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Abstract  

This paper aims to investigate the integrated production/distribution and inventory planning for perishable products with fixed life time in 
the constant condition of storage throughout a two-echelon supply chain by integrating producers and distributors. This problem arises 
from real environment in which multi-plant with multi-function lines produce multi-perishable products with fixed life time into a lot sizing 
to be shipped with multi-vehicle to multi-distribution-center to minimize multi-objective such as setup costs between products, holding 
costs, shortage costs, spoilage costs, transportation costs and production costs. There are many investigations  on production/distribution 
planning area with different assumptions. However, this research aims to extend this planning by integrating an inventory system in which 
for each distribution center, net inventory, shortage, FIFO system and spoilage of items are calculated.  A mixed integer non-linear 
programming model (MINLP) is developed for the considered problem. Furthermore, a genetic algorithm (GA) and a simulated annealing 
(SA) algorithm are proposed to solve the model for real size applications. Also, Taguchi method is applied to optimize parameters of the 
algorithms. Computational characteristics of the proposed algorithms are examined and tested using t-tests at the 95% confidence level to 
identify the most effective meta-heuristic algorithm in terms of relative percentage deviation (RPD). Finally, Computational results show 
that the GA outperforms SA although the computation time of SA is smaller than the GA. 
Keywords:Production/distribution and inventory planning, Perishable product, Multi-objective, Mixed integer non-linear programming, 
Genetic algorithm. 

1. Introduction 

In the real world, many goods are spoiled and cannot be 
used after a period of the time. So, it is necessary to 
consider the duration of storage to keep perishable goods. 
For example, it is essential to note to the expiration date 
to purchase and maintain drugs. On the other hand, some 
products lose their properties after a while without having 
changes in their appearance. For example, long-term 
storage of foods in the freezer causes to miss their 
vitamins and nutrients although their appearance has not 
changed.  Also, there are types of products which are 
excluded after a period of the time despite having suitable 
quality for using. For example, consider different fashion 
clothing. With the changing fashion, the numbers of old-
fashioned clothing customers are reduced. So, these 
clothes are sold with discount or are not sols. Also, there 
are other items such as soy sauce, spices etc. which they 
will have a higher value with the passage of the time. So, 
attention to the type of product and its characteristics is 
important for maintenance of  items. 
 

 
 

Liu and Shi (1999) categorized perishability and 
deteriorating inventory models into two major groups; 
namely, finite lifetime models and decay models. The 
Finite lifetime models assume a limited lifetime for each 
product, while the Decay models deal with inventory that 
diminishes continuously with the passage of the time. 
Furthermore, the finite lifetime can be generally classified 
into two subcategories; namely, fixed finite lifetime and 
random finite lifetime. In the former case, products may 
be retained in stock for some fixed time after which they 
must be discarded and in the latter case, items are 
discarded when they spoil and time to spoilage is 
uncertain. 
This research is motivated by a practical problem in 
which a set of plants with limited production lines are 
producing perishable products with fixed life times that 
should be delivered to a set of distribution centers by a set 
of capacitated vehicles. Distribution centers have different 
deterministic demands with limited capacity.  
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The problem is formulated as a Mixed Integer Non-linear 
Programming (MINLP) model. This model used several 
features of the formulations previously studied by 
Amorim et.al (2012, 2013) and the method used by Pauls-
Worm et al. (2014) for applying FIFO policy. The model 
is extended to account for shortage, spoilage, FIFO 
system and net inventory in a production and distribution 
planning in which perishable products are delivered by 
multi-vehicles to capacitated warehouses of distribution 
centers. Further, a genetic algorithm (GA) as well as a 
simulated annealing (SA) algorithm are presented for 
large scales of the considered problem.  
The main contributions of this paper can be summarized 
as follows: (i) Proposing a MINLP formulation for the 
production and distribution planning problem within the 
food industry, (ii) Developing an approach that combines 
the inventory system advantages with a production and 
distribution planning model, and (iii) proposing two meta-
heuristic algorithms to a real world production and 
distribution planning problem for perishable products.  
This paper is organized as follows. In the next section, 
brief survey of relevant literature is given in which a 
review of available literature will lead us to conclude that 
the candidate problem in this research has not been 
studied.  Section 3 gives a detailed description of the 
problem and presents the proposed MINLP model. 
Introducing the two meta-heuristic algorithms are 
presented in Section 4. Section 5 includes computational 
results. Finally in Section 6, some conclusions and future 
research directions are cited. 

2. Literature Review 

The integrated Production and Distribution Problem 
(IPDP) has received remarkable attention during the past 
two decades. A rich literature has been initiated and 
recently some more complicated problems were  built up 
on stochastic and nonlinear models were studied (e.g., 
Chen et al.,2009; Farahani et al.,2012). Hunter and Van 
Buer (1996) are among the pioneers who studied IPDPs 
on serving multiple products to multiple customers. Their 
models incorporated vehicle routing options and were 
studied using real data from a newspaper company. Lee 
and Chen (2001) proved that general IPDPs are NP-hard 
except a few cases which are pseudo- polynomial time 
solvable. Their study established a milestone on the 
considerations of transportation capacity issues in IPDPs. 
Armstrong et al. (2008) and Geismar et al. (2008) 
proposed IPDPs on perishable products so that the no-
wait condition becomes necessary for the limited product 
life time once after being processed. The former 
considered customer-specified delivery time windows, 
and the latter investigated vehicle routing options. Both 
studies employed only one production and delivery batch 
instead of multiple ones; furthermore, truck capacity is 
not a constraint in either research. Viergutz and Knust 
(2012) studied the same problem of Armstrong. et al. 

