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Abstract 

Cellular manufacturing (CM) is one of the most important subfields in the design of manufacturing systems. As a recently emerged field of 
study and practice, virtual cellular manufacturing (VCM) is of enormous importance as one of the types of CM . One kind of VCM 
problems is VCM with alternative processing routes from which the route for processing each part should be selected. In this study, a bi-
objective mathematical programming model is designed in order to obtain optimal routing of parts, the layout of machines and the 
assignment of cells to locations while minimizing the production costs and balancing the cell loads. The proposed mathematical model is 
solved by multi-choice goal programming (MCGP). Since CM models are NP-Hard, a genetic algorithm (GA) is utilized to solve the model 
for large-sized problem instances and the results obtained from both methods are compared. Finally, a conclusion is reached and some 
suggestions for future works are offered. 
Keywords: Virtual Cellular Manufacturing, Mathematical Programming, Multi-Choice Goal Programming, Genetic Algorithm. 

1. Introduction 

The introduction is composed of two parts: the first 
part is dedicated to a brief description of group 
technology (GT) and cellular manufacturing systems 
(CMS) as well as a presentation of some previous studies 
in this field.  The second part focuses on VCM, related 
concepts and the previously published studies in this field. 

1.1. Group technology and cellular manufacturing 

Industries always try to maximize their productivity; 
therefore, in situations where there are many products 
with low production volumes; GT is a solution for the 
problem. GT is proposed for maintaining the flexibility of 
a Job Shop manufacturing and the efficiency of Flow 
Shop manufacturing. The philosophy of GT is based on 
grouping similar parts into groups which need similar 
production processes. In the literature on manufacturing, 
the groups of parts are called part-families and the group 
of similar machines are called machine-cells.CM is based 
on the principles of GT, which seek to take full advantage 
of the similarity between parts through standardization 
and common processing. CM leads to setup reduction and 

provides the workers with the tools to operate multiple 
processes and to be multifunctional. It makes 
improvements in quality, reduces the waste, and 
simplifies machine maintenance. CM has helped firms to 
make significant improvements in throughput time 
performance (Isaand Tsuru, 2002; Waterson et al., 1999; 
Wemmerlov and Johnson, 1997; Wemmerlov and Hyer, 
1989). This allows workers to easily self-balance within 
the cell while reducing lead times, resulting in the ability 
for companies to manufacture high quality products at a 
low cost, on time, and in a flexible way (Black, 1991).A 
detailed survey of studies  and approaches was carried out  
by Papaioannou and Wilson (2010) and Paydar and Saidi-
Mehrabad (2013). 

1.2. Virtual cellular manufacturing 

VCM is one of the subfields of CM in which there is 
no physical separator for dividing cells. VCM Systems 
(VCMS) are used when it is not possible to use CMS 
because of technical or financial perspective. VCMS aims 
to reduce setup times by grouping similar jobs in 
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production planning and control. Hence, flow time and 
performance of shop may be improved (Knnan and 
Ghosh, 1996). In this way, VCM achieves many benefits 
associated with CM, while retaining and building on the 
routing flexibility of a functional layout(Nomden and Zee, 
2008). Nomden et al. (2006) defined two types of 
similarities and classified the studies conducted  on VCM 
based on types of similarities they focused on. Subash et 
al. (2000) applied several clustering algorithms for 
forming virtual cells. Saad et al. (2002) presented a three-
step method for production planning and cell formation. 
Ko and Egbelu (2003) designed two algorithms to create 
virtual cells. Slomp et al. (2004 and 2005) proposed a 
goal programming formulation that first groups jobs and 
machines followed by assigning workers to the groups to 
form virtual cells. 

