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Abstract 

     Data envelopment analysis (DEA) is a methodology for measuring the relative efficiency of decision making units (DMUs) which 
consume the same types of inputs and producing the same types of outputs. Assuming that future planning and predicting the efficiency are 
very important for DMUs, this paper first presents a new dynamic random fuzzy DEA model (DRF-DEA) with common weights (using 
multi objective DEA approach) to predict the efficiency of DMUs under mean chance constraints and expected values of the objective 
functions. In the initial proposed DRF-DEA model, the inputs and outputs are assumed to be characterized by random triangular fuzzy 
variables with normal distribution, in which data are changing sequentially. Under this assumption, the solution process is very complex. 
So we then convert the initial proposed DRF-DEA model to its equivalent multi-objective stochastic programming, in which the constraints 
contain the standard normal distribution functions, and the objective functions are the expected values of functions of normal random 
variables. In order to improve in computational time, we then convert the equivalent multi-objective stochastic model to one objective 
stochastic model with using fuzzy multiple objectives programming approach. To solve it, we design a new hybrid algorithm by integrating 
Monte Carlo (MC) simulation and Genetic Algorithm (GA). Since no benchmark is available in the literature, one practical example will be 
presented. The computational results show that our hybrid algorithm outperforms the hybrid GA algorithm which was proposed by Qin and 
Liu (2010) in terms of runtime and solution quality.  
Keywords: Stochastic Data envelopment analysis; Dynamic programming; random fuzzy variable; Monte Carlo simulation; Genetic 
algorithm.

1. Introduction 

    Data envelopment analysis is an important managerial 
tool for evaluating and improving the performance 
of  decision making units in systems.  Data envelopment 
analysis (DEA) which was initially proposed by Charnes, 
Cooper and Rhodes  (1978) has been widely applied to 
evaluate the relative efficiency of a set of DMUs based on 
multiple criteria. Since the first DEA model (CCR), it has 
been surveyed by researchers very quickly to various 
areas. The advantage of this technique is that it does not 
require the explicit specification of functional relations 
between the multiple inputs and outputs or either a priori 
weights. However, when we measure the efficiency of 
DMUs, the data in traditional DEA models are often limit 
to crisp data and the efficiency scores of DMUs are very 
sensitive to data variations and don’t allow the stochastic 
variations in the data, such as data entry errors and 
measurement errors. With considering stochastic 
variations in outputs and inputs, a DMU which is efficient 
relative to other DMUs may convert to be inefficient.  

 

 

Cooper, Huang and Li (1996) is the first one who 
developed a stochastic DEA model with chance 
constrained programming reflecting theories of behavior 
in social psychology. Usually we obtain fuzzy data from 
DMUs, because various experts may have various ideas, 
especially one expert may have different ideas during 
different times. Sengupta (1992) is the first one who 
considered fuzziness both in objective and constraints and 
analyzed the fuzzy DEA model. Entani, Maeda and 
Tanaka  (2002) changed fuzzy input and output data in to 
intervals by using α-level sets, and suggested two 
different interval DEA models. Since in real world 
problems, decision makers may encounter a hybrid 
uncertain environment where randomness and fuzziness 
coexist in a decision system, they represent the inputs and 
outputs in these systems by random fuzzy variables to 
characterize the hybrid uncertainty. Recently, the random 
fuzzy variable (Kwakernaak, 1978), possibility theory 
(Z.Q.  Liu and Y.K. Liu, 2010), credibility theory and 
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mean chance theory (Liu,   2004)  have been proposed to 
treat fuzzy phenomena existing in real-life problems. Liu 
(2005) presented a new class of random fuzzy minimum-
risk problems (RFMRPs) via the mean chance, and 
applied the RFMRP to the capacitated location-allocation 
problem with random fuzzy demands (Y. Liu and B. Liu, 
2005). Wang and Watada (2009) discussed the analytical 
properties of mean chance distribution functions and 
critical value functions of random fuzzy variables and 
obtained several useful continuity theorems. Razavi, 
Amoozad  and Zavadskas  (2013) developed a new fuzzy 
data envelopment analysis approach based on parametric 
programming. The basic idea of the proposed method is 
to transform the original DEA model to an equivalent 
linear parametric programming model, applying the 
notion of α-cuts. Azadi, Jafarian and Farzipoor (2014) 
proposed a new fuzzy DEA model for evaluation the 
efficiency and effectiveness of suppliers in sustainable 
supply chain management context. They developed an 
integrated DEA enhanced Russell measure (ERM) model 
in fuzzy context to select the best sustainable suppliers. 
Bray et al. (2015) proposed a Fuzzy theory-based DEA 
model to assess efficiency of  transportation systems 
and  services considering uncertainty in data, as well as in 
the evaluation  result. They focused on the "delay time" 
that is  an uncertain input data.  In the current literature, all 
researchers focused on evaluating current efficiency of 
DMUs with using DEA models in fuzzy or stochastic 
environments, without considering the need of predicting 
performance for future planning of DMUs. So, this paper 
attempts to establish a new fuzzy stochastic DEA model 
to predict the efficiency of DMUs. 
    The rest of this paper is organized as follows. Section 2 
reviews the previous studies on DEA models with 
common weights in static and dynamic environments. 
Section 3 reviews some basic concepts of fuzzy theory 
such as credibility approach and mean chance of fuzzy 
random event, which are needful in the next section. In 
order to predict efficiency of DMUs, firstly section 4 
presents a new random fuzzy DEA model with common 
weights in dynamic environment (DRF-DEA), in which 
the inputs and outputs are assumed to be characterized by 
random triangular fuzzy variables with normal 
distribution and data are changing sequentially. Under 
these assumptions, in Section 5, we then convert the mean 
chance constraints and expected values of objective 
functions of DRF-DEA model in to their equivalents 
representations with applying the established formulas in 
section3, then we convert the equivalent multi objective 
stochastic programming to one objective stochastic model 
with using fuzzy multiple objectives linear programming 
approach to improve in computational time. In section 6 
we integrate MC simulation and GA to design a new 
hybrid algorithm (MC-GA) for solving the proposed 
equivalent one objective stochastic programming. Section 
7 provides a practical example to illustrate the modeling 
idea and the effectiveness of our solution method. We also 
compare the results of our designed algorithm (MC-GA) 

with the hybrid GA algorithm which was proposed by Qin 
and Liu (2010) in this section. Finally, Section 8 draws 
our conclusions. 