(2008), and utilized mate- heuristic. Also, they developed 
the scenario by permitting delays of the production start 
time and variable production and distribution sequences. 
Yang and Wee (2003) extended a mathematical model for 
multi-item production lot sizing for perishable items in 
JIT environment. They considered both the lot-splitting of 
material from the supplier to producer and the lot-splitting 
of finished goods from producer to multiple buyers. 
Eksioglu and Jin (2006) investigated a planning model 
that integrates production, inventory and transportation 
decisions in a two-stage supply chain for perishable 
products with fixed shelf time. They proposed a mixed 
integer linear programming (MILP) formulation for the 
problem. Also, a primal-dual heuristic is developed that 
provides lower and upper bounds. Ahuja etal.(2007) 
studied a two-stage logistic network similar to that of 
Eksioglu and Jin (2006) with additional production and 
inventory capacity constraints. 
Bilgen and Günther (2010) studied an integrated 
production and distribution planning model with setup 
family and transportation. They introduced the block 
planning concept for short-term scheduling of setup 
families, and proposed mixed-integer linear optimization 
model for two sub models, production planning and 
distribution planning. Also, they considered two 
transportation modes, full truckload and less than 
truckload for the delivery of final goods from the plants to 
distribution centers. Yan et al. (2011) developed an 
integrated production and distribution model for a 
deteriorating item in a two-echelon supply chain. 
Furthermore, they assumed some limitations concerning 
perishability and the supplier’s production batch size is 
restricted to an integer multiple of the discrete delivery lot 
quantity to the buyer. They aimed to minimize the total 
system cost. 
Amorim et al. (2012) discussed the importance of 
integrating the analysis for a production and distribution 
planning problem dealing with perishable products. The 
logistic setting of their operational problem is multi-
product, multi-plant, multi-distribution-center and multi-
period. Based on the block planning concept, they 
developed models for two types of perishable products: 
with fixed shelf-life and with loose shelf-life. They 
presented an integrated and a decoupled production and 
distribution planning model for each of these cases, and 
afterwards compared the two different approaches. In 
addition, their research aim to minimized total costs, 
namely: production costs, transportation costs and 
spoilage costs. 
Also, Amorim et al. (2013) studied an integrated 
production and distribution planning problem in which 
multi-production line produce multi-perishable product to 
be delivered in a certain route by identical fixed capacity 
vehicles to a set of customers. They proposed two 
formulations for two cases. The first formulation models 
the operational integrated production and distribution 
problem that only considers batching of orders and the 
second formulation extends the first one by considering 
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the sizing of the lots. Then they compared both models 
under different terms. Pauls-Worm et al. (2014) 
developed a MILP model for the practical production 
planning problem of a food producer facing a non-
stationary erratic demand for a perishable product with a 
fixed life time under FIFO issuing policy and a service 
level approach. 
Chen et al. (2009) presented a model that considers 
stochastic demand for multiple products subject to 
perishability. The production environment does not 
consider setups between products and the delivery 
function is assured by a set of capacitated vehicles, 
however, the vehicle operating costs are disregarded. 
Kanchanasuntorn and Techanitisawad (2006) presented 
an approximate periodic model for fixed-life perishable 
products. They investigated the effect of product 
perishability and retailers’ stock out policy on system 
total cost, net profit, service level, and average inventory 
level in a two-echelon inventory–distribution system.   
Production–inventory model was developed for a 
deteriorating item over a finite planning horizon by Sana 
et al. (2004). They solved the model by using the box 
complex algorithm. For an extensive review on perishable 
items in production/distribution and inventory models, the 
reader is referred to the works of Amorim et al. (2013) 
and Karaesmen et al. (2011).   

3. Problem Definition and Mathematical Formulation 

The proposed mathematical model in this paper is 
developed on the following assumptions and notations:           
There are number of plants p=1,…,p having a set of 
multi-function parallel lines l=1,…, l that produce multi-
perishable products k=1,…, k with a limited capacity to be 
delivered to a set of distribution centers c=1,..,c. Products 
are shipped with multi-vehicle m=1,…,m with a limited 
capacity. Setup time between two products is assumed 
and dependent on the sequence of production. Products 
have a fixed lifetime. The planning horizon is formed of 
several macro periods d=1,…, dd (weeks), that each of 
them consists of the number of micro periods s=1,.., ss 
(days). Products are produced daily and are maintained in 
the plant storage and at the end of each week are shipped 
to the distribution centers. The distances between the 
plants and the distribution centers are small enough so 
that the product is delivered on the same day at the end of 
week. Thus, the decrease of freshness during the 
transportation is considered to be negligible. Products can 
be transported between any pair production plant–DC. 
The capacity of distribution centers and vehicles are 
limited. Plants have Temporary storage without the 
maintenance cost. Maintenance cost of the item is respect 
to the stock inventory at distribution centers.                                                                                        
The product lifetime is determined by week and it is 
assumed to be more than a week. The spoiling of products 
occurs in distribution centers warehouses. On the other 
hand, no items spoil in plants. The spoiled products 

