cost to transport product from supplier i to cross-

dockingp
Cpk: Cost to transport product from cross-docking p to 

customer k
Fp:Fixed operating cost to operate/open cross-docking 

centerp
ripl: Number of units of product type l initially loaded in 

inbound truck i at cross- dockingp
Sjpl: Number of units of product type l initially needed 

for outbound truck  j atcross-docking p
I
ip

: Probability of breakdown inbound truck i in cross-
dock p

O
jp

: Probability of breakdown outbound truck j in 
cross-dock p

jpG
:Due date of outbound truck j for outgoing of cross-

dock p
I
ipB

 :Average repair time of inbound truck i in cross-
dock p

O
jpB

: Average repair time of outbound truck j in cross-
dock p

Variables: 

1               If cross-docking p is open
yp:  

0              Otherwise 

1              If supplier i is assigned to cross-dockingp
yip:          

0

 

Otherwise 

 1             If customer k is assigned to cross-docking p
Wpk: 

 0              Otherwise 

apk: If demand point k can becovered by cross-docking p
(distance between demand point k and candidate point j is 
less than covering radius) apk = 1, and it would be 0 
otherwise 

Continuous variables: 

Tp: Makespan at cross-docking p
cip: Time at which inbound truck i enters the receiving 

dock of cross-docking p
Fip: Time at which inbound truck i leaves the receiving 

dock of cross-docking p
djp:Time at which outbound truck j enters the shipping 

dock of cross- 
Ljp: Time at which outbound truck j leaves the shipping 

dock of cross- 

Integer variables: 

xijpl: Number of units of product type l transferred from 
inbound truck i to outbound truck j at cross- 
Binary variables: 

1 If any product is transferred from inbound truck i 
to outbound truck j at cross-; 

vijp=

0 Otherwise;

1 
If inbound truck I precedes inbound truck j in the 
inbound truck sequence at cross-dockingp0     ; 

vijp=

0 Otherwise;

1 
If outbound truck i precedes outbound truck j in the 
outbound truck sequence at cross-docking p         0; 

vijp=

0 Otherwise;

Cross-docking centers’ location (stage 1):

The location problem can be formulated as below:
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subject to:

1

1,
o

ip
p

y i


  (2) 

1

1,
o

pk
p

w k


  (3) 

1

1
o

p
p

z


 (4) 

1

1,
o

pk p
p

a z k


  (5) 

1

o

p p
p

F z TC


 (6) 

, ,ip py z i p  (7) 

, ,pk pw z p k  (8) 

 , , 0,1ip pk py w z  (9) 

Objective function (1) minimizes the sum of fixed costs to 
open cross-docking centers and transportation costs from 
suppliers to cross-docking centers and from cross-docks to 
customers where o is the maximum number of cross-dock. 
Constraint (2) ensures that each supplier is only allocated to 
one of the open cross-docking centers. Constraint (3) 
ensures that each customer is metat least by one of the open 
cross-docking centers. Constraint (4) ensures that at least 
one cross-dock should be open. Constraint (5) presents the 

limitation related to the coverage radius. Constraint (6) 
ensures that the total cost paid for opening cross-docking 
centers could not be greater than a certain amount. 
Constraints (7) and (8) ensure that the allocation of 
suppliers to cross-docking center and of cross-docking 
center to customers can be executed only when the 
corresponding cross-docking center is open. Constraint (9) 
defines corresponding decision variables of the model. 

Scheduling (stage 2): 

2
1

m

p
p

MinZ T


  (10) 

subject to:

TP≥Ljp ∀j,p (11) 

1

, ,
pS

ipl ijpl
j

r x i p l


  (12) 

1

                           , ,
pR

jpl ijpl
i

S x j p l


  (13) 

                     , , ,ijpl ijpx Mv i j p l  (14) 

1

    ,
N

I I
ip ip ipl ip ip

l

F C r B i p


    (15) 

(1 )           , , ,jp ip ijpC F D M P i j p i j      (16) 

1
1 1 1 1 1

o n o o m

p p ip ip pk pk
p i p p k

Min Z F z C y C w
    

     (1)
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( )            , , ,ip jp ijpC F D M P i j p i j     (17) 