 2. Literature Review   

     Nowadays, common weights set approach in DEA 
based on multi-objective programming are an attractive 
approach for evaluation quality and quantity aspects of 
performance analysis because there are some weaknesses 
in classical DEA models such as one-dimensional 
performance measuring and also, when DEA is employed, 
it is important to consider the decision makers preference 
over the adjustment of different outputs and inputs. 
Golany (1988) is the first one who designed an interactive 
multi-objective linear programming (MOLP) procedure to 
select the preferred output targets given the input levels 
and attempted to present DEA with common weights 
model to improve the discriminating power of the 
classical DEA models. DEA models which incorporated 
the preferences over output–input improvements to attain 
the corresponding preferred output–input target have been 
established by Thanassoulis and Dyson (1992).  
     Many studies have been accomplished about DEA 
models with common weights set in static environment. 
Sengupta (1995) is the first one who presents stochastic 
and dynamic extensions in classic multi-objective DEA 
models and two different types of inputs (quasi-fixed 
inputs and variable inputs) incorporated into a framework 
of dynamic DEA by Nemoto and Goto (2003). This 
problem has been surveyed by researchers. These studies 
find that their research has not documented how to 
measure returns to scale (RTS) in the analytical 
framework of the dynamic multi-objective DEA. 
Sueyoshi and Sekitani (2005) presented a new type of 
multi-objective DEA efficiency measure within a 
framework of dynamic DEA. They extended the dynamic 
DEA of Nemoto and Goto (2003) in a manner that the 
concept of returns to scale (RTS) is incorporated into the 
dynamic DEA. Chen (2005) presented a non -radial set of 
DEA preference structure models which incorporate a 
user’s preference over alternative paths to the targets. The 
output (input) change rates in DEA preference structure 
models can be greater than, less than or equal to one. He 
showed that Golany’s MOLP based DEA target setting or 
forecasting approach can be improved and it is able to 
consider multi-criteria multiple constraints in the DEA 
context. A new dynamic DEA model with common 
weights which produced aggregate efficiency of the total 
planning horizon has been developed by Teimoori (2006). 
Lozano and Villa (2007) presented two common weights 
DEA approaches for target setting. One of them is an 
interactive procedure that allows for a progressive 
articulation of the preferences of the decision maker. The 
other is a lexicographic approach that solves a sequence 
of models which try to improve, in a weighted manner, 
selected outputs and inputs. Yang, Wong, Xu and Stewart  
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(2008) presented an equivalence model between MOLP 
and dynamic DEA models and present how a dynamic 
DEA problem can be solved interactively without any 
prior judgments by transforming it into an MOLP 
formulation. Fukuyama (2012) presented a dynamic 
network DEA model with common weights to measure 
productivity change for 269 Japanese Shinkin banks 
during 2002 to 2009. Omrani (2013) introduced a robust 
optimization approach to find common weights in DEA 
with uncertainty in data. Ramezani and Khodabakhshi  
(2013) proposed model to ranking DMUs with using 
common weights set in DEA in dynamic environment. 
The aim of this study is to show the criteria used by 
Wong. Wang, Lu and Liu (2014) proposed a new multi-
objective two stage fuzzy DEA model in dynamic 
environment for evaluating the performance of US bank 
holding companies. This model provides a set of common 
weights for comparing performance and increases the 
discriminating power. Kawaguchi, Tone and Tsutsui  
(2014) estimated the efficiency of Japanese hospitals 
using a dynamic network DEA model with common 
weights. Tone and Tsutsui (2014) proposed a new slacks-
based measure approach in dynamic DEA with network 
structure and common weights set. It can use for input 
oriented model and analysis efficiency variations in 
network. Tavana et al. (2015) presented a common set of 
weights (CSW) model for ranking the DMUs  with the 
stochastic data and the ideal point concept. The proposed 
method minimizes the  distance between the evaluated 
DMUs and the ideal DMU.  Hatami-Marbini et al. (2015) 
proposed a DEA model for centrally imposed resource or 
output  reduction. They used a common set of weights 
method for controlling the weight flexibility and reducing 
the computational complexities.   
     The crisp outputs and inputs in traditional DEA 
models become random fuzzy variables in fuzzy 
stochastic environment, and modeling with such data is 
meaningless directly because the meanings of the 
constraints and the objective are not clear at all. In fact, 
we have faced such situation in fuzzy and stochastic 
environment, in which we deal with the fuzzy data and 
random data with credibility and probability, respectively, 
to obtain a meaningful model. In fuzzy stochastic 
programming, the mean chance plays the same role as 
credibility in fuzzy environments and probability role in 
stochastic environments (Y. Liu and B. Liu, 2005). So, in 
order to obtain a meaningful model in fuzzy stochastic 
environments and predict the efficiencies of DMUs, we 
employ the expected value to objective functions and the 
mean chance to constraints with given confidence levels 
to propose a new random fuzzy DEA model with 
common weights in dynamic environment. In general, the 
mean chance functions in the constraints are difficult to 
compute, so we can convert the mean chance constraints 
to their equivalent stochastic representations according to 
the formula for the mean chance function (in section 3). 
To compute the objective functions, under the assumption 

that the inputs and outputs are random triangular fuzzy 
vectors, we present the equivalent stochastic 
representation of the objective functions. As a 
consequence, the initial proposed model can be converted 
to its equivalent stochastic programming one. Since the 
objective functions are the mathematical expectation of 
functions of the normal random variables, we cannot 
solve it via the conventional optimization algorithm. To 
overcome the difficulty, we combine MC simulation 
technique and genetic algorithm to solve it.  
 