cannot be repaired or replaced. Demand in any time 
period is certain, deterministic and negative.  Products 
inventory balance at distribution centers are updated at the 
end of each week according to the production output from 
the various lines at the plants, the transportation 
quantities, and the given external demand. Shortage of 
demand is allowed and it’s lost sales. Demand that cannot 
be fulfilled in one period is backlogged in the next period. 
The outputs of items at distribution centers are according 
to FIFO system in which the first produced items are 
issued first. For convenience and without loss of 
generality, the initial inventory level is set to zero. 
The purpose is to minimize the total system costs, 
including the setup cost, production, decay, shortage, 
maintenance and transportation, simultaneously. A simple 
graphical interpretation of the problem is shown in Figure 
1. 
Figure 1 demonstrates the product flow from plants to 
distribution centers by using vehicles and the 
correspondent demand and spoilage. The figure shows a 
weekly planning horizon and the inventory which is 
carried connecting the sequential planning horizons. 
Furthermore, as Figure 1 represents, products are 
produced daily (s=1,…, ss) and are maintained in the 
temporary warehouse of plant, and at the end of each 
week (d=1,…, dd) are shipped to the distribution centers. 
The optimization process output includes production 
planning (sequence of products) on the parallel lines, the 
number of produced and shipped goods, the number of 
spoiled items, the net inventory and inventory shortage, so 
that the total costs of system are minimized. 

3.1. Indices 

݈              Production lines 
݇, ݇′        Products 
݀             Macro-periods (week) 
 Micro-periods (day)              ݏ
 Production plants             ݌
݉            Vehicle 
ܿ             Distribution centers (DCs)               
ܾ             Age of products   

3.2. Parameters 

݀݀            The last of macro period 
௟ௗ݌ܽܿ            Capacity (time) on production line l available in 

macro period d 
ܽ௟௞             Capacity consumption (time) needed to 

produce one unit of product k on line l  
 ௞௟௣         Production costs of product k (per unit) on lineܿ݌

l in plant p                                                                                      
 ௞௞’௟௣     Sequence dependent setup cost (time) for aݐ݁ݏ

change-over from product k to product k΄ on 
line l   in plant p 

 ௞௞’௟௣    Setup time for a change- over from product kݐ݁ݏݐ
to product k΄ on line l in plant p 

Journal of Optimization in Industrial Engineering 19 (2016) 47-59

49



 
 

Fig.1. Graphical interpretation of the problem statement. 
 
௞ܿݏ             Cost associated with the spoilage per unit of 

product k  
 ௞              Lifetime of product kܮ
 ௞           Cost associated with the shortage of one unit of݌ݏ

product k  
௣௠௖ܿݐ         Cost for transporting one item of production 

plant p with vehicle m to DC c 
ℎ௞௖            Holding cost for product k at DC c 
 ௞           Occupied Space for one unit of product k݌݂
௖݂              Available space at DC c 
 ௠          Available space in vehicle mܿݒ
݀݁௞ௗ௖        Demand for product k at the end of macro-

period d at DC c (units) 

3.3. Decision variables 

 ௞௟௣௦ௗ      Quantity of product k produced on line l ofݍ  
plant p in micro-period s of macro period 
d (units)  

 ௞௟௣௦ௗ       Equals1, if product k is produced on line l ofݕ
plant p in micro-period s of macro period d; 
otherwise 0  

 ௞ௗ௖         Quantity of stock of product k that spoils at theܤ
end of macro- period d at DC c (units) 

௞௞’௟௣௦ௗݖ      Equals 1, if a change-over from product k to 
product k´ takes place on line l of plant p in 
micro-period s of macro period d; otherwise 
0     

 ௞௠ௗ௣௖     Quantity of product k shipped by vehicle mݔ
from production plant p to DC c at the end 
of macro-period d (units) 

kdI
 ௞௕ௗ௖          Inventory of product k with age b at the end ofܫ

macro period d at DC c  

 ௞ௗ௖        Inventory of product k at the end of macroݒܫ       
period d at DC c 

ܵℎ௞ௗ௖       Shortage of product k at the end of macro 
period d at DC c 

3.4. The proposed mathematical model 

Objective function: 
ܼ	݊݅ܯ =
∑ .௞௞’௟௣ݐ݁ݏ ௞௞’௟௣௦ௗݖ +௞,௞’,௟,௣,௦,ௗ
∑ ℎ௞௖ . ௞ௗ௖ݒܫ +௞,ௗ,௖ ∑ ௞݌ݏ . ܵℎ௞ௗ௖ +௞,ௗ,௖ 				    
∑ ௞ܿݏ 	. ௞ௗ௖ܤ +௞,ௗ,௖ ∑ ௣௠௖ܿݐ . ௞௠ௗ௣௖ݔ +௣,௠,௞,ௗ,௖   
∑ .௞௟௣ܿ݌ ௞௟௣௦ௗݍ 														௞	,௟,௣,௦,ௗ                                           (1)  

 
Subject to: 
௞௟௣௦ௗݍ ≤ ቀ௖௔௣೗೏

௔೗ೖ
ቁ . ௞௟௣௦ௗݕ 																			∀	݇, ݈, ,݌ ,ݏ ݀						        (2) 