Piip=0                                               ∀i,p (18) 

1

 ,
N

O O
jp jp jpl jp jp

l

L d S B j p


    (19) 

(1 )               , , ,jp ip ijpd L D M q i j p i j      (20) 

( )                    , , ,ip jp ijpd L D M q i j p i j     (21) 

qiip=0                                                 ∀i,p (22) 

1

(1 ) , ,
N

jp ip ijpl ijp
l

L C V x M v i j p


      (23) 

The objective function minimizes the sum of makespans of 
open cross-docks. Constraint (11) ensures that in each cross-
docking, makespanis greater than or equal to the time the 
last scheduled outbound truck leaves the shipping dock. 
Constraint (12) ensures that in each cross-docking, the total 
number of units of product type transferred from inbound 
truck i to all outbound trucks is exactly the same as the 
number of units of product type initially loaded in inbound 
truck i. Similarly, Constraint (13) ensures that in each cross-
docking, the total number of units of product type 
transferred from all inbound trucks to outbound truck j is 
exactly the same as the number of units of product type l 
needed for outbound truck j. Constraint (14) just compels 
the correct relationship between xijpland vijp variables in 
each cross-docking. Constraints (15)–(17) make a right 
sequence in each cross-docking for arriving and departing 
times of the inbound trucks based on their order and with 
considering breakdown of inbound trucks. Constraint (18) 
ensures that in each cross-dock, no in bound truck can 
precede itself in the inbound truck sequence. Similar to 
Constraints (15)-(17) for inbound trucks, Constraints (19)–
(21) make a right sequence in each cross-docking for 
arriving and departing times for the outbound trucks based 
on their order and with considering breakdown of outbound 
trucks. Similar to Constraint (18), Constraint (22) ensures 
that in each cross-docking, no outbound truck can precede 
itself in the outbound truck sequence. Constraint (23) 
connects the leaving time of an outbound truck to the 
arriving time of an inbound truck if any products or items 
are transferred between the trucks. 

4. Metaheuristic Characteristics 

The basic objective in stage 2in cross-docking problems to 
specify the best sequences of inbound and outbound trucks 
in sucha way that the make span will be minimized. Tosolve 
the problem in stage 2, we propose four algorithms: genetic 

algorithm (GA), simulated annealing (SA), differential 
evolution (DE), and hybrid GA-SA, respectively. 

4.1. Genetic algorithm 

Genetic algorithms (GAs) have become a well-known and 
powerful metaheuristic approach for hard combinatorial 
optimization problems. GAs are based on the idea of natural 
selection, and have been applied to numerous combinatorial 
optimization problems successfully. In this section, we first 
describe the essential components of our proposed GA for 
the scheduling problem, e.g., solution representation, the 
crossover operator, etc. 
 This algorithm resorts some features, such as population, 
chromosomes, genes, reproduction parameters, and 
generation in order to evolve its search procedures. Now, 
we describe the framework of our applied GA used by 
(Boloori Arabaniet al., 2011) as in the following steps:  

(1) For the initial population, we create random 
chromosomes (sequences) separately for 
inbound and outbound trucks similar to Figure 
1;  

(2) As fitness evaluation, the makespan for 
each chromosome is calculated based on a 
theme presented by Yu(2002); 

(3) For the selection operator, a chromosome is 
selected based on two parameters: 
roulette wheel selection and tournament 
selection;  

(4) The reproduction scheme consists of three main 
approaches: elitism, crossover, and mutation;  

(5) The probabilities of elitism, crossover and 
mutation (Pe, Pc, and Pm) in each of three levels 
are taken into account; 

(6) Stopping criterion, which is the maximum 
number of generations.  

Journal of Optimization in Industrial Engineering, Vol. 11, Issue 1, Winter and Spring 2018, 51-65
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Set of inbound trucks in each of cross docks 

Set of outbound trucks in each of cross docks 

Fig. 1. Set of inbound and outbound trucks in each of cross docks 

4.1.1. Crossover scheme 

In the crossover phase, each chromosome is merged with 
another chromosome by a specific method. For this purpose, 

we apply 1-point and 2-point types of crossover for inbound 
and outbound permutation of trucks in each open cross-
docking shown in Figure 2. 

