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Abstract 

Data mining techniques have been used widely in the area of customer relationship management (CRM). In this study, we have applied 
data mining techniques to address a problem in the business-to-business (B2B) setting. In order to continue its business in a manufacturer-
retailer-consumer chain, a manufacturer should improve its relationship with retailers. In this regard, segmentation is a useful tool for 
identifying groups of similar retailers in order to improve retailer loyalty by developing and implementing segment-specific marketing 
strategies. Therefore, this study proposes a methodology for retailer segmentation based on the value-based segmentation and the analytical 
hierarchy process (AHP). The proposed methodology is implemented by using the data of a firm in the hygienic industry in Iran. As a 
result, having found six groups of retailers and labelled them according to their performance, we provide some possible measures that can 
be taken in order to improve the relationship between the firm and its retailers.  
Keywords: Data mining; Value-based segmentation; Clustering; AHP.

1. Introduction 

Data mining is the task of extracting valuable 
information and knowledge from huge amounts of data (Han 
and Kamber, 2006). Data mining tasks can be classified into 
two categories: descriptive and predictive. Clustering is an 
instance of descriptive methods, and classification is an 
example of predictive methods (Han and Kamber, 2006). 
Data mining techniques have been used widely in many 
different areas such as customer relationship management 
(CRM) (Ngai et al., 2009) and in particular, market basket 
analysis (Berry and Linoff, 2004) and customer churn 
prediction (Coussement and Van den Poel, 2008). Customer 
segmentation is another important application of data 
mining, especially clustering in CRM. It involves 
partitioning the customer base into smaller customer 
segments according to their similarity. Most of the researches 
in the CRM area belong to the B2C (business-to-consumer) 
setting. However, in this study we propose a new 
methodology for customer segmentation in the B2B 
(business-to-business) setting. In fact, we address a problem 
in a manufacturer-retailer-consumer chain. 

 
 

 
 
 
 
In a manufacturer-retailer-consumer chain, the role of 

retailers can be crucial in persuading consumers to purchase 
products of a typical manufacturer. Product homogeneity in  
any product increases the number of choices for consumers 
and thus complicates the decision-making process for them. 
In this situation, any recommendation from the retailer 
regarding a particular brand or product may influence 
consumers' decisions. As a result, by improving its 
relationship with retailers, a manufacturer can gain great 
benefits. In this regard, retailer segmentation enables 
manufacturers to better understand retailer behaviors in order 
to adopt right and segment-specific marketing strategies for 
them. Consequently, executing segment-specific marketing 
programs may lead to a profitable long-term relationship 
between a manufacturer and retailers. 

In this study, we propose a methodology for retailer 
segmentation based on the value-based segmentation and the 
analytical hierarchy process (AHP). The main difference 
between this study and the previous researches in the field of 
CRM is that this research focus on the B2B setting rather 
than the B2C setting. This is also the main contribution of 
this work. Then we implement the developed methodology 
by using the data of a firm in the hygienic industry. 
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The rest of this paper is organized as follows. Section 2 
provides a brief background on concepts such as value-based 
segmentation, clustering, and analytical hierarchy process 
(AHP). In section 3, the methodology is explained. Section 4 
describes the empirical study and its results. Finally, the 
conclusion is presented in section 5. 

2. Background 

2.1 Business-to-Business market segmentation 

Business-to-Business (B2B) organizations don’t sell their 
products or services to end consumers directly. They do that 
via intermediaries. For example, the manufacturer of a 
typical product distributes its products to some retailers, and 
then they sell those products to the end consumer. 

It is clear that the success of a B2B organization depends 
on its intermediaries. For instance, in the manufacturer-
retailer-consumer chain, a manufacturer needs to rely on 
cooperating with retailers in order to sell a large volume of 
products to make profit. Therefore, identifying the high-
value and profitable retailers can be an essential task for the 
manufacturer. Segmentation tools can help manufacturers 
with this task of identifying different groups of retailers. 

In the business-to-customer (B2C) context, customer 
segmentation approaches are divided into customer need-
based, characteristics-based segmentation (Greengrove, 
2002), and customer value-based segmentation (Kim et al., 
2006), through which many customer segmentation 
researches have been performed. In these studies, several 
data mining techniques have been used to group customers 
into different businesses and industries such as hardware 
retailing (Liu and Shih, 2005), retail industry (Ho Ha, 2007), 
textile manufacturing (Li et al., 2011), electric utility (Lopez 
et al., 2011) and so on. Most of these studies have used the 
value-based segmentation. 