The concept of alternative processing routes was 
firstly presented by Kusiak (1987) in generalized CMS in 
which each part can have more than one process plans. 
The processing routes refer to different sequence of 
operations on different machines in which a part should 
flow to become a finished part (Nsakanda et al., 2006). 
Uddin and Shanker (2002) formulated a grouping 
problem in which each part has more than one processing 
route,  using  a GA to deal with the problem. Kia et al. 
(2013) presented a mathematical model for the intra-
cellular layout design of dynamic cell formation in the 
presence of alternative process routings. The objective 
was to minimize the total costs of inter-cellular 
movement, forward and backward intra-cellular 
movement, setting up route, machine relocation, 
purchasing new machines, machine overhead and 
machine processing. They have developed simulate 
annealing algorithm with a straightforward but effective 
solution structure and neighborhood generation 
mechanism. Paydar et al. (2013) investigated the problem 
of designing CMS incorporating several features 
including sequence of operations, alternate process 
routings, intra-cellular layout, and reconfiguration. The 
main constraints were demand satisfaction, machine 
availability, cell size, machine capacity, material flow 
conservation. Computational results are demonstrated by 
solving some examples to verify the model. Yadollahi et 
al. (2014) presented a bi-objective model for a CMS 
considering the sequence data, alternative process plans, 
candidate locations for machines, maximum capacity for 
each machine and variable failure rate of each. The 
variable failure rate is considered as a dependent variable 
of “number of setups” and “total processing time” in a 
regression equation. To show the performance of the 
model, an example is solved using augmented e-constraint 
method.  

When virtual cells are considered in different time 
horizons they are called Dynamic Virtual Cellular 
Manufacturing Systems (DVCMS).Mahdavi et al. (2011) 
developed a mathematical model of cell formation and 
production planning in a dynamic virtual cellular 
manufacturing system. The aim of their research was to 

minimize backorder and holding costs and exceptional 
elements.  Rezazadeh et al. (2011) proposed a DVCM 
problem using linear programming along a swarm particle 
optimization algorithm. Paydar and Saidi-Mehrabad 
(2015) developed a multi-objective possibilistic model for 
simultaneous supply chain design and virtual cell 
formation considering multi-period production planning 
under uncertain demands and capacities. A revised multi-
choice goal programming approach was applied to solve 
the mathematical model and to find a preferred 
compromise solution in a real world industrial case. 

In this research, a mathematical model for a VCM 
problem is proposed considering decisions about various 
aspects of production. The model is then solved using two 
different approaches. In section 2, the mathematical 
model is discussed and the modification of the model for 
solving it by using MCGP is presented in section 3. 
Section 4 is dedicated to validating the model. In part 5 
the model is solved using two various methods and the 
results are compared. The final part outlines conclusion, 
and suggestions for further future works in this field. 

2. Problem Formulation 

In this part a mathematical model for VCMS with 
alternative processing routes is formulated. The proposed 
model assigns machines to locations and cells, and 
chooses the best route among available routes for each 
product. Assumptions and other definitions are presented 
as below: 

2.1. Assumptions 

1. Each part has some pre-defined routes whose  set up 
cost is known. 

2. The demand for each part is known. 
3. The intra-cell cost per distance unit is known for each 

product. 
4. All the locations are known. Therefore, all possible 

pairwise distances are given. 
5. The number of machines and their maintenance and 

overhead costs are known. 
6. The operating cost per time unit is known for all the 

machines. 
7. The processing time of each product on machines is 

given. 
8. All of the machines have a known, finite available 

time. 
9. Each location cannot accept more than one machine 

but it can remain empty. 
10. Each cell has a lower limit for assigning machines. 
11. The number of cells is known. 

2.2. Sets 

i: Index set of part types ( 1, 2,3, , )i P   

r: Index set of routes of part i ( 1, 2,3, , )ir R   
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s: Index set of operations of part type i in route 
r ( 1, 2, 3, , )

ir
s S   

j: Index set of machine types ( 1, 2,3, , )j M   
u: Index set of locations ( 1, 2, 3, , )u U   
k: Index set of cells ( 1, 2, 3, , )k C   