3. Preliminaries  

3.1. Credibility approach 

     Let ξ be a fuzzy variable with a possibility distribution 
function μ. The credibility of a fuzzy event {ξ ≥r} for 

Rr is defined as (Qin and Liu, 2010): 

  ))(sup)(sup1(
2
1

rtrt
ttrCr






                      (1)
 

Also “Cr” has the following property:      

Cr {ξ ≥r}+Cr{ξ<r}=1                                                     (2) 
 
And the expected value of random fuzzy variable (ξ) is 
defined as: 

     drrCrdrrCrE 





0

0


                               (3)

 

     Let ξ be an n-dimensional random fuzzy vector, and B 
a Borel subset of R. The mean chance of a random fuzzy 
event {ξ ∈B} is defined as: 

        PCrCh                                      (4) 

And the expected value of random fuzzy variable (ξ) is 
defined as (Qin and Liu, 2010): 

     drrChdrrChE 





0

0


                                  (5)

 

3.2. Mean chance distributions for random triangular 
fuzzy variables 

     This section establishes some useful formulas for the 
mean chance functions of random triangular fuzzy 
variables, which will be used in the next section. 
Theorem 3.2.1 Let ),,( bXXaX  be a continuous 
random triangular fuzzy variable, in which X is a random 
variable, and a,b being positive numbers. If 

),(~ 2NX  then we have: 
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where )0(  is the probability distribution of  standard normal distribution function (Qin and Liu, 2010). 

Theorem 3.2.2 Let ),,( iiiiii bXXaX   be mutually independent triangular fuzzy variables (i=1,2,…,n). If ),(~ 2
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where ix , i=1,2,...,n are nonnegative real numbers and at least one of them is nonzero (Qin and Liu, 2010). 

Theorem 3.2.3. Let ),,( bXXaX  and ),,( dYYcY   be two mutually independent random triangular fuzzy 
variables. If ),(~ 2

11 NX , ),(~ 2
22 NY and dcba ,,,  being positive numbers, then we have (Qin and Liu, 2010): 
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where 1x  and 2x  are nonnegative real numbers and at 
least one of them is nonzero. 
 
Theorem 3.2.4. Suppose ),,( bXXaX  and 

),,( dYYcY   are two mutually independent 
triangular fuzzy variables, in which X,Y ∈R and dcba ,,,  
being positive numbers, then we have (Qin and Liu, 
2010): 
 

1 ( ) ln(1 )
2 2 2

1 ( ) ln
2

c d c bE Y X
b a b b X

d XY X
a a X a



 

       
 




             (9)
 

 

4. Dynamic random fuzzy DEA model (DRF-DEA) 
formulation 

     The traditional DEA model (CCR), which was 
proposed by Charnes, Cooper and Rhodes (1978) is built 
as: 

)6( 

 

)8( 

Ali Yaghoubi et al./ A New Dynamic Random Fuzzy...

78



 

srmivu

nj
xv

yu
st

xv

yu
ZMax

ir

m

i
iji

s

r
rjr

m

i
ii

s

r
rr

,...,1,...,1,

,...,2,11:

:

1

1

1
0

1
0

0























                         (10)

 

where xij and yrj represent the ith input and rth output of 
DMUj, respectively. ur and vi are the weights of the rth 
output and ith input, respectively. Finding a multipliers 
(ur,vi) for i=1,..,m and r=1,..s is the basic opinion of the 
efficiency measurement of the CCR model, so that the 
efficiency ratio in objective function can be maximized 
for DMU0. Generally, CCR (10) has been applied in 
static environment in which data supposed to be fixed 
during evaluation period. But in dynamic environment, it 
is assumed that there are "n" DMUs and their activities are 
examined in T periods (t =1,2,…, T) in which data are 
changing sequentially. In the tth period, each DMUj 
(j=1,..,n) uses two different groups of inputs: 1tK  (l 
dimensional vector of quasi-fixed inputs) and tX (m 
dimensional vector of input variables) to produce two 
different groups of outputs: tY  (r dimensional vector of 
output variables) and tK  (l dimensional vector of quasi-
fixed outputs) (Nemoto and Goto, 2003). As shown in 
Fig. 1, the horizontal axis denotes the order of periods and 
the vertical axis indicates the order of DMUs. In this 

figure, the quasi-fixed outputs vector ( tK ) in the tth 
period is used as the quasi-fixed or feedback inputs vector 
(link data) at the next (t + 1) period. As for variables 
mentioned above, the dynamic CCR model is built as 
following: 
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Where t
l  and 1t

l  
are the weights of lth quasi–fix 

outputs and quasi–fix inputs at period t (t=1,..,T), 
respectively. The dynamic CCR model (11) is usually 
applied to evaluate the relative efficiency of DMUs with 
crisp outputs and inputs. However, in real world 
problems, the data are often derived by statistic or given 
by experts according to their experience, so randomness 
and fuzziness may exist simultaneously in these data. In 
many cases, we can only obtain the possibility 
distributions of the inputs and outputs. Thus in this paper, 
we assume that the inputs and outputs are random 
triangular fuzzy variables with normal distributions, 
following as:

 

           

 