4  2  6  7  4  3  2  5  6  7  1  5  3  1  
                            
5 6 7  1 4 3 2 4 2 6 7 5 3 1 

4  6  7  2  5  3  1  5  1  6  7  4  3  2  
              

2  4  7  6  5  3  1  6  7  4  3  5  2  1  

2  4  4  3  5  3  1  6  7  7  6  5  2  1  
              

2  4  6  5  7  3  1  6  7  5  4  3  2  1  

Fig. 2. Crossover operator 

As is clear from the figure, we consider four schemes with 2 
schemes for one-point and 2 schemes for two-point for 
crossover operations. In one-point crossover, at first, we 
select a crossover point randomly, and then all genes after 
crossover point from the second parent are replaced with all 
genes after crossover from the first parent. In order to 
acquire the correct sequence in duplicated genes, the place 
of these repeated genes should be changed in order by 
which they are already placed in their sequences. 
In two-point crossover, first, we select two crossover points 
randomly, and then all genes between two points from the 
first parent are replaced by all genes between two points 
from second parent. For duplicated genes, we apply a 
method similar to one-point crossover. 

4.1.2 Mutation scheme 

As shown in Figure 3, for mutation operation, we propose 
three different methods, i.e., swap, reversion, and insertion. 
These methods function as follows: 

1. Swap: two genes are selected randomly and then 
replaced with each other. 
2. Reversion: two points from parent are chosen 
randomly, and then all genes between two points will be 
reversed. 
3. Insertion: two points from parent are chosen 
randomly; the first gene is inserted after second gene. 

P
R

....... 
2 1 

P
S

.....
... 2 1 
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7  6  5  3  4  2  1  7  6  5  4  3  2  1  
Swap                               

7  6  3  4  5  2  1  7  6  5  4  3  2  1  

7  2  5  4  3  6  1  7  6  5  4  3  2  1  
Reversion                 

7  2  3  4  5  6  1  7  6  5  4  3  2  1  

7  6  3  5  4  2  1  7  6  5  4  3  2  1  
Insertion                  

2  7  6  5  4  3  1  7  6  5  4  3  2  1  

Fig. 3. Mutation operator 

4.2. Simulated annealing approach 

Simulated annealing is a computational process which 
attempts to solve hard combinatorial optimization problems 
through controlled randomization. This approach was 
popularized by Kirkpatrick et al. (1983) based on a work by 
Metropolis et al. (1953) (the so-called Metropolis 
algorithm) in statistical mechanics. Simulated annealing 
emulates the physical process of annealing (hence, the name 
of the heuristic) where the annealing process involves the 
following steps: 

1. The temperature of the system is raised to a sufficient 
level. 

2. The temperature of the system is maintained at this 
level for a prescribed amount of time. 

3. The system is allowed to cool under controlled 
conditions until the desired energy state is attained. 

The initial temperature (Step 1), the time the system 
remains at this temperature (Step 2) and the rate at which 
the system is cooled (Step 3) are referred to as the annealing 
schedule. The algorithm’s transitions can be modeled as a 
collection of finite-length Markov chains corresponding to 
each temperature level of the system. Hence, through 
selection of an appropriate probability distribution and 
through control of its parameters, the algorithm’s rate of 
convergence is controlled. The general procedure to 
implementa simulated annealing algorithm is as follows 
(Chen et al., 1996): 

Step1. Select an initial temperature, t, and an initial 

solution, 0X . Let 0 0( )f f X denote the 

corresponding objective value. Set i = 0 and go 
to Step 2. 

Step2. Set 1i i  . Randomly generate a new solution,
iX , 

and evaluate ( )i if f X . 

Step3. If 1i if f  , go to Step 5. Otherwise, accept
if as 

anew solution with probability
1i if f

tPr e


  . 

Step4. If if  was rejected as the new solution instep 3, set

1i if f  . Go to Step 5. 