Contrary to the B2C context in which customer 
segmentation has received considerable attention, the B2B 
context suffers from lack of enough studies in the 
segmentation area. Yet, in the B2B setting there are some 
studies focused on customer loyalty. For instance, Lam et al. 
(2004) proposed and analyzed a conceptual framework for 
identifying factors affecting customer loyalty in a B2B 
context, including customer perceived value, customer 
satisfaction, and switching costs.  Davis-Sramek et al. (2009) 
also investigated factors influencing retailer loyalty in the 
supply chain for consumer durable products. 

In this study, we use some concepts belonging to the 
B2C context in order to group retailers (customer in our 
case).  More specifically, we aim to apply the value-based 
segmentation in a manufacturer-retailer supply chain to 
identify different groups of retailers.  

2.2. Value based segmentation 

Customer segmentation based on customer value is a 
common approach used to identify profitable customers in 

order to develop strategies to target them. Customer value is 
often known as LTV (Life Time Value), CLV (customer 
Lifetime Value), CE (customer equity) and customer 
profitability (Kim et al., 2006). According to Kottler (1974), 
CLV is “the present value of the future profit stream 
expected over a given time horizon of transacting with the 
customer. 

There are many models developed for measuring CLV 
(Gupta et al., 2006), among which the RFM (Recency, 
Frequency and Monetary) model developed by Hughes 
(1994) is an important model for estimating customer 
lifetime value. The RFM model was then extended by Chang 
and Tasy (2004) by adding the customer relation length (L) 
to it, therefore the LRFM model was developed. 

2.3. Weighted LRFM 

The RFM model has three dimensions: (1) Recency: is 
the time interval between the last purchase and a present time 
reference; the shorter the time interval is, the bigger R is, (2) 
Frequency: is the number of customer’s purchases in a 
particular period; a higher frequency is more valuable, (3) 
Monetary value: the total amount of money consumed by the 
customer over a particular time period; the higher the 
monetary value is, the bigger the contribution to business is.  

Although RFM and its successor LRFM make it possible 
to assess CLV, there are some challenges to use them. The 
major challenge relates to the importance of four variables of 
L, R, F, and M and determining their weights. Experts have 
differing views on this issue. For instance, regarding the 
RFM model, Hughes (1994) showed that the importance 
(weight) of the three variables is equal while Stone (1995) 
considered different weights for the RFM variables. The 
weight of each RFM variable depends on the characteristics 
of the industry. In addition, there are some researches that 
have used the weighted RFM model (e.g. Liu and Shih, 
2005; Seyed Hosseini et al., 2010).  

It is important to note that in the studies that used the 
RFM and LRFM models (e.g. Liu and Shih, 2005; Seyed 
Hosseini et al., 2010), no relationship was found between the 
variables. As a result, the LRFM variables are considered 
independent; for example, the high frequency does not affect 
the high monetary and vice versa. In this study, we determine 
the weights (relative importance) of each LRFM variable 
through conducting a survey of the AHP, which is a simple 
solution for this problem. 

2.4. Clustering 

Clustering, which is a subset of unsupervised learning 
techniques, is the process of grouping a set of objects into 
classes of similar objects. There are many clustering methods 
including partitioning methods, hierarchical methods, 
density-based methods, grid-based methods, and model-
based methods (Han and Kamber, 2006). K-means from the 
category of partitioning methods is the most widely used 
clustering algorithm in CRM and marketing. This algorithm 
introduced by MacQueen (1967) can process large amounts 
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of data quickly.  The operation of K-means is as follows: (1) 
selecting K initial centroids; (2) assigning each object to its 
closest centroid; (3) updating the centriod of each cluster to 
the mean of its constituent instances; and (5) repeating steps 
2 and 3 until centroids stop changing. 