Fig. 1. Execution of the DEA model in dynamic framework  
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where t
jX  , t

jY   are the column vectors of random fuzzy 
inputs and outputs of DMUj (j=1,..,n) in period t, 
respectively. t

jK  
is the quasi–fix random fuzzy outputs 

column vector of  DMUj at period t and the quasi–fix 
random fuzzy inputs column vector of DMUj in period 
t+1 (link data). 1t

jK  
is the quasi–fix random fuzzy inputs 

column vector of  DMUj  at  period t and the quasi–fix 
random fuzzy outputs column vector of  DMUj in  period  
t-1 (link data). Also suppose ),(~ 2t
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positive numbers for  each i (i=1,..,m), r (r=1,..,s) and l 
(l=1,..,L) which are predicted by decision maker for the 

next financial period to predict the efficiency of each 
DMU. In this case, each objective function of model (11) 
is also a random fuzzy variable, but the meaning of the 
model (11) is not clear. If we consider the efficiency ratio 
for all DMUs, we can then establish the multiple 
objectives programming which uses common weights set 
to efficiency measurement (Lozano and Villa, 2007). In 
this paper we will use the multi-objective decision making 
(MODM) methods to present a new multi-objective DEA 
model with common weights in dynamic environment in 
which data are changing sequentially. To build a 
meaningful model, we utilize the expectation of       a 
random fuzzy variable in each objective function and the 
mean chance in the constraints to formulate the initial 
proposed DRF-DEA model with common weights: 
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where t
j  

is considered as a risk criterion of failing to 
satisfy the jth constraint in period t   1,0t

j .  This 
model contains "n" objective functions and our purpose is 
to seek a common weights set ),,,( 1t

l
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r vu  with the 

maximum value of each objective function in period t 
(t=1,..,T), while the fuzzy events 
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satisfied at least with confidence level )1( t
j for j=1,..,n. 

In traditional CCR model (10), the value of objective 
function was used to express the efficiency of DMU0. 
DMU0 is efficient if and only if the optimal value is equal 
to 1. In proposed DRF-DEA model (13), we extend the 
efficiency and adopt α-expected efficient value to express 
the efficiency of DMUs. The optimal value of common 
weights set is referred to as the α-expected efficient value.  

5. Equivalent Stochastic Programming of DRF-DEA 
Model 

5.1. Equivalent stochastic representation of the mean 
chance constraints 

   The constraints of initial proposed DRF-DEA model 
(13) contain the mean chance of random fuzzy events 
which are difficult to compute, so we need to compute 
their values during the solution process. In the following, 
we discuss their equivalent stochastic representation 
according to the formulas for the mean chance established 
by Theorems (3.2.2) and (3.2.3) Suppose t

jX  , t
jY , t

jK  and 
1t

jK  are the fix (quasi–fix) random fuzzy inputs (outputs) 

column vectors of  DMUj in period t which were defined 
as (12), so the jth constraint of  initial proposed DRF-
DEA model can be transformed to the following 
equivalent stochastic one: 
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5.2. Equivalent stochastic representation of the expectation objective functions 

Theorem 5.2.1. Let ),,( tttttt bxxaxX  , ),,( tttttt dyycyY  , ),,( tttttt fkkekK   and 
),,( 111111   tttttt fkkekK  be independent triangular fuzzy variables, where Rkkyx tttt 1,,, ; tt ba ,  are the left-width 

and right-width of tX ; tt dc , are the left-width and right-width of tY ; tt fe , are the left-width and         right-width of  tK  and 
11 ,  tt fe  are the left-width and right-width of 1tK , respectively. Then according to Theorem (3.2.4), we have:   
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Proof . Let tX
, tY  , tK  and 1tK  are the α-cuts of tX , tY , tK and 1tK , respectively. Then, for each  1,0 , we have: 
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The proof of the theorem is complete. 

     Suppose t
jX  , t

jY , t
jK  and 1t

jK  are random triangular fuzzy vectors of  DMUj in period t as (12), then we have:  
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By Theorem (5.2.1), the jth objective function of initial DRF-DEA model (13) has the following equivalent stochastic 
representation: 
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   As a result, in the case when the outputs and inputs are 
mutually independent random triangular fuzzy variables, 
we have transformed the initial proposed DRF-DEA 
model (13) to its equivalent multi-objective stochastic 
programming model (20) according to the formulas 
established in section 5 as follows: 
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j vug   and t

jZ  are  determined by (14) 
and (19), respectively. 
  

5.3. Reformation of the proposed equivalent multi-
objective stochastic programming model  

     The proposed equivalent multi-objective stochastic 
model (20) has "n" objective functions in each period and 
is established by individually maximizing the efficiency 
of each DMU which consumes much computational time. 
It can be converted to equivalent one objective stochastic 
model by using fuzzy multiple objectives linear 
programming approach which was proposed by 
Zimmerman  (1991). This approach utilizes the 
membership function to convert the equivalent multiple 
objectives programming to one objective model. If 
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Since 0tL
jZ  

and 1tR
jZ  for all objective functions, so 

model (21) can be rewritten as following: 
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     Model (22) is the equivalent one objective stochastic 
model or the final equivalent representation of proposed 
DRF-DEA model, in which the efficiency scores for all 
DMUs are predicted with once run of this model in each 
period and thereupon the computational time is saved. 
Since the equivalent stochastic constraints (19) in this 
model are still in form of the integral, we cannot solve it 
via the conventional optimization algorithms. In order to 
overcome the difficulty, in the next section we design a 
new hybrid algorithm to solve final proposed DRF-DEA 
model by incorporating MC simulation and GA, in which 
MC simulation will employ to compute the integrals 
involved in the constraints and GA will use to find the 
optimal of problem.  
 

6. Solution Methodology 

     In the computer science field of artificial intelligence, 
genetic algorithm (GA) is a search metaheuristic that 
mimics the process of natural selection, it was proposed 
by Holland and further developed by Goldberg (1989) and 
others. A simple GA consists of two main operators: 
crossover and mutation. Crossover is the partial swapping 
between two parent strings to generate two offspring 
strings, while Mutation is used to expose unexpected 
changes in the values of genes. The main characteristic of 
the GA is that it can explore the solution space. The 
procedure of our hybrid algorithm for solving the final 
proposed DRF-DEA model (22) is summarized as 
follows. 

6. 1. Solution representation  
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formula (19) for j=1,2,..,n at period t, where the integrals 

Ali Yaghoubi et al./ A New Dynamic Random Fuzzy...