∑ .௞௞’௟௣ݐ݁ݏݐ ௞௞’௟௣௦ௗݖ +௞,௞’,௦ ∑ ܽ௟௞ . ௞௟௣௦ௗ௞,௦ݍ ≤
௟ௗ݌ܽܿ 																	∀	݈, ,݌ ݀						                                              (3) 
∑ ௞	௞௟௣௦ௗݕ = 1												∀		݈, ,݌ ,ݏ ݀							                                (4) 
௞௞’௟௣௦ௗݖ ≥
௞௟௣௦ௗݕ + ௞’௟௣(௦ିଵ)ௗݕ − 1													∀	݇, ݇’, ݈, ,݌ ,ݏ ݀,				          (5) 
௞௟௣଴ௗݕ = 0																																								∀	݇, ݈, ,݌ ݀																					(6) 
෍ݍ௞௟௣௦ௗ
௟,௦

=෍ݔ௞௠ௗ௣௖
௖,௠

												∀	݇, ,݌ ݀																												(7) 

෍݂݌௞
௞

. ௞ௗ௖ݒܫ ≤ ௖݂ 																														∀	݀, ܿ																							(8) 

෍݂݌௞
௞

. ௞௠ௗ௣௖ݔ ≤ ௠ܿݒ 																												∀	݉, ,݌ ܿ, ݀							(9) 

෍ܫ௞௕ௗ௖

௅ೖ

௕ୀଵ

= ෍ ௞௕,ௗିଵ,௖ܫ

௅ೖିଵ

௕ୀଵ

+෍ݔ௞௠ௗ௣௖
௠,௣

− ݀݁௞ௗ௖				 

			∀	݇, ܿ, ݀																																																																														(10)	 

Spoiled 
inventory  

s=
1 

s=
2 

Demand 

 
Distribution 

Center 
 

The planning horizon 

Vehicle 

d=2 d=1 

m=1 m=2 m=n m=1 m=2 m=n 

C=1 C=2 C=c 

de de 

C=1 C=2 C=c 

de de de de 

d=0 
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௞ଵௗ௖ܫ =෍ݔ௞௠ௗ௣௖
௠,௣

−max{ 0, ݀݁௞ௗ௖ − ෍ ௞௕,ௗିଵ,௖ܫ

௅ೖିଵ

௕ୀଵ

}			 

∀	݇, ܿ, ݀																																																																															(11) 

௞௕ௗ௖ܫ = ௞,௕ିଵ,ௗିଵ,௖ܫ −max{0, ݀݁௞ௗ௖ − ෍ ௞௜,ௗିଵ,௖ܫ

௅ೖିଵ

௜ୀ௕

} 

	∀	݇, ܿ, ݀, ܾ = 2,… , ௞ܮ 																																																							(12)	 
௞଴ௗ௖ܫ = 0																																		∀	݇, ܿ, ݀																													(13) 
௞௕ௗ௖ܫ = ା௞௕ௗ௖ܫ − ௞௕ௗ௖ିܫ 						∀	݇, ݀, ܾ, ܿ																									(14) 
ା௞௕ௗ௖ܫ × ௞௕ௗ௖ିܫ = 0													∀	݇, ݀, ܾ, ܿ																									(15) 

௞ௗ௖ݒܫ =		෍ ା௞௕ௗ௖ܫ

௅ೖ

௕ୀଵ

											∀	݇, ݀, ܿ																																(16) 

ܵℎ௞ௗ௖ =		෍ ௞௕ௗ௖ିܫ

௅ೖ

௕ୀଵ

																			∀	݇, ݀, ܿ																								(17) 

௞ௗ௖ܤ ≥ ௞௕,ௗିଵ,௖ܫ 								∀	݇, ܿ, ݀, ܾ = ௞ܮ + 1,… , ݀݀									(18) 
௞ௗ௖ݒܫ , ௞௕ௗ௖ିܫ , ା௞௕ௗ௖ܫ , ܵℎ௞ௗ௖ , ௞௟௣௦ௗݍ ௞ௗ௖ܤ ,௞௠ௗ௣௖ݔ , ≥ 0; 
௞௕ௗ௖ܫ ∈ ௞௞’௟௣௦ௗݖ  ;݁݁ݎ݂ , ௞௟௣௦ௗݕ ∈ {0, 1}                         (19) 
 
In the above formulation, the objective function (1) aims 
to minimize setup costs between products, holding costs, 
shortage costs, spoilage costs, transportation costs and 
production costs.  
Constraints (2) and (3) are concerned with the capacity of 
the production line (available time). Constraint (2) 
ensures that a product can only be produced if there exists 
a setup for it. Constraint (3) is satisfied when in every line 
l of macro period d the sum of setup time and production 
time becomes less than available time. In other word, the 
makespan of the plant at each planning period should not 
be greater than the corresponding total available time.    
Constraint (4) ensures that on each line just one product 
can be produced simultaneously. Constraint (5) specifies 
linking between setup states and changeover indicators 
for products. Constraint (6) sets the initial configuration 
of the lines. 
Constraint (7) ships the products to the distribution 
centers which means the sum of the Quantity of product k 
produced in plant p in all micro-period s of macro period 
d to be the same with the quantity of product k of plant p 
transferred to the various distribution centers by any 
vehicles at the end of macro period d. 
Constraints (8) and (9) are related to the capacity of 
distribution centers and vehicles, respectively. In 
constraint (10), the inventory levels of all ages of product 
k at distribution center c at the end of macro period d are 
balanced. The inventory of product k at the end of macro 
period d is determined by the ending inventory of the 
previous period d-1 of ages b=1,…,	ܮ௞-1  of product k 
plus the quantities received of product k via the various 
vehicles in macro period d minus the corresponding 
external demand in the respective macro period. 
Constraints (11) and (12) are concern with the FIFO 
policy. They ensure that demand is fulfilled first by the 
oldest products in stock and then successively by the 