2.5. Analytical Hierarchy process (AHP) 

The Analytic Hierarchy Process (AHP) developed by 
Saaty (1980) in the 1970s is a method for multi-criteria 
decision-making. It is useful for integrated and fuzzy 
problems based on the human brain assessment. The AHP 
uses paired comparison judgments from a fundamental scale 
of absolute numbers approached by decision-makers to 
prioritize alternatives for a problem in an architectural 
structure (Saaty, 2003). Decision-makers must assign a 
number from 1 to 9 to each comparison (Table 1). This 
method also measures the degree of inconsistency between 

judgments. If the inconsistency degree exceeds 0.1, 
judgments must be revised.  

3. Methodology 

Our proposed methodology for retailer segmentation is 
shown in Figure 1. In our methodology, we use the LRFM 
model which, as mentioned earlier, is the extended version of 
the RFM model and considers the customer relationship 
length (L) in determining the value of each customer. 
Throughout the rest of this paper, we use the word 'customer' 
instead of 'retailer' since we focus on the relationship 
between a manufacturer and its retailers, and retailers ask for 
what they want from the manufacturer. Therefore, retailers 
are customers for the manufacturer. 

 
Table 1 
 Numbers for representing paired comparison judgments 
Comparison importance Description 
1 Equal 
2 Intermediate between equal and moderately dominant 
3 Moderately dominant 
4 Intermediate between moderately and strongly dominant 
5 Strongly dominant 
6 Intermediate between strongly and very strongly dominant 
7 Very Strongly dominant 
8 Intermediate between very strongly and extremely dominant 
9 Extremely dominant 

 

Fig. 1. The Proposed Methodology
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Fig. 3. Cluster Validation 

4.5. Clustering by K-Means based on the LRFM variables 

In this stage, customers are segmented into similar 
clusters using K-means and according to their LRFM 
variables. The number of clusters for the K-means algorithm 
is set to be 6 according to the results of the previous stage. 
After performing the clustering, we obtain 6 clusters. Table 2 
shows the clustering results. 
Table 2 
 Clustering results 
Cluster #Customers Length Recency Frequency Monetary 

1 12956 6.43 67.498 10.472 20131186.45
2 3860 1.596 256.847 3.57 6804235.026
3 3065 7.899 14.702 32.215 156010514.4
4 13859 2.263 41.93 8.685 16838199 
5 5060 5.805 264.484 5.805 11130428.05
6 24799 7.869 22.991 14.655 22991847.78

4.6. Calculating the values of clusters 

To calculate the value of each retailer segment, we 
normalize the LRFM variables for centroids by using the 

Min-Max normalization method. For more information 
about this method, you may refer to Han and Kamber (2006). 

Having normalized the LRFM values, we calculate the 
CLV of each cluster as follows: 

௝ܥ ൌ ௅ܥ௅ݓ
௝ ൅ ோܥோݓ

௝ ൅ ிܥிݓ
௝ ൅ ெܥெݓ

௝                            (2) 

Where ܥ௝ is the LRFM rating for cluster j, 
௅ܥ
௝, ோܥ

௝, ிܥ
௝, ெܥ

௝  are the normalized L, R, F, and M for cluster 
j, and ݓ௅,ݓோ, ,ிݓ  ெ are the related weights of L, R, F, andݓ
M obtained from the AHP. 

4.7. Ranking and analyzing the clusters according to their 
lifetime values 

After calculating the CLV for each cluster, we rank the 
clusters according to their CLV values (see Table 3). 

Ranking retailer segments according to their lifetime 
values can help managers to allocate marketing resources 
according to the profitability of each segment. 

In addition, an in-depth analysis of each segment by 
knowing their LRFM attributes may inform the firm about 
the purchasing behavior of each segment. This in turn can 
help marketing managers to develop effective marketing 
strategies that can lead to a profitable long-term relationship 
with retailers. 
 

In order to analyze the clustering results, we use the 
customer value and customer loyalty matrices. The customer 
value matrix proposed by Marcus (1998) uses the two 
parameters of customer buying frequency (F) and monetary 
value (M) as its two axes. This matrix is illustrated in Figure 
4. 