84



 

in t
jZ  

are approximated by MC simulation which will 

discribe in section 6.5. If tR  satisfies the constraints of 
model (22), then it is feasible and take it as an initial 
chromosome. Repeat this process until pop-size initial 
feasible chromosomes t
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tt RRR ,..., 21 are produced.   

6. 3. Recombination process   
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cPr   , the chromosome t
pR  will be selected as a parent 

choromosome, where the parameter 
cP  is the probability 

of crossover. Then group the selected parent 
choromosomes ,...,, 1,

3
1,

2
1,

1
ttt RRR  to the pairs 

),...,(),,( 1,
4

1,
3

1,
2

1,
1

tttt RRRR .The crossover process on each pair 

),( 1,
1

1, t
p

t
p RR  is showed as follows. Generate a random 

number λ from the interval (0,1), then the crossover 
operator on 1,t

pR  and 1,
1

t
pR  will generate two offspring 2,t

pR  

and 2,
1

t
pR   as following: 

,2 ,1 ,1
1

,2 ,1 ,1
1 1

(1 )

(1 )

t t t
p p p

t t t
p p p

R R R

R R R

 

 


 

  

                                       (23) 

     If both offsprings satisfy the constraints of model (22), 
then we replace the parents with them. Otherwise, we 
keep the feasible one if it exists, and repeat the crossover 
by reproduce another real number from interval (0,1) until 
two feasible offsprings are obtained. Finally, we get pop-
size chromosomes, including the new generated 
chromosomes. Secondly, update the chromosomes t

pR  by 
mutation operator. Repeat the following steps from  p = 1 
to pop-size: produce a random real number r from the 
[0,1], if 

mPr   the chromosome t
pR  will be selected as a 

parent choromosome, where the parameter
mP  is the 

probability of mutation. For each selected parent 1,t
pR , the 

mutation operation is as the following: 
MrRR t

p
t
p .1,2,                                                             (24)

 

where M is an appropriate large positive number. If 2,t
pR is 

infeasible, then we set M as a random number between     
0 and M until it is feasible. We set M = 0, if the above 
process cannot find a feasible solution in a predetermined 
number of iterations. Anyway, we replace the parent 1,t

pR  

with its offspring 2,t
pR . Finally, we get pop-size 

chromosomes, including the new generated 
chromosomes. 

6. 4. Evolution process         

We compute the fitness of each choromosome in each 
period via formula (19). The chromosomes 

t
sizepop

tt RRR ,..., 21 are assumed to have been rearranged from 
good to bad according to their ftnesses. Select the 
chromosomes for a new population, in which the 
chromosome with higher fitness will have a big chance 
for selection. After this process    pop-size times, we 
obtain pop-size of chromosomes, denoted also by t

pR . 

6. 5. Monte Carelo (MC) simulation  

  MC simulation is a method to deal with the stochastic 
behavior in complex systems ( Chuen  ,Kuan  and Wai, 
2012). In order to solve the final proposed DRF-DEA 
model (22), for any given solution ),,,( 1t

l
t
l

t
i

t
r vu  , we 

need to check its feasibility. Since the some constraints 
(19) include integrals ))(( t

j
t
jj dxxf




which cannot solve 

via the conventional optimization algorithm, so we should 
approximate their values. MC simulation method, firstly 
changes variable in the function )( t

jj xf  
to convert infinite 

interval to finite interval as following: 

dh
h
h

h
hfdxxf 







 





1

1 22

2

2 )1(
1)

1
()(

                             (25)
 

 

Also, the process of MC simulation to approximate 
integral (25) is described as follows: 

Procedure: MC simulation for approximating (25) 
                                                                                                                                                                                   
begin 
n←number-simulation                                                                                                                             
for i =1 to n do      
                                           
hi←Generate a uniform distributed random point in the 
interval [a,b]=[-1,1]                                                        
Determine the average value of the function:   

)
)1(

1()
1

(*1
22

2

1
2

^

i

i
n

i i

i

h
h

h
hf

n
f





 



                                                                                           

Compute the approximation to the integral:   
^

)()( fabdxxf 



                                 

end       
                                   
   By integrating GA and MC simulation, we design a new 
hybrid algorithm (MC-GA) for solving the equivalent one 
objective stochastic model (22) which summarized as 
follows: 

 Initialize pop_size chromosomes whose feasibility 
must be checked by constraints of model (22) and 
MC simulation.    
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 Update the chromosomes by crossover and mutation 
operators in which the feasibility of offsprings must 
be checked by constraints of model (22) and MC 
simulation.    

 Evaluate the fitness for all the chromosomes by (19) 
and MC simulation.   

 Select the chromosomes by fitness-proportional 
selection.   

 Repeat the second to fourth steps for a given number 
of generations.  

 Select the best chromosome as the optimal solution.  

7. Practical Example 

     In this section, since no benchmark is available in the 
literature, one practical example as a case study is 
presented. A general manager of the Iranian petroleum 
firm was involved in our study and he assisted us in 
accessing information on the operation of gas stations 
(DMUs) in order to predict efficiency of them for the next 
two financial periods. He selected five DMUs along with 
three inputs and two outputs that all of which are listed in 
Table 1. The three inputs are: employees salary (unit: 
1000 milion Rial per month), operation cost (unit: 1000 
milion Rial per month) and net profit (unit: 1000 milion 
Rial per month). The two outputs are: the total amount of 
gasoline (unit: kl per month) and net profit. Net profit is 
quasi-fix input (output) or link data, because it plays an 
important role and influences to the performance of 