younger products. Variable ܫ௞௕ௗ௖ denotes the inventory 
level of product k with age b at the end of period d. 
Products that are delivered at the end of period d have age 
b=1 at the end of correspondent period. Product k of age 
 ௞ at the end of a period is not carried over to the nextܮ
period, because it is out-dated; inventory ܫ௞௕ௗ௖  of age 
 ௞at the end of period d is considered waste. Constraintܮ
(13) necessitate that the starting inventory level of all ages 
of each product is equal to zero.  
Constraints (14) and (15) present the relationship between 
the two auxiliary variables in which ܫା௞௕ௗ௖ and ିܫ௞௕ௗ௖ are 
inventory level and shortage backlog, respectively. 
Constraints (16) and (17) compute the inventory level and 
backlogging of shortage of all ages of product k at the end 
of macro period d. Constraint (18) represents the quantity 
of stock of product k which spoils in macro period d at 
distribution center c. Finally, Constraint (19) provides the 
logical binary, free and non-negative necessities for the 
decision variables. 
 

3.5. Sensitivity analysis 

Sensitivity analysis is a technique used to determine how 
different values of an independent variable will impact a 
particular dependent variable under a given set of 
assumptions. This technique is used within specific 
boundaries that will depend on one or more input 
variables. Here, a hypothetical example is considered for 
evaluating importance of variable used in the proposed 
mathematical model.   
In this example, s=1, d=3, k=2, p=1, l=1, m=1 and c=1, 
where s represents the micro period (day), d displays the 
macro periods (weeks), k represents types of the products, 
p denotes the plants, l represents the product lines, m is 
the vehicles and the distribution centers is c. In Tables 1–
5 the remainder data of the hypothetical example is given. 
 

Table1 
Total available time to produce in macro period d  

1 2 3 
4000 4000 4000 

 
Table2  
Demands of products in each macro period 

k                   d 1 2 3 

1 15 5 40 

2 100 50 60 
 

Table3  
Available space at DC, available space in vehicle and Cost for 
transporting one item 

f vc tc 

10000 6000 1.5 
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Table 4  
Costs and setup times of line 

k set tset 
1       2 3 0.5 
2       1 2.5 1 

 
Table5  
The values of other parameters 

fp h sc pc sp b a 
0.25 1.5 0.75 2 1 2 0.6 
0.4 1 1 1.5 0.5 2 0.8 

 
 
 

 
This example is solved by lingo 9. According to the 
obtained results, parameters of demand (݀݁), Production 
cost(ܿ݌), spoilage cost(ܿݏ), shortage cost (݌ݏ)and 
capacity consumption (time) needed to produce one unit 
 ,are effective on the variables of the model. Here (݌ܽܿ)
the changes of the quantity of product (ݍ), the inventory 
of product	(ݒܫ) and the shortage of product (ܵℎ) are 
evaluated.  In each step, the values of these parameters are 
multiplied by half, one, two and four. Then, the changes 
of the variables are examined. Results obtained are shown 
in the following figures. 

 
 

 
Fig. 2. The effect of demand on the quantity of product and the inventory of product. 

 
It can be observed, by increasing the demand (݀݁), the quantity of product (ݍ)and the inventory of product (ݒܫ)are 
increased.  
 

 
Fig.3. The effect of capacity consumption (time) needed to produce one unit on 

the quantity of product and the inventory of product. 
 
In this example, the range of this parameter is between (0, 100]. Although the small values don't have much effect on the 
considered variables, reaching the values to the end of the interval cause to decrease the quantity of product and the inventory 
of product. 
 
 

0
200
400
600
800

1000
1200
1400

0 1 2 3 4 5
 The demand coefficients 

q

Sh

0
50

100
150
200
250
300
350
400
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q

Sh
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Fig.4. The effect of shortage cost on the quantity of product, the inventory of  product and the shortage of product. 

 
The small quantity of shortage cost (݌ݏ)causes to 
decrease the net inventory (ݏℎ)and increase the 
shortage(ݒܫ). If the value of the shortage cost reaches to 
infinity then the quantity and inventory of product will 
increase and the shortage of product will reach to zero. 
The small values of other parameters such as production 
cost (ܿ݌), holding cost (ℎ)and transportation cost 
 have little effect on these variables. If these(ܿݐ)
parameters reach to infinity afterwards the quantity of 
product will decrease.  

4. Solution Methods 

As we mentioned earlier, most general cases of IPDPs 
examined in the literature are NP-hard in the strong sense. 
In this case, a meta-heuristic may be a more practical 
approach. A meta-heuristic uses certain well-known 
characteristics of a problem to produce an approximate 
solution rather than try to find a perfect solution.  
Hence, two meta-heuristics; namely, a genetic algorithm 
(GA) and a simulated annealing (SA) algorithm are 
proposed to solve the problem for real size application in 
a reasonable computation times. 