Step5. If satisfied with the current objective value (
if ), 

stop. Otherwise, adjust the temperature, t, 
according to the annealing schedule and go to 
Step 2. 

4.3. Differential evaluation 

Differential evaluation (DE), as developed by Storn and 
Price (1995), is one of the population-based evolutionary 
metaheuristic. The DE algorithm generally consists of six 
ingredients, and because of these elements, it has been 
configured as a method in which the main idea is based on 
generating random vectors. Actually, in order to adapt this 
algorithm to our cross-docking problem, it should be said 
that each solution (each sequence of trucks) is shown by a 
vector. Now, we are going to discuss each of these six 
ingredients separately. 

4.3.1. Population framework 

In order to have an initial population, a set of truck 
sequences is generated at random. In this algorithm, it 
should be observed that the population is configured as a 
matrix and consists of vectors, called target vectors, as 
follows: 

Journal of Optimization in Industrial Engineering, Vol. 11, Issue 1, Winter and Spring 2018, 51-65
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11 1

1

( ) ( ( ))

1,2,..., ; 1, 2,....,

R

X ij

m mR

x x

P t X t

a a

i n j R

 
    
 
 

 


  


 (24) 

where ( )XP t is the population matrix at iteration t; (t)ijX
represents sequencei; m is the population size or the number 
of sequences that must be primarily identified. 

4.3.2. Initialization of the population 

The DE algorithm proposes a method by which the target 
vectors can be changed to the vectors taking the value from 
domain [0, 1) (Price et al., 2005): 

 ( ) [0,1) (U )ij L L LX t rand L L     (25) 

where LU and LL are the upper and lower bounds of each 

vector, respectively, and rand [0, 1) is a random number 

generated in [0, 1).By this method, (t)ijX will probably 

take floating-point values in [0, 1). So, Lichtblau (2002) 
proposed an alternative approach called the relative position 
indexing by which the target vectors can obtain the decimal 
point values.  

4.3.3. Elitism scheme 

The best vectors (with the best objective functions) will be 
copied to the population of the next iteration. 

4.3.4. Mutation vector 

Now, all the target vectors have identified their floating-
point frameworks. Therefore, in order to generate new 
vectors, called mutant vectors, a method is applied 
according to the following strategy: 

( ) ( ) ( ) ( ) ; ,ij best j aj bjV t X t F X t X t i a b        (26) 

where ( )ijV t corresponds to the mutant vectors. In these 

equations, ( )best jX t  represents the best vector (having the 

best fitness function)among all vectors of the current 

population; (t)ajX , (t)bjX are the vectors in iteration t; 

meanwhile, it should be noted that these vectors must be 

different from vector ( )ijV t and be selected at random; F is 

a real-valued factor ranged in[0, 1). 

4.3.5. Diversify via crossover 

In order to create a new vector, called trial vector, the 
mutant vectors and the target vectors are combined with 
each other by means of the following equation (Price et al., 
2005): 

( ) [0,1)
( )

( )

ij

ij
ij

V t if rand Cr
D t

X t otherwise

 


(27) 

whereCr is called crossover parameter created at the 
beginning of the algorithm. The above equation indicates 
that if the value of the random number, created from [0, 

1),is less than or equal to Cr, mutant vectors ( ( )ijV t ) will 

constitute trial vector ( ( )ijD t ). Otherwise, the mutant 

vectors will take the value of target vectors ( (t)ijX ). 

4.3.6. Selection operation 

Finally, the vectors of the new population will be created by 
making a comparison between the target vector and the trial 
vector. In other words, we differentiate these vectors by 
their fitness evaluations (f) as follows (Price et al., 2005): 

Javad Behnamian et al./ Location-Allocation and Scheduling… 



59 

( ) ( ) ( )
( 1)

( )

ij ij ij

X
ij

D t if f D f X
P t

X t otherwise

  


(28) 

where ( 1)XP t   is the specific sub-population at iteration 

t+1. Actually, the above equation makes a comparison 
between the trial vectors and the target vectors by means of 
their fitness (objective) functions. 
Finally, in order to determine the rest of the vectors in the 
new population, all of the foregoing six steps are followed 
up and repeated until the stopping criterion is satisfied. 
Eventually, the best vector in the final iteration will be 
recognized as the best vector and must be converted to its 
equivalent sequence based on the relative position indexing 
method described before. 