2.3. Parameters 

inter
i : Material handling cost between cells per part type 

i 

j :    Maintenance and overhead cost of machine type j 

j :    Operating cost for machine type  jper unit of time 

ir :    Setup cost for route r of part i 

irsj : Processing time of sequence s of part type i along 
route r with machine j 

jT :    Available time for machine type j 

iD :   Demand for part type i 

kL :   The lower bound of number of machines in cell k 

uud  :   Distance between location u and u   

:irsja  1 If operation s of part type i along r must be 
processed on machine type j; 0 Otherwise 

A:       A large positive number 
 

2.4. Decision Variables 

irsjukX : 1 If operation s of part type i along route r is 
processed with machine type j located in location u is 
assigned in cell k; 0 Otherwise 

jukZ :1 If machine type j is located in location u which is 
placed in cell k; 0 Otherwise. 

irR :1 If route r is set up to produce part type i; 0 
Otherwise. 
Minimize

1
1

1
1 1 1 1 1 1 1 1 1

ri iSRP M M U U C C
inter
i i uu irsjuk irs j u k

i r s j j u u k k
u u k k

Z

D d X X


   
          

  




   

                                                                                      

(1) 

1 1 1

M U C

j juk
j u k

Z
  


                                                     

(2) 

1 1 1 1 1 1

ri iSRP M U K

j irsj irsjuk i
i r s j u k

X D 
     


                     

(3) 

1 1

iRP

ir ir
i r

R
 


                                                              

(4) 

Minimize

1 1 1 1 1
2

1

1 1 1 1 1 1

1

ri i

ri i

SRP M U

irsj irsjuk iC
i r s j u

SRC P M Uk
irsj irsjuk i

k i r s j u

X D
Z

X D
C





    



     







      

(5) 

Subject to: 

1

1
iR

ir
r

R


 i                                                              (6) 

1 1 1

M U C

irsjuk ir
j u k

X R
  

 , ,i r s                                 (7) 

1 1

U C

irsjuk irsj
u k

X A a
 

  , , ,i r s j                    (8) 

1 1 1

ri iSRP

irsjuk juk
i r s

X A Z
  

  , ,j u k                      (9) 

1 1 1

ri iSRP

irsjuk juk
i r s

A X Z
  

  , ,j u k               (10) 

1 1

1
M C

juk
j k

Z
 

 u                                               (11) 

1 1

M U

juk k
j u

Z L
 

 k                                          (12) 

1 1 1

ri iSRP

irsj irsjuk i j
i r s

X D T
  

 , ,j u k              (13) 

, , {0,1}irsjuk juk irX Z R  , , , , ,i r s j u k       (14) 
The first objective function is composed of four terms 

and it minimizes the total cost. Term (1) denotes inter-cell 
cost. Term (2) denotes computing, maintenance and 
overhead cost of machines. Term (3) represents the 
operating costs of assigned machines. Term (4) denotes 
set up costs of selected routes.  

The Second objective balances the workloads assigned 
to cells. The absolute value in (5) consists of two terms: 
the first term calculates the workload assigned to each cell 
and the second term denotes the average workload. 
Generally, this objective minimizes the difference 
between the total workload of each cell and the average 
workload considering all the cells. 

Constraint (6) ensures that only one route is selected 
for producing each part. Constraint (7) ensures that 
machines must be assigned to all the sequences of a 
selected route. Constraint (8) guarantees that only when 
machine j is needed for sequence s of part p along route r, 
variable irsjukX  can assign it to a location. In any other 
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situation, variable irsjukX  is forced to have 0 value. 
Constraints (9) and (10) ensure that if machine type j is 
assigned to location u which is assigned to cell k, variable 

jukZ accepts value 1. Constraint (11) doesn’t let a 
location accept more than one machine. Inequality (12) is 
related to the lower limit of number of machines in each 
cell. Constraint (13) doesn’t let workloads to be assigned 
to machines more than their available time. Constraint 
(14) defines the variables types.  

3. Linearization and Modification of the Model 

The above model is a bi-objective problem; therefore 
a Multi Objective Decision Making (MODM) method 
like, Weighting Method, Goal Programming, MCGP, 
Lexicographic Method, ε-Constraint and etc. should be 
used to solve the model. Here a MCGPis used to solve it. 
For solving the model using MCGP it should be modified 
and linearized.  