DMUs in the next period time. Since the outputs and 
inputs are random triangular fuzzy variables, this study 
needs to mention how to obtain them. In June 2013, the 
firm's managers predicted the   left-width and right-width 
of the inputs and outputs for the Autumn (first period) and 
Winter of 2013 (second period). The inputs and outputs 
of DMUs in the previous  periods follow the normal 
distribution which are presented in Table 1. 
     To demonstrate the modeling idea and the 
effectiveness of the solution methodolgy, the final 
proposed DRF-DEA model (22) and the proposed MC-
GA algorithm are used to predict the efficiency of five gas 
stations. Table 2 documents the predicted efficiency 
scores under risk level  5.0  for  the next two financial 
periods. This practical experiments are performed on a 
personal computer, using the Microsoft Windows 7 
operating system, and hybrid algorithm is written by C++ 
programming language with the following parameters in 
the GA: the population size is 30, the probability of 
crossover is 0.3, the probability of mutation is 0.2 and 
generation number is 900. From the solution results for 
each period, we can see the information about each DMU. 
For example in the first period, DMU2 has the biggest α-
expected efficient value 0.982, followed by DMU4, 
DMU1, DMU3 and DMU5, which implies that DMU2 is 
the most efficient DMU. 
    Also, with the proposed hybrid algorithm, the predicted 
efficiency scores under various risk levels but similar for 
all DMUs for the next two financial periods  are reported 
in Table 3.  

 
Table 1 
The random triangular fuzzy inputs and outputs for five Gas stations (DMUs) about the next two financial periods  