4.4. Hybrid algorithm 

The structure of the basic proposed hybrid algorithm  is 
designed as shown in Algorithm. 

Algorithm: Main body of the hybrid algorithm 

Begin 

Step 1. Initialization 
Input data set; 
Initialize parameters: Number of initial population; 
Crossover rate; Mutation rate; Elitism rate; Selection rate; 
Stopping criteria; 
Initial population generation: Randomly generate an 
initial population of Psize chromosomes; 
Objective function evaluation; 

Step 2. Main loop 
while stopping criteria is met do 

Crossover;  
Mutation; 
Solution improvement: 
{ 

S* ← GA solution() 

for iterations ← 1 to a maximum number of 
iterations do 

S ← S*; 

Perform a local search on Nl(S) to find a 
solution S´; 

if f (S´) ≤ f(S*) then 
S* ← S´;

Else 
Accept S´as new solution with 

probability Pr 

end if 
end for 

} 
Objective function evaluation; 
Elitism scheme; 
Selection operation; 
Generate next generation; 

end while 
Step 3. Report results 

End 

5. Parameters Setting 

As we know, each metaheuristic requires its own parameters 
to solve problems and always one of the most important 
questions when using the method is how to determine the 
appropriate level of each of these parameters. 
In this paper, to tune the parameters and estimate the 
optimal influencing process parameters, the response 
surface methodology (RSM) is applied. In this method, the 
regression equation is used to evaluate different levels of 
parameters. This means that a series of different levels of 
algorithm parameters based on the input parameters 
(usually, the objective function value is used) are checked; 
with respect to the best-fit regression equation on different 
levels of the parameters, optimal values are suggested for 
the tuning parameters. For each parameter of the two levels, 
we consider: -1, when the level of the parameter is low; +1, 
when the level of the parameter is high. 
The different levels of coding parameters are selected using 
the following equation.

(29) 

Whereh
andlare high and low levels of parameters, and Xiandri are 
the coded and actual values for the parameters.

2
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          Table 1 
           Parameters setting 

Method  Problem size State  
GASmall  1  
GA  Large  2  
SA  Small  3  
SA  Large  4  
DE  Small  5  
DELarge  6  

SA-GASmall  7  
SA-GALarge  8  

                Table 2 
                           Levels of parameters when GA is used

 

Low level  High level  
State  

nPopMaxIt  CrR  MuR  nPopMaxIt  CrR  MuR  
50 100 0.30 0.20 120 250 0.70 0.50 1
100 200 0.30 0.20 250 500 0.70 0.50 2  
50 100 0.30 0.20 120 250 0.70 0.50 3  
100 200 0.30 0.20 250 500 0.70 0.50 4  
50 100 0.30 0.20 120 250 0.70 0.50 5  
50 100 0.30 0.20 120 250 0.70 0.50 6  
50 100 0.30 0.20 120 250 0.70 0.50 7  
100 200 0.30 0.20 250 500 0.70 0.50 8  

    Table 3
 

                                                        Levels of parameters when SA is used 
Low level  High level  

State  
θP  θP  

0.75 5 0.95 8 1  
0.75 6 0.95 10 2  
0.75 5 0.95 8 3  
0.75 6 0.95 10 4  

                       Table 4 
                        Levels of parameters when DE is used 

Low level  High level  
State  

nPopMaxGen  F  CrR  nPopMaxGen  F  CrR  
50 50 0.30 0.20 120 120 0.50 0.50 1  
100 100 0.30 0.25 250 250 0.60 0.60 2  
50 50 0.30 0.20 120 120 0.50 0.50 3  
100 100 0.30 0.25 250 250 0.60 0.60 4  

After Design Expert software is applied for using response surface method, the optimal levels of each of the 16 states 
are as in Tables (5-7). 