3.1. Linearization 

The objective functions of the proposed model are 
non-linear. The first objective function contains a 
multiplication of two binary variables. For linearizing, a 
binary variable 1irss jj uu kkW    is defined and two 
inequalities are added to the model. The inequalities are 
presented as below. These inequalities guarantee that only 
moment variables irsjukX  and 1irs j u kX     have value 1, 

the variable 1irss jj uu kkW     has value 1. Otherwise it 
would be 0. 

1 11irsjuk irs j u k irss jj uu kkX X W        
, , , , , , , ,i r s j j u u k k                                           (15) 

1 1 / 2( )irss jj uu kk irsjuk irs j u kW X X       
, , , , , , , ,i r s j j u u k k                                          (16) 
Due to positivity of coefficients of variable 

1irss jj uu kkW    the constraint (16)can be omitted and the 

variable 1irss jj uu kkW    can be relaxed to a non-negative 
real variable (Solimanpur and Kamran, 2010). 

There is an absolute value function in the second 
objective which should be linearized. For omitting the 
absolute value sign, two non-negative real 
variables, 1f and 2f , are used. In equation (17), when 
absolute value sign contains a negative value, the variable 

2f  takes the absolute value; on the other hand, if the 

absolute value sign contains a positive value, then the 1f  
variable takes the value. 

1 1 1 1 1

1

1 1 1 1 1 1

1 2

(

1 )

ri i

ri i

SRP M U

irsj irsjuk iC i r s j u

SRC P M Uk
irsj irsjuk i

k i r s j u

X D

X D
C

f f





    



     










           
(17) 

3.2. Modification  

A general form for MCGP is as what follows. 

ijg isjth aspiration level for ith goal. 

Minimize

1 2
1

( )
n

i i i im
i

f X g or g or or g


 
  

(18) 

Subject to: 
X F (F is a feasible set)                                    (19) 
As mentioned before, for solving the model using 

MCGP, objective functions should be modified. For each 
objective two non-negative deviation variables are added 
and subtracted, one for positive deviations ( )d   and the 

other for negative deviations ( )d  . 

1

gN
l l

l l l q q
q

OBJ d d g b 



    1, 2l            (20) 

 Also some aspiration levels ( )qg for each objective 
are considered which are multiplied by binary 
variables ( )qb . In the end, two equalities are added to 
force the model to accept only one aspiration level for 
each goal. 

1
1

gN
l
q

q
b



 1,2l                                               (21) 

The achievement function consists of deviations of 
goals and a weighting variable (0 1)   is used to 
show the importance of the goals. In this article, we 
assume that we have ߱=0.5; however, it can be changed 
according to decision maker’s opinion. The linearized 
model based on MCGP is presented as follows. 

Minimize
1 1 2 2( ) (1 )( )TOTALDEV d d d d             (22) 

Subject to: 

1 1
1 1 1

1

gN

q q
q

OBJ d d g b 



   
                                

(23) 
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1

1
1

gN

q
q

b



                                                               

(24) 

1

1

1
1 1 1 1 1 1 1 1 1

ri i
SRP M M U U C C

inter
i i uu irss jj uu kk

i r s j j u u k k
u u k k

OBJ

D d W


   
          

  





                                                                                      

(25) 

1 1 1

M U C

j juk
j u k

Z
  


                                             

(26) 

 1 1 1 1 1 1

ri iSRP M U K

j irsj irsjuk i
i r s j u k

X D 
     


            

(27) 

1 1

iRP

ir ir
i r

R
 


                                                            

(28) 

2 2
2 2 2

1

gN

q q
q

OBJ d d g b 



   
                         

(29) 

2

1
1

gN

q
q

b



                                                                    

(30) 

1 1 1 1 1

1

1 1 1 1 1 1

1 2

(

1 )

ri i

ri i

SRP M U

irsj irsjuk iC i r s j u

SRC P M Uk
irsj irsjuk i

k i r s j u

X D

X D
C

f f





    