periods
 

jDMU 

Inputs Outputs 
Employees salary       

)( 1X  
Operation cost 

)( 2X  
Net profit 

)( 1tK  
Gasoline 

)( 1Y  
Net profit 

)( tK  

t=1  
1 

)6.0,,6.0( 1
11

1
11

1
11  xxx

)02.0,9.3(~1
11 Nx  

)3.0,,3.0( 1
21

1
21

1
21  xxx

)01.0,2.2(~1
21 Nx  

)1.0,,1.0( 0
11

0
11

0
11  kkk

)01.0,9.7(~0
11 Nk  

)3.0,,3.0( 1
11

1
11

1
11  yyy

)01.0,4(~1
11 Ny  

)2.0,,2.0( 1
11

1
11

1
11  kkk

)01.0,2.8(~1
11 Nk  

2 
)2.0,,2.0( 1

12
1
12

1
12  xxx

)02.0,3(~1
12 Nx  

)2.0,,2.0( 1
22

1
22

1
22  xxx

)01.0,5.1(~1
22 Nx  

)1.0,,1.0( 0
12

0
12

0
12  kkk

)01.0,2.7(~0
12 Nk  

)2.0,,2.0( 1
12

1
12

1
12  yyy

)01.0,5.3(~1
12 Ny  

)1.0,,1.0( 1
12

1
12

1
12  kkk

)01.0,5.7(~1
12 Nk  

3 
)6.0,,6.0( 1

13
1
13

1
13  xxx

)02.0,7.4(~1
13 Nx  

)5.0,,5.0( 1
23

1
23

1
23  xxx

)01.0,5.2(~1
23 Nx  

)1.0,,1.0( 0
13

0
13

0
13  kkk

)01.0,2.9(~0
13 Nk  

)1.0,,1.0( 1
13

1
13

1
13  yyy

)01.0,7.4(~1
13 Ny  

)3.0,,3.0( 1
13

1
13

1
13  kkk

)01.0,5.9(~1
13 Nk  

4 
)8.0,,8.0( 1

14
1
14

1
14  xxx

)02.0,1.4(~1
14 Nx  

)5.0,,5.0( 1
24

1
24

1
24  xxx

)01.0,2.2(~1
24 Nx  

)1.0,,1.0( 0
14

0
14

0
14  kkk

)01.0,9.8(~0
14 Nk  

)5.0,,5.0( 1
14

1
14

1
14  yyy

)01.0,1.4(~1
14 Ny  

)1.0,,1.0( 1
14

1
14

1
14  kkk

)01.0,2.9(~1
14 Nk  

5 
)4.0,,4.0( 1

15
1
15

1
15  xxx

)02.0,2.5(~1
11 Nx  

)2.0,,2.0( 1
25

1
25

1
25  xxx

)01.0,1.3(~1
25 Nx  

)1.0,,1.0( 0
15

0
15

0
15  kkk

)01.0,8.9(~0
15 Nk  

)4.0,,4.0( 1
15

1
15

1
15  yyy

)01.0,2.5(~1
15 Ny  

)2.0,,2.0( 1
15

1
15

1
15  kkk

)02.0,1.10(~1
15 Nk  

t=2  

1 
)6.0,,6.0( 2

11
2
11

2
11  xxx

)02.0,1.4(~2
11 Nx  

)3.0,,3.0( 2
21

2
21

2
21  xxx

)01.0,3.2(~2
21 Nx  

)2.0,,2.0( 1
11

1
11

1
11  kkk

)01.0,2.8(~1
11 Nk  

)3.0,,3.0( 2
11

2
11

2
11  yyy

)01.0,2.4(~2
11 Ny  

)2.0,,2.0( 2
11

2
11

2
11  kkk

)01.0,5.8(~2
11 Nk  

2 
)2.0,,2.0( 2

12
2
12

2
12  xxx

)02,2.3(~2
12 Nx  

)2.0,,2.0( 2
22

2
22

2
22  xxx

)01.0,6.1(~2
22 Nx  

)1.0,,1.0( 1
12

1
12

1
12  kkk

)01.0,5.7(~1
12 Nk  

)2.0,,2.0( 2
12

2
12

2
12  yyy

)01,7.3(~2
12 Ny  

)1.0,,1.0( 2
12

2
12

2
12  kkk

)01.0,7.7(~2
12 Nk  

3 
)6.0,,6.0( 2

13
2
13

2
13  xxx

)02.0,9.4(~2
13 Nx  

)5.0,,5.0( 2
23

2
23

2
23  xxx

)01.0,6.2(~2
23 Nx  

)3.0,,3.0( 1
13

1
13

1
13  kkk

)01.0,5.9(~1
13 Nk  

)1.0,,1.0( 2
13

2
13

2
13  yyy

)01.0,6.4(~2
13 Ny  

)3.0,,3.0( 2
13

2
13

2
13  kkk

)01.0,6.9(~2
13 Nk  

4 
)8.0,,8.0( 2

14
2
14

2
14  xxx

)02.0,3.4(~2
14 Nx  

)5.0,,5.0( 2
24

2
24

2
24  xxx

)01.0,3.2(~2
24 Nx  

)1.0,,1.0( 1
14

1
14

1
14  kkk

)01.0,2.9(~1
14 Nk  

)5.0,,5.0( 2
14

2
14

2
14  yyy

)01.0,3.5(~2
14 Ny  

)1.0,,1.0( 2
14

2
14

2
14  kkk

)01.0,5.9(~2
14 Nk  

5 
)4.0,,4.0( 2

15
2
15

2
15  xxx

)02.0,3.5(~2
15 Nx  

)2.0,,2.0( 2
25

2
25

2
25  xxx

)01.0,2.3(~2
25 Nx  

)2.0,,2.0( 1
15

1
15

1
15  kkk

)02.0,1.10(~1
15 Nk  

)4.0,,4.0( 2
15

2
15

2
15  yyy

)01.0,8.5(~2
15 Ny  

)2.0,,2.0( 2
15

2
15

2
15  kkk

)02.0,5.10(~2
15 Nk  
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Table 2 
The predicted efficiency scores of DMUs for both periods with 5.0  
period DMU  Optimal solution ( 1

11211 ,,,, ttttt vvu  ) α-expected efficient value 

t=1 

1 (0.2851 , 0.0194 , 0.9929 , 0.2521 , 0.0302) 0.927 
2 (0.3839 , 0.1708 , 0.6286 , 0.9724 , 0.0853) 0.975 
3 (0.2312 , 0.7125 , 0.7281 , 0.4173 , 0.5125) 0.884 
4 (0.5554 , 0.3531 , 0.9679 , 0.2232 , 0.8834) 0.954 
5 (0.4138 , 0.0187 , 0.8113 , 0.8266 , 0.0670) 0.837 

t=2 

1 (0.3151 , 0.0134 , 0.9529 , 0.1521 , 0.1302) 0.915 
2 (0.4209 , 0.1608 , 0.6086 , 0.9724 , 0.1153) 0.945 
3 (0.1981 , 0.8126 , 0.9201 , 0.4173 , 0.4824) 0.846 
4 (0.3994 , 0.4561 , 0.9709 , 0.2232 , 0.6855) 0.885 
5 (0.4935 , 0.0123 , 0.6119 , 0.8266 , 0.2685) 0.934 

 
 

Table 3 
The predicted efficiency scores of DMUs under various risk levels for the next two financial periods  

periods DMU 05.0  1.0  2.0  5.0  8.0  

t=1 

1 0.823 0.841 0.868 0.927 0.962 
2 0.891 0.921 0.932 0.975 0.994 
3 0.812 0.834 0.854 0.884 0.946 
4 0.827 0.849 0.871 0.954 0.973 
5 0.801 0.825 0.844 0.837 0.900 

t=2 

1 0.813 0.831 0.858 0.915 0.967 
2 0.888 0.918 0.927 0.945 0.995 
3 0.780 0.812 0.818 0.846 0.911 
4 0.831 0.852 0.874 0.885 0.926 
5 0.885 0.899 0.929 0.934 0.973 

 
                      
 
 
 
 
 

 

Table 4 documents the total amount of actual inputs and 
outputs for the Autumn and Winter of 2013.

 
This study 

sampled these results in January 2014 in order to examine 
whether the predicted efficiency scores are different from 
actual efficiency scores. So, the results of actual 
efficiency scores with using conventional DEA (dynamic 
CCR model (11)) and actual data which are shown in 
Table 4 for DMUs. Generally there are three types of 
classification: (a) 5.0  is conservative, (b) 5.0  is 
risk-natural and (c) 5.0  is risk-taking in DEA. It is 
easily thought that the conventional use of DEA belongs 
to the risk-natural (Nemoto and Goto, 2003). This finding 
can be easily confirmed by comparing the actual 
efficiency results with the predicted efficiency results 
under 5.0 . The two DEA approaches exhibit very 
similar results on efficiency and ranks scores. For 
example in second period from table 4, three DMUs (the 
1th, 2th, 5th gas stations) are efficient based on actual 
efficiency scores and have been in the first place, while 
they are in the first place to third and separated based on 
the predicted efficiencies. Table 4 indicates that the high 
Pearson correlation rates have obtained (0.732 and 0.957)  

 

for both periods between predicted and actual efficiency 
scores with 5.0 . 
 

     In order to further illustrate the validation of the 
obtained results, we compare our results against the 
results of the similar hybrid GA algorithm which was 
proposed by Qin and Liu (2010). The computational 
results of the predicted efficiency scores for DMU1 are 
reported in Table 5, in which parameter “CPU(s)” is the 
computational time consumed by the two hybrid 
algorithms to get (near) optimal predicted efficiency score 
( *

1Z ). It can be from Table 5 that the proposed hybrid GA 
algorithm solves all instances optimally in an average of 
less than 61s of CPU time requirement for both periods. 
As a result, we conclude that our hybrid GA algorithm 
outperforms the Qin’s hybrid GA algorithm in terms of 
runtime. In addition, the predicted efficiency scores of our 
hybrid algorithm are closer to the actual efficiencies of 
computational results of the Qin’s hybrid algorithm.  
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Table 4 
Actual inputs and outputs values of DMUs with their actual efficiency scores for both financial periods 

 

Table 5 
Comparison between the results of our MC-GA algorithm and Qin’s hybrid GA algorithm 

Period  

proposed algorithm   Qin’s  hybrid  GA algorithm 
*
1Z  CPU(s)  *

1Z  CPU(s) 

t=1 
 

0.05 0.823 60.458  0.784 107.412 
0.1 0.841 61.159  0.816 108.521 
0.2 0.868 60.412  0.847 107.217 
0.5 0.927 60.202  0.881 109.698 
0.8 0.962 60.719  0.901 110.665 