                      Table 5 
                       Results of RSM method for GA algorithm 

Coding  Actual  
State  

nPopMaxIt  CrR  MuR  nPopMaxIt  CrR  MuR  
1.00 -1.00 -0.99 0.94 120 100 0.30 0.49 1  
1.00 -1.00 0.42 -0.99 250 200 0.58 0.23 2  
-1.00 1.00 0.29 0.20 50 100 0.56 0.38 3  
-0.18 -0.99 1.00 0.17 161 202 0.70 0.31 4  
0.36 1.00 1.00 0.40 98 250 0.70 0.41 5  
1.00 0.96 1.00 0.99 120 247 0.70 0.49 6  
1.00 -1.00 -0.98 0.99 120 100 0.30 0.50 7  
1.00 -1.00 0.58 0.94 250 200 0.61 0.49 8  
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  Table 6 
   Results of RSM method for SA algorithm 

Coding  Actual  
State  

θP  θP  
0.59 1 0.91 8 1  
0.33 1 0.89 10 2  
0.93 0.95 0.94 7.93 3  

1 -1 0.95 6 4  

          Table 7 
                    Results of RSM method for DE algorithm 

Coding  Actual  
State  

nPopMaxGen  F  CrR  nPopMaxGen  F  CrR  
1 -1 1 -0.54 120 50 0.50 0.27 1  

0.37 -1 1 0.95 203 100 0.60 0.58 2  
1 -0.1 1 -0.06 120 82 0.50 0.34 3  

0.87 -1 1 -0.93 240 100 0.60 0.26 4  

6. Computational Results 

Computational tests in this section are generated to verify 
and evaluate the performance of the proposed metaheuristic 
algorithms to solve the proposed two-stage MIP model for 
the location of cross-docking centers and scheduling 
problems in the distribution network.  

6.1. Evaluation of the MIP on small-sized instances 

In this subsection, we are going to evaluate the proposed 
MIP model on ten instances. The general performance of 
the MIP model is evaluated with a set of small-sized 
instances which are randomly generated. The results 
obtained from MIP solved by CPLEX are compared with 
those of SA-GA and DE. The results are shown in Table 8. 

  Table 8 
                                  Computational results on small-sized instances 

Problem No. 
Mathematical model Metaheuristics 

CPLEX RT (s) SA-GA DE RT (s) 
1 764 200 789 924 <1 
2 820 450 830 925 <1 
3 461 500 604 562 2 
4 883 500 903 1070 2 
5 599 500 641 711 2 
6 691 700 699 769 5 
7 392 700 415 430 6 
8 700 900 894 817 6 
9 481 900 647 537 10 
10 823 900 1171 992 13 

           *RT (s): running time (second) 

This table also shows that metaheuristics have appropriate 
performance. 

6.2. Evaluation of the metaheuristics on large-sized 

instances 

Here, 18 test problems in the supply chain environment with 
various sizes are generated at random in small- and large-
scale cases. In order to verify the statistical validity of the 
results shown in Table 9 and to confirm which algorithm is 
the best, a design of experiments and an analysis of variance 
(ANOVA) have been performed in which different 
algorithms are considered as a factor, and the response 
variable is RPD

. 
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                                           Table 9 
                                           Running times for the second stage 

For better judgment, the running times in small- and large- sized test problems for the second stage are also reported in 
Table 10.

Table 10 
                                Average relative percentage deviation ( RPD ) for algorithms  

where RPD is obtained by the following formula: 

lg
100sol sol

sol

A Min
RPD

Min


   (30) 

Problem No. SA-GA DE SA GA

1 1.556 2.395 1.093 2.005 
2 1.716 2.274 1.298 1.557 
3 2.4 4.026 1.176 2.541 
4 2.015 7.621 1.841 3.673 
5 1.995 7.055 1.922 2.281 
6 3.703 6.208 1.596 3.765 
7 9.97 22.003 7.943 14.133 
8 8.484 11.935 8.603 22.965 
9 14.215 25.664 12.399 31.199 
10 15.326 43.278 12.525 32.392 
11 6.711 8.503 5.886 19.456 
12 6.952 14.718 2.459 13.632 
13 13.813 24.880 12.110 27.318 
14 10.542 35.815 8.394 24.178 
15 17.582 17.039 11.075 11.531 
16 14.074 9.675 12.961 9.874 
17 10.285 26.410 11.367 19.509 
18 15.755 29.214 12.458 23.302 