     










           
(31) 

2 1 2OBJ f f                                                      (32) 

1

1
iR

ir
r

R


 i                                                       (33) 

1 1 1

M U C

irsjuk ir
j u k

X R
  

 , ,i r s                         (34) 

1 1

U C

irsjuk irsj
u k

X A a
 

 
 

, , ,i r s j                  (35) 

1 1 1

ri iSRP

irsjuk juk
i r s

X A Z
  

  , ,j u k              (36) 

1 1 1

ri iSRP

irsjuk juk
i r s

A X Z
  

  , ,j u k               (37) 

1 1

1
M C

juk
j k

Z
 

 u                                               (38) 

1 1

M U

juk k
j u

Z L
 

 k                                          (39) 

1 1 1

ri iSRP

irsj irsjuk i j
i r s

X D T
  

 , ,j u k              (40) 

1 2, , , , {0,1}irsjuk juk ir q qX Z R b b 
, , , , , ,i r s j u k q                                                     (41) 

1 1 2 2 1 2 1, , , , , , 0irss jj uu kkd d d d f f W   
    And real

, , , , , , , ,i r s j j u u k k                                          (42) 

4. Solving the Mathematical Model 

4.1. Exact method 

In this part the modified model is solved by 
LINGO9.0® using branch and bound method. Two 
randomly generated examples of sizes are generated and 
are solved by the aforementioned software. The general 
information of examples is presented in Table 1and the 
decision variables of example 2 are shown in Table 2and 
Table 3. 

 

Table 1 
 Randomly generated examples and exact method results 

 Example Sizes Model Sizes Lingo 9.0 Results 

 
No. of  
Parts 

No. of 
Machines 

No. of 
Locations 

No. of 
Cells 

No. of 
Variables 

No. of 
Constraints CPU Time(s) Achievement Fun. 

Example 1 3 5 5 2 6978 25086 18 1266850 

Example 2 4 5 7 3 79521 306549 671 970308 
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Table 2 
 Decision variables of example 1 

Variable             Value 
X( PART1, ROUTE3, SEQUENCE1, MACHINE2, LOCATION4, CELL2)  1  
X( PART1, ROUTE3, SEQUENCE2, MACHINE5, LOCATION1, CELL2)   1  
X( PART2, ROUTE1, SEQUENCE1, MACHINE3, LOCATION5, CELL1)   1 
X( PART2, ROUTE1, SEQUENCE2, MACHINE1, LOCATION3, CELL1)   1 
X( PART3, ROUTE1, SEQUENCE1, MACHINE2, LOCATION4, CELL2)   1  
X( PART3, ROUTE1, SEQUENCE2, MACHINE3, LOCATION2, CELL2)   1  
 
Z( MACHINE1, LOCATION3, CELL1)  1      
Z( MACHINE2, LOCATION4, CELL2)                                                                   1 
Z( MACHINE3, LOCATION2, CELL2)                                                                   1             
Z( MACHINE3, LOCATION5, CELL1)                                                                   1        
Z( MACHINE5, LOCATION1, CELL2)                                                                   1 
R( PART1, ROUTE3)                                                                                                1                
R( PART2, ROUTE1)                                                                                                1 
R( PART3, ROUTE1)                                                                                                1               

 

Table 3 
 Decision variables of example 2 

Variable          Value 
X( PART1, ROUTE1, SEQUENCE1, MACHINE1, LOCATION6, CELL2)  1 
X( PART1, ROUTE1, SEQUENCE2, MACHINE2, LOCATION7, CELL1)  1  
X( PART2, ROUTE1, SEQUENCE1, MACHINE3, LOCATION2, CELL2) 1 
X( PART2, ROUTE1, SEQUENCE2, MACHINE5, LOCATION4, CELL2)  1 
X( PART3, ROUTE2, SEQUENCE1, MACHINE2, LOCATION5, CELL3)  1 
X( PART3, ROUTE2, SEQUENCE2, MACHINE4, LOCATION3, CELL3)  1 
X( PART4, ROUTE2, SEQUENCE1, MACHINE4, LOCATION1, CELL1)  1 
X( PART4, ROUTE2, SEQUENCE2, MACHINE2, LOCATION7, CELL1) 1  
 