Average  0.884 60.59  0.846 108.701 

t=2 
 

0.05 0.813 61.408  0.775 108.701 
0.1 0.831 60.798  0.796 107.942 
0.2 0.858 60.719  0.824 109.432 
0.5 0.915 61.062  0.897 110.121 
0.8 0.967 60.911  0.932 110.789 

Average  0.877 60.979  0.845 109.397 

 

 

 Fig. 2. Comparison between actual efficiencies with predicted efficiency scores 

     Fig. 2 shows the comparison between actual and 
predicted efficiency scores under 5.0 . So the 
proposed hybrid GA algorithm outperforms the Qin’s 
hybrid GA algorithm in term of solution quality. 
According to paper which was proposed by Qin and Liu 
(2010), to further test the effectiveness of the proposed 
hybrid GA algorithm, a careful variations about the 

probability of mutation 
mP  and the probability of 

crossover 
CP  in GA is made in view of the identification 

influence on the solution quality for DMU1 with 5.0  
at the first period (t=1). The computational results are 
collected in Table 6. To compare these results, we give 
the relative error as follows: 

0
0.2
0.4
0.6
0.8

1
1.2

DMU1 DMU2 DMU3 DMU4 DMU5

The actual efiiciency

The predicted efficiency by the
proposed DRF-DEA model and
our hybrid  algorithm

The predicted efficiency by the 
proosed DRF-DEA model and 
Qin’s   hybrid GA algorithm 

Period jDMU 

Inputs   Outputs 
Actual 

efficiencies 
 

              
Predicted 

efficiencies 
(with 5.0 ) 
 

Real 
ranks 

Predicted 
ranks 

Employees 
salaries       

)( 1X  

Operation 
costs 

)( 2X  

Net 
profits 

)( 1tK  

  Gasoline 
 
)( 1Y  

Net 
profit 

)( tK  

t=1 
 

1 4.01 2.15 7.85   3.95 8.16 0.98 0.927 2 3 
2 3.02 1.51 7.11   3.41 7.41 1 0.975 1 1 
3 4.6 2.34 9.07   4.91 9.52 1 0.884 1 4 
4 4.11 2.11 8.91   4.55 9.24 1 0.954 1 2 
5 5.12 3.03 9.89   5.19 10.2 0.96 0.837 3 5 

t=2 
 

1 4.12 2.21 8.16   4.01 8.61 1 0.915 1 3 
2 3.11 1.42 7.41   3.75 7.79 1 0.945 1 1 
3 4.78 2.48 9.52   4.61 9.68 0.97 0.846 3 5 
4 4.15 2.15 9.24   5.3 9.39 0.98 0.885 2 4 
5 5.28 3.22 10.2   5.92 10.62 1 0.934 1 2 

  Pearson  correlation coefficient between real and predicted efficiency scores of  DMUs  in t=1   :  0.732 

  Pearson  correlation coefficient between real and predicted efficiency scores of  DMUs  in t= 2  : 0.957 

Ef
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optimal  -expexted  efficient   value  - actual  -expexted  efficient  value 100%
optimal -expexted  efficient  value

 


  

 
Table 6 
Comparison solutions for DMU1 under different GA’s parameters in first period under 5.0  

 

 
where the optimal α-expected efficient value is the 
maximum one of the five α-expected efficient values in  
Table 6. Generally, findings from the above tables can be 
summarized as follows: 

Finding 1: Table 3 indicates that the predicted 
efficiencies of the five DMUs (gas stations) become 
larger as the   risk criterion increase.    
 
Finding 2: Table 4 indicates the high correlation rates 
have obtained for both periods (0.732 and 0.957) between 
predicted and real efficiency scores; it can represents the 
validity of the proposed DRF-DEA model (22).                
 
Finding 3: The comparsion between predicted and real 
efficienies scores in Table 4 reveals significant 
improvement in discriminating power. 
 
Finding 4: Table 5 indicates that our hybrid algorithm 
outperforms the Qin’s hybrid GA algorithm in terms of 
runtime and solution quality.                                                                                                                     
 
Finding 5: It can be seen from Table 6 that the relative 
errors do not exceed 1.67%, which implies that the our    
MC-GA algorithm is robust for parameters selection and 
effective for solving the final proposed DRF-DEA model.  

8. Conclusions 

     This paper attempted to present a new random fuzzy 
DEA model with common weights under mean chance 
constraints and the expected values of objective functions 
in dynamic environment; in which data were changing 
sequentially. The proposed DRF-DEA model incorporates 
future information on outputs and inputs into its analytical 
framework to predict efficiency scores of DMUs for the 
next financial periods. The major results of the paper 
include the following : (i) A new multi-objective DEA 
model was built in uncertain and dynamic environments, 
in which the outputs and inputs are characterized by 
random traingular fuzzy variables with normal 
distribution. Under this assumption, the initial proposed 
DRF-DEA model transformed to its equivalent multi- 
objecyives stochastic model; in which some constraints 

contain the standard normal distribution function  and  
others are the mathematical expectation for functions of 
the normal random variable. (ii) In order to improve in 
computational time during the solution process, the 
equivalent multi objecyives stochastic model converted to 
one objective stochastic model (final repesentation of 
DRF-DEA model) by fuzzy multiple objectives linear 
programming approach. (iii) To solve the final DRF-DEA 
model, this paper designed a new hybrid GA algorithm by 
incorporating MC simulation and GA, in which the MC 
simulation was employed to compute the integrals which 
involved in some of the constraints, while GA was used to 
find the optimal solution of problem. To document its 
practicality, the DRF-DEA model was applied to predict 
efficiencies for five gas stations in a Iranian petroleum 
company for the next two financial periods. The 
computational results showed that our hybrid algorithm 
outperforms the hybrid algorithm which was proposed by 
Qin and Liu (2010) in terms of runtime and solution 
quality. 
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