Problem no. SA-GA DE SA GA

1 0 0 0 0 
2 0 0 0 0 
3 0 0 0 0 
4 0 0 0 0 
5 0 0 0 0 
6 0 0 0 0 
7 0.0248 0 0.0194 0 
8 0 0 0 0 
9 0 0 0 0 

10 0.0223 0 0.0124 0 
11 0 0 0 0 
12 0.0173 0 0.0272 0 
13 0.6032 0.1380 0.7286 0.1201 
14 0.1290 0.3668 0.2892 0.0378 
15 0.7577 0.4484 0.7132 0.0545 
16 0.0109 0.0606 0.0520 0.0767 
17 0.2575 0.2295 0.0998 0.1076 
18 0.2555 0.0077 0.1102 0.0162 

Javad Behnamian et al./ Location-Allocation and Scheduling… 



63 

where Algsol is objective function obtained by a given 
algorithm. Clearly, lower values of RPD are preferable. 

The results demonstrate that there is a clear, statistically 
significant difference between the performances of the 
algorithms.  

The mean plots and least significant difference (LSD) 
intervals (at 95% confidence level) for four algorithms are 
shown in Figure 4. As it can be seen, the hybrid SA-GA 
works better than others.  

Fig. 4. Plot of RPD  for the type of algorithm factor 

In addition, to evaluate the performance of metaheuristic methods, the obtained RPDs of algorithms for each problem 
are shown in Figure 5. 

Fig. 5. RPD's of algorithms 

Comparing the running time as we see from Figure 6, 
simulated annealing algorithm is the best algorithm, because 

it requires minimum time to obtain the near-optimum 
solution. 
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Fig. 6. Running times of algorithms 

7. Conclusions and Future Researches 

This paper proposed the location-allocation and scheduling 
models in cross-docking distribution networks. To solve the 
presented models, four metaheuristic algorithms, such as 
simulated annealing (SA), genetic algorithm (GA), 
differential algorithm (DE), and hybrid algorithm of SA and 
GA, were applied. The result showed that simulated 
annealing is the best algorithm between four algorithms. 
Future research can be recommended in a few directions. It 
is interesting to consider time-window constraints in the 
proposed cross-docking distribution network. Another 
extension is to take uncertain parameters into account such 
as covering radius. 

References 

Amini, A.&Tavakkoli-Moghaddam, R. (2016). A bi-
objective truck scheduling problem in a cross-
docking center with probability of breakdown for 
trucks, Computers & Industrial Engineering, 96, 180-
191. 

Apte, U.&Viswanathan, S. (2000). Effective cross-
docking for improving distribution efficiencies, 
International Journal of Logistics Research and 
Applications, 3 (3), 291-302. 

Assadi, M.T.&Bagheri, M. (2016).Differential evolution 
and Population-based simulated annealing for truck 
scheduling problem in multiple door cross-docking 
systems, Computers & Industrial Engineering, 96, 
149-161. 

BolooriArabani, A. Zandieh, M. &FatemiGhomi, S.M.T. 
(2011).Multi-objective genetic-based algorithms for a 
cross-docking scheduling problem, Applied Soft 
Computing, 11(8), 4954-4970. 

Chen, R. Fan, B.& Tang, G. (2009). Scheduling problems 
in cross docking, Combinatorial Optimization and 
Applications, Lecture Notes in Computer Science, 
5573, 421-429.  

Kirkpatrick, S. Gelatt, C.D.&Vecchi. M. P. 
(1983).Optimization by simulated annealing. 
Science, 220, 671–680.  

Kuo, Y. (2013) Optimizing truck sequencing and truck 
dock assignment in a cross docking system, Expert 
Systems with Applications, 40(14), 15, 5532-5541. 