4.1. Genetic algorithm 

The genetic algorithm (GA) has received considerable 
attention regarding its potential as an optimization 
technique for many complex problems. It was first 
proposed by Holland (1975). GA starts with an initial 
population of random solutions. Each individual or 
chromosome in the population represents a solution to the 
problem. Chromosomes evolve through successive 
generations. In each generation, chromosomes are 
evaluated by a measure of fitness and those with smaller 
fitness values have higher probabilities of being selected 
to produce offspring through the crossover and the 
mutation operations. The crossover operator merges two 
chromosomes to create offspring which inherit features 
from their parents. The mutation operator produces a 
spontaneous random change in genes to prevent 

premature convergence. The methodology of the 
proposed GA is as follows: 

4.1.1. Chromosome presentation 

Mapping solution characteristics in the format of 
chromosome string is one of the important steps of any 
GA implementation. The proposed model has two types of 
variables, zero or one and integer. Each chromosome is a 
matrix which has (k × 7) rows and (l × p × s × d× m × c) 
columns, so that k represents types of the products, l 
represents the product lines, p denotes the plants, s 
represents the micro period (day), d displays the macro 
periods (weeks), m is the vehicles and the distribution 
centers is c. This matrix is shown in Figure 5. 
 

 
          

Chromosome = 
 

Fig 5. Chromosome illustration 

4.1.2. Generation of initial population 

Generation an initial population of N chromosomes that N 
equivalent to population size is the first step for 
implementing GA.  
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4.1.3. Fitness function 

After the generation of new population, fitness value of 
each chromosome is calculated. In this problem, the 
fitness value and the objective function are the same. The 
chromosome with best objective function is determined as 
the most appropriate chromosome. 

4.1.4. Crossover operator 

According to the constraints, all of the decision variables 
are calculated  using y and q. Therefore, we cannot apply 
the crossover and the mutation operators on them. If these 
operations were applied on them, not feasible areas will 
be produced. So, these operators are done on y and q. To 
form offspring, a two-point crossover operator is utilized 
so that two points are selected on the parent organism 
strings, and everything between the two points is swapped 
between the parent organisms, rendering two child 
organisms. 

4.1.5. Mutation operator 

In mutation, the solution may change entirely from the 
previous solution. Hence GA can come to better solution 
by using the mutation. Mutation occurs during evolution 
according to a probability. This probability should be set 
low. If it is set too high, the search will turn into a 
primitive random search. In this problem, the method of 
mutation operator is based on selecting the random 
elements.  

4.2. Simulated annealing algorithm 

Simulated Annealing method (SA) was introduced in the 
80s and due to its simplicity and efficiency has had a 
significant impact on solving combinatorial optimization 
problems (Kirkpatrick et al., 1983). This method is based 
on the statistical mechanics that in it the cooling process 
is done by the heating and slow cooling of a substance in 
order to achieve a rigid crystalline structure. This 
algorithm simulates the changes of melt system energy 
according to a cooling process in order to achieve a stable 
equilibrium state. This algorithm enables to accept the 
answers with superior quality. The purpose of this method 
is escaping from the local optimum point and delaying the 
premature convergence. SA goes to a new neighborhood 
solution by starting from a random initial answer in each 
successive repetition. It utilizes a control parameter which 
is called temperature to determine the probability of 
accepting a non-improving solution. 
In this algorithm, the solutions are acceptable that cause 
to improve the objective function; otherwise, the 
neighbors will be accepted with the possibility that 
depend on the current temperature and the rate of change 
in the objective function E (Kirkpatrick et al., 1983). 
E represents the difference in the objective function 
(energy) between the obtained present and neighbor 
solution. Whatever the algorithm continues, probability of 
acceptance such a displacement is less. In this paper, the 

procedures which generate neighborhood solution based 
on a random search are as follows: 
 An element of the matrix (x) is replaced with other 

element of it. Therefore, the Matrices (B and I) 
changed and Matrices (y, q and z) remain 
unchanged. 

 An element of the matrix (q) is replaced with other 
elements. In line with this, the Matrices (B and I) 
changed and Matrices(y, z) remain unchanged. 

 An element of the matrix (y) is randomly chosen. If 
this element was zero, it would convert to one and if 
this element was one, it would convert to zero. Thus, 
all of the variables will change. 

 All elements of the matrix (x) are changed. 
Therefore Matrices (B and I) changed and Matrices 
(y, q and z) remain unchanged. 

 All elements of the matrix (q) are changed. 
Therefore matrixes (x, B, I) changed and matrixes (y, 
q, z) remain unchanged. 
 All elements of the matrix (y) are changed. 

Therefore all of the variables changed. 
The use of these procedures depends on the number of 
neighbors to be divided between them. 

4.2.1. The method of changing initial temperature 

Temperature is one of the parameters which it is involved 
in the acceptance or rejection of the changes in the 
objective function. The initial value of the temperature 
must be chosen such that a large number of adverse 
responses are accepted in the early stages. This method is 
doing for providing the possibility of changes and further 
development. The number of iterations during the 
annealing process depends on the relative initial 
temperature. Of course, there are many ways where the 
initial temperature is assumed to be a large number. 

4.2.2. The method of changing temperature 

One of the major aspects associate with the process of 
annealing is the temperature changes during the 
implementation of the SA algorithm. In fact, the 
temperature is likely to accept the worse solution. 
Because when the temperature is too high, a lot of bad 
answers will be accepted. Therefore, they will get out of 
the local optimum point. Conversely, when the 
temperature is low, the probability of being in a local 
optimum is high. There are distinctive cooling ratios used 
in the SA literature. In this paper, the decreasing 
temperature as follows: 
    ௞ܶ = ߙ × ௞ܶିଵ             0 < ߙ < 1                            (20) 
4.2.3. Selected responses acceptance mechanism 
In the SA, the randomly generated neighbor solution 
becomes a new solution if it improves the objective 
function; otherwise the probability of accepting non-
improving movements in each temperature is calculated 
according to the following equation:    

݌  = ݁
ష∆ಶ
ೖ೅                                                                       (21) 
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So that, k is called Boltzmann constant, T is a temperature 
parameter in the current iteration and E is measure to 
which neighbor solution become worse from the current 
solution. We create a random number r between 0 and 1 
and then we compare it with p. If the random number was 
smaller than p, we would accept solution; otherwise 
another neighborhood will be chosen.       