 
Table 3 
Clusters information 
Cluster #Customers Length Recency Frequency Monetary CLV CLV Rating

1 12956 0.76693638 0.788631687 0.240949555 0.089318972 0.361563004 3 
2 3860 0 0.030574661 0 0 0.00269057 6 
3 3065 1 1 1 1 1 1 
4 13859 0.105822624 0.890992946 0.178565195 0.067248939 0.185208048 5 
5 5060 0.667777249 0 0.078024088 0.028994711 0.194456998 4 
6 24799 0.995240362 0.966815063 0.38697853 0.108491498 0.485856974 2 

 

Fig. 4. The customer value matrix (Marcus, 1998) 
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Two other indicators are customer relationship length (L) 
and recency (R) that relate to customer loyalty, and we can 
consider them as the customer loyalty matrix. 

According to the opinion of the marketing managers of 
the firm, new customers are those who have launched their 
relationship with the firm in the last 1.5 years (three six-
month periods). Based on this assumption, we consider the 
customers with their L (length of relationship) lower than 3 
as the new customers, and those with their L higher than 3 as 
the long life (established) customers. 

For the recency indicator, we consider two states of Low 
and High. If the recent transaction time value of a cluster is 
smaller than the average total value, it is considered a High 
Recency value cluster, but if it is larger than the average total 
value, it is regarded as a Low Recency. 

For frequency (F) and monetary (M) dimensions, we also 
consider two states: Low and High. If the frequency/or 
monetary value of a cluster is smaller than the median point, 
it is considered a Low frequency/or monetary value cluster; 
otherwise, it is considered a High frequency/or monetary 
value cluster. As Table 2 shows, the median point for all 
Monetary values is M=18484692.72 and the median point 
for all frequency values is F=9.58. 
Figure 5 illustrates the status of all clusters. 

After analyzing each segment, we label each cluster 
according to its status (Table 4). Furthermore, we suggest 
some possible actions that can be taken in order to improve 
the relationship between the firm and retailers.  

 

 

Fig. 5. Clusters status 

Table 4 
 Cluster Labeling 
Cluster Cluster Label Description Possible actions 

C3 Superstar Segment The highest value, the highest frequency, the 
highest recency, and the highest lifetime. 

Special attention should be paid in order to retain retailers of this 
segment 

C6 Golden segment The second highest value, highest frequency, 
highest recency, and a high lifetime. 

There are many retailers (0.39 percent of all retailers) belonging to 
this segment. Strong strategies should be developed in order to 

maintain relationship between the firm and retailers of this 
segment. 

C1 Average value segment This is an average value segment that has low 
basket size. 

Marketing programs are should be developed in order to increase 
basket size of this segment 

C5 Dormant segment This segment has low recency, low frequency, 
and low monetary value. 

Although they have a long time relationship with the firm, they 
exhibited very bad performance. In addition the recency of this 

segment is very low; this may be a sign of attrition or long hiatus. 
Strong anti-attrition programs should be developed for this 

segment. 
C4 New Low value 

customer 
This segment has high recency; this means that 
they maintain their relationship with the firm. 

But they have low frequency and low monetary 
value. 

Because the number of retailers belonging to this segment is 
relatively high, marketing programs for this segment should 

encourage the retailers to buy more products. 

C2 New Dormant segment This segment has low recency, low frequency, 
and low monetary. 

The recency value for this segment is very high. This segment is at 
risk of churn. By considering that the  value of this segment is very 

low, Thorough analysis should be carried out to understand 
whether  the retailers of this segment are worth keeping or not 
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5. Conclusion and Future Work 

Contrary to the B2C setting, the B2B setting suffers from 
lack of enough studies.  Thus, conducting this study in the 
B2B setting, we propose a methodology for retailer 
segmentation based on the value-based segmentation and the 
analytical hierarchy process (AHP).  In fact, we addressed a 
problem from a manufacturer-retailer-consumer chain. 
Because of their intermediary role in the relationship 
between a manufacturer and consumers, retailers are 
important for the survival of the manufacturer. We 
implemented the proposed methodology by using the data of 
a firm in the hygienic industry. The results indicated that 
there are six groups of retailers. After analyzing each 
segment, we labeled each retailer group according to its 
performance. Finally, we provided some possible actions that 
can be taken in order to improve the relationship between the 
firm and retailers.  

Those who may be interested in doing further research 
into the topic of this paper may perform in-depth analyses of 
all segments to gain a better understanding of their behavior 
in order to see how segment-specific marketing strategies 
could be made and thereby long-term and profitable 
relationships with retailers could be built.  
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