Li, Y. Lim, A.& Rodrigues, B. (2004).Crossdocking - JIT 
scheduling with time windows, Journal of 
Operational Research Society, 10(1057), 1-10 . 

Liao, T.W. Egbelu, P.J.& Chang P.C. (2012). Two hybrid 
differential evolution algorithms for optimal inbound 
and outbound truck sequencing in cross docking 
operations, Applied Soft Computing, 12(11), 3683-
3697. 

Liao, T.W. Egbelu, P.J.& Chang, P.C. (2013). 
Simultaneous dock assignment and sequencing of 
inbound trucks under a fixed outbound truck 
schedule in multi-door cross docking operations, 
International Journal of Production Economics, 
141(1), Pages 212-229. 

Lichtblau, D. (2009).Relative Position Index 
Approach.Davendra, D. and Onwubolu G (eds.) 
Differential Evolution A Handbook for Global 
Permutation-Based Combinatorial Optimization, pp. 
81–120, Springer, Heidelberg. 

Marín Á.&Salmerón, J. (1996). A simulated annealing 
approach to the railroad freight transportation design 
problem, International Transactions in Operational 
Research, 3(2), 139–149.  

Metropolis, N. Rosenbluth, A. W. Rosenbluth, M. N. 
Teller, A. H.& Teller, E. (1953).Equation of state 
calculations by fast computing machines. Journal of 
Chemical Physics, 21, 1087-1092. 

Mohtashami, A., (2015). Scheduling trucks in cross 
docking systems with temporary storage and 
repetitive pattern for shipping trucks, Applied Soft 
Computing, 36, 468-486. 

0

10

20

30

40

50

١ ٢ ٣ ۴ ۵ ۶ ٧ ٨ ٩ ١٠ ١١ ١٢ ١٣ ١۴ ١۵ ١۶ ١٧ ١٨

RP
D 

SA-GA

DE

SA

GA

Javad Behnamian et al./ Location-Allocation and Scheduling… 



L
C

UD

This article can
Location-Alloc
Considering B

URL: http://ww
DOI: 10.22094

n be cited: 
cation and Sch
reakdown Truc

ww.qjie.ir/artic
4/JOIE.2017.59

heduling of Inb
cks.Journal of

cle_535407.htm
94.1382 

ound and Outb
f  Optimization 

ml 

65 

Yu

Yu

bound Trucks i
in Industrial E

optimization
Report TR9
Institute (IC

u, W. (2002) O
systems. Dis
IA, USA. 

u, W.&Egbelu
outbound tr
temporary st
Research, 18

in Multiple Cro
Engineering.11

n over contin
95-012, Intern
SI). 
Operational st
ssertation, Iow

, P.J. (2008).S
rucks in cro
torage, Europe
84(1), 377-396

oss-Dockings  
1 (1), 51-65.  

nuous spaces
ational Comp

trategies for cr
wa state Unive

Scheduling of 
oss-docking sy
ean Journal of

6. 

s. Technical 
uter Science 

ross docking 
ersity. Ames, 

inbound and 
ystems with 
f Operational 

Behnamian, J., Fatemi Ghomi, S.M.T., F. Jolai & Heidary, P.(2018)

Journal of Optimization in Industrial Engineering, Vol. 11, Issue 1, Winter and Spring 2018, 51-65

P

R

S

Price, K.V. 
Differentia
Global O
Heidelberg

RahmanzadehT
S.M.T.&Sh
scheduling
times und
Industrial E

Storn, R.& Pri
simple an

Storn, R.M.
al Evolution. 
Optimization. 
g. 
Tootkaleh, 
heikh Sajadie

g with fixed 
der substitutio
Engineering, 9
ice, K.V. (199
nd efficient a

&Lampinen, 
A Practical 
Springer-Ve

S. 
eh, M. (2016

outbound tru
n condition, 
2, 50-56. 
5).Differential
daptive schem

J.A. (2005)
Approach to

erlag, Berlin-

FatemiGhomi,
6).Cross dock
ucks departure
Computers &

l evolution – a
me for global

. 
o
-

,
k
e

&

a
l