4.2.4. Stop condition 

Several types of stopping criteria have been proposed for 
SA. Some of them are as follows: 

 To reach a final temperature 
 The total number of steps that must be done 
 The total number of accepted change during the 

annealing process (Total number of iterations) 
 The number of rejected changes in the total 

iterations has reached to specific amount. 
In this algorithm, the first mode is used in which 
temperature becomes less than 1 or a solution whose 
objective value is zero is found. 

4.3. Parameter setting 

The setting of parameters of meta-heuristic algorithms are 
directly related to their performance. An appropriate 
initial parameter setting has a significant impact on the 
solving progress, such as the exploitation or exploration 
rate of the search space, and consequently the quality of 
the solution. In this paper, we apply the Taguchi method 
to determine the values of the parameters of the GA and 
the SA. This method uses a transformed response function 
which has been defined to Signal-to-noise ratio for 
accurate statistical analysis of the results. In this study, 
after several pretests, we set each of these parameters at 
three levels. Test problems were made of variable sizes.  
Each scenario runs 5 times. The best values of the 
parameters in the GA and the SA are shown in Table 6.    
 
Table 6  
parameter setting of GA and SA 

GA SA 

Iteration number is 250 Initial temperature is 220 

Population size is 60 Iteration number in each 
temperature is 25 

Mutation rate is 0.2 Cooling ratio (α) is 0.87 
Crossover rate is 0.7  

5.   Computational Results 
 
In this section, we evaluate the performance of meta-
heuristics algorithms. Hence, after setting of algorithms' 
parameters, problems with different sizes are solved and 
the results of the algorithms are compared with each other 
in terms of computation times and relative percentage 
deviation (RPD). Problems are categorized in tree cases, 
namely; small, medium and large. In the small-sized 
problems, the parameters l, p, s, d, m, c, k which 
respectively denote the number of product lines, the 
number of factories, the number of micro periods (day), 
the number of macro periods (week), the number of 
vehicles, the number of distribution centers and products 
are considered between 1 and 3. In the medium-sized 
problems, the mentioned parameters are considered 
between 1 and 5 and finally in the large-sized problems 
these parameters are considered between 1 and 10.  
For each category 15 instances are considered. So, the 
total numbers of test problems are 45. The meta-heuristics 
algorithms are coded in MATLAB 10 and all the 
computational experiments were performed on a laptop 
with Intel core due 2 GHz and 2.5 GB memory.  Each test 
problem runs for 5 times. So, the total runs are equal to 
45×5×2=450. The computational results are summarized in 
Table 7. For each test case, the Tavg, the mean and the best 
solutions of the proposed meta-heuristics are given, where 
Tavg denotes median of the computation times, mean 
denotes the average of solution and best denotes the best 
solution in 5 times running algorithm. 
Also, in order to compare the efficiency of the proposed 
GA and SA, the relative percentage deviation (RPD) is 
applied. The RPD computes in this fashion: 
 

ܦܴܲ =
݊݋݅ݐݑ݈݋ݏ	ܿ݅ݐݏ݅ݎݑ݁ܪ − ݊݋݅ݐݑ݈݋ݏ	ܿ݅ݐݏ݅ݎݑℎ݁	ݐݏ݁ܤ

݊݋݅ݐݑ݈݋ݏ	ܿ݅ݐݏ݅ݎݑℎ݁	ݐݏ݁ܤ 	× 100 
(22) 

For each group size, the RPD values are computed and 
shown in Table 7. Also, the RPD values and the 
computation times of the GA and the SA algorithms are 
depicted in Figures 3 and 4, respectively. Furthermore, in 
order to make better comparisons between the proposed 
meta-heuristics, relative percentage deviation means plot 
with least significant difference (LSD) intervals at a 95% 
confidence level are tested and shown in Fig 8.  
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Table 7  
Computational results for small-to-large size problems. 

Category Instance 
number 

GA  SA 

Ta
avg mean best RPD  Ta

avg mean best RPD 

Sm
al

l-s
iz

ed
 p

ro
bl

em
s 

1 16.2 432 432 0%  13.7 434.4 432 0.555% 
2 28.3 660.8 652 1.349%  17.1 662.6 652 1.625% 
3 46.7 1233.2 1230 0.260%  28.9 1255.5 1230 2.073% 
4 42.1 847.3 843 0.510%  25.4 859.2 843 1.921% 
5 65.8 581.5 573 1.483%  41.5 580.3 573 1.273% 
6 94.9 922.5 901 2.386%  77.6 914.5 901 1.498% 
7 68.5 675.2 674 0.178%  40 678 674 0.593% 
8 133.2 625.7 615 1.73%  91.8 618.6 615 0.585% 
9 152.7 847.9 843 0.581%  107.3 861.3 843 2.170% 
10 138.2 951 951 0%  93.6 965.5 951 1.524% 
11 93.6 544.6 539 1.038%  75.2 552.8 539 2.560% 
12 114.1 1176.1 1163 1.126%  81.5 1165.3 1163 0.197% 
13 123.8 762 746 2.144%  86.1 746 746 0% 
14 147.8 433.5 427 1.522%  101.4 438.5 427 2.693% 
15 185.2 732.7 720 1.763%  128.7 735.5 720 2.152% 

Average  96.74  753.933 1.072%  67.32  753.933 1.428% 

M
ed

iu
m

-s
iz

ed
 p

ro
bl

em
s 

16 287.1 1832.3 1763 3.930%  275.6 1873.1 1768 6.245% 
17 439.5 1903.4 1854 2.664%  326.2 1934.5 1862 4.341% 
18 383.3 2178.5 2101 3.688%  271.5 2214.3 2101 5.392% 
19 558.9 2454.6 2378 3.221%  432.7 2467.8 2391 3.776% 
20 261.7 3754.5 3618 4.611%  161.3 3753.1 3589 4.572% 
21 373.4 1653.7 1572 5.197%  258.9 1671.4 1572 6.323% 
22 429.5 2481.8 2434 2.257%  321.4 2613.7 2427 7.692% 
23 345.3 2864.1 2785 2.179%  234.7 2954.3 2803 5.397% 
24 454.8 3581.3 3431 4.380%  334.1 3671.9 3431 7.021% 
25 384.2 1866.9 1778 5%  272.6 1861.5 1778 4.696% 
26 557.5 4811.5 4659 3.273%  429.3 4843.2 4677 3.953% 
27 351.4 3421.4 3278 5.209%  237.4 3467.4 3252 6.623% 
28 688.5 4395.7 4256 3.282%  531.4 4482.4 4271 5.319% 
29 568.1 2771.6 2636 5.144%  435.5 2785.3 2654 5.663% 
30 645.9 3022.8 2974 1.640%  517.1 3082.7 2998 3.655% 

Average  448.60  2767.8 3.712%  335.98  2771.6 5.378% 

La
rg

e-
si

ze
d 

pr
ob

le
m

s 

31 1745.2 15803.2 14682 4.231%  929.4 16121.3 14741 9.803% 
32 1836.7 18906.3 17531 4.992%  956.2 19325.4 17531 10.235% 
33 2321.6 13741.4 12833 4.740%  1264.5 13962.5 12833 8.801% 
34 2465.2 21146.1 19767 4.953%  1375.3 21948.9 20231 11.038% 
35 1986.4 26132.7 24874 5.060%  1131.3 27232.7 24992 9.482% 
36 2628.2 19771.6 18395 4.765%  1516.6 19871.6 18463 8.027% 
37 2534.3 27893.3 26439 4.365%  1476.2 28848.3 26482 9.112% 
38 2764.8 16828.1 15381 5.507%  1540.7 17135.1 15381 11.404% 
39 2965.7 12933.5 12258 3.646%  1772.5 13471.5 12189 10.521% 
40 2544.5 18215.8 17321 5.165%  1479.8 18912.6 17387 9.188% 
41 2826.1 23683.9 21794 6.377%  1662.9 23648.3 21915 8.508% 
42 2949.1 29421.7 27285 6.731%  1691.4 30121.3 27348 10.395% 
43 2867.2 15792.3 14847 4.346%  1677.1 16422.8 14847 10.613% 
44 3154.3 20858.4 19129 6.426%  1831.7 20742.5 19312 8.434% 
45 3273.6 24521.6 22517 4.388%  1882.2 23856.2 22437 6.325% 

Average  2590.86  19003.5 5.046%  1479.18  19072.6 9.459% 
a Tavg (second). 
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Fig 6. The average RPD for GA and SA in small-to-large problems. 
 
 
               
 
 
 
 
                                             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7. The average computation times for GA and SA in small-to-large problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Means plot and LSD interval for the algorithms. 
 
 
Based on the obtained results  presented in Figure 8, the 
SA and the GA algorithms are statistically different which 
means t test rejects the null hypothesis of equality the SA 
and the GA at a 95% significance level. Hence, the 
difference between means is significant and it can be seen 

that the average of the GA is statistically smaller than the 
SA. 
On the other hand, Figure 6 also demonstrates this fact 
that in the small to large sizes, the average RPD of the GA 
is significantly smaller than the SA. Although the 
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computation time of SA is smaller than the GA, the GA 
has better performance in the three groups. Thus from the 
obtained results, the proposed GA is recommended for the 
problem. 

6. Conclusions and Future Research 

This paper deals with a multi-objective problem of 
integrated production/distribution and inventory planning 
in which there are a set of plants with parallel production 
lines that produce perishable products with fixed life time 
during a planning horizon. Also, there are m vehicles to 
deliver the products from plants to distribution centers at 
the end of each week. Furthermore, an inventory system 
is integrated with this production/distribution planning in 
which for each distribution center, net inventory, 
shortage, FIFO system and spoilage of items are 
calculated. This investigation aims to minimize setup 
costs between products, holding costs, shortage costs, 
spoilage costs, transportation costs and production costs. 
A mixed integer non-linear programming model (MINLP) 
is proposed for the considered problem. Regarding the 
complexity of the problem, a genetic algorithm (GA) and 
a simulated annealing (SA) algorithm are proposed to 
solve the model for the real size applications. According 
to the obtained results, the proposed GA outperforms the 
SA in terms of deviation from optimal solution although 
the computation time of the SA is smaller than the GA. 
Further research could focus on extension the problem to 
probabilistic or fuzzy environments. 
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