Z( MACHINE1, LOCATION6, CELL2)                                                                 1                     
Z( MACHINE2, LOCATION5, CELL3)                                                                 1                     
Z( MACHINE2, LOCATION7, CELL1)                                                                 1                     
Z( MACHINE3, LOCATION2, CELL2)                                                                 1                     
Z( MACHINE4, LOCATION1, CELL1)                                                                 1                     
Z( MACHINE4, LOCATION3, CELL3)                                                                 1                     
Z( MACHINE5, LOCATION4, CELL2)                                                                 1                   
 
R( PART1, ROUTE1)                                                                                              1                    
R( PART2, ROUTE1)                                                                                              1                    
R( PART3, ROUTE2)                                                                                              1                    
R( PART4, ROUTE2)                                                                                              1                    

 

CM problems are considered as NP-Hard problems; 
therefore with an increase in example size, the computing 
time for exact methods increases exponentially. The 
LINGO software could not get the input data for larger-
sized problems.  This shows the inefficiency of exact 
methods for such NP-Hard problems. Therefore, a meta-
heuristic method should be utilized to solve real size 
problems in a reasonable time,. In this research, a GA-
based method is developed and used. 

4.2. Heuristic method (genetic algorithm) 

A GA based on MCGP is designed for the proposed 
model. GA was introduced by John Holland in 1975 and 
was inspired from Darwinian Evolution Theory. Based on 
this theory, individuals who fit more to their environment 
are more likely to transfer their genes to the next 
generation. GA starts with some initial random solutions 
called initial population and each member of population 
is called a chromosome. The chromosomes are modified 
and merged for producing next generation. The 

modification and merging process are known as mutation 
and crossover functions. This process is repeated until the 
stopping criterion is met. Here, it  is a general form of the 
GA (Mahdavi et al., 2009) which 
1. Generates initial population randomly. 
2. Evaluates and computes fitness for each chromosome. 
3. Selects the parents using the roulette wheel technique 

and then applies mutation and crossover to the 
selected parents to produce new offspring and 
evaluates the newly generated offspring. 

4. Selects new generation from offspring using elitism 
policy. 

5. If stopping criterion is met stop the algorithm, 
otherwise go to step 3. 

4.2.1. Chromosome representation 

For implementing GA, there is a need to show 
chromosomes in strings. The chromosomes of the 
designed algorithm are composed of three matrices. Fig. 1 
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shows a general form of a chromosome. First matrix is a 
max( )ii

P R matrix which represents the variable irR . 

The rows of this matrix show the parts, and the columns 
show the possible routes; therefore, as an example, if 
route 3 is selected for part 1, then all of the elements of 
row 1 is zero except 13R which is equal to 1. This matrix 
configuration satisfies constraint (6). 

Second part of the chromosome is a U C matrix 
whose rows refer to locations and the columns refer to 
cells. This matrix represents the variable jukZ . As an 
example, if machine 2 is assigned to location 4 and 
location 4 is grouped in cell 2, the element 42 2Z   and 
the other elements of row 4 are equal to 0. Constraint (11) 
is satisfied by this matrix and the number of machines for 

each cell is measured by counting non-zero elements of 
each column of the matrix. It is necessary to consider 
constraint (12) while filling second matrix. 

Third part of the chromosome is a 
max( )

iri r
P S matrix in which the rows refer to parts 

and the columns represent the sequences. The elements of 
this matrix refer to locations which contain needed 
machine for that sequence. For example, if element of 
row 3 and column 2 is equal to 4, it means the second 
operation of part 3 is performed by the machine assigned 
to location 4. The collection of all the three matrices 
represent variable irsjukX .It is worth noting that the 
constraints (7), (8), (9), (10) and (13) should be 
considered while filling the third matrix. 

An example for chromosome representations is shown 
in Fig. 2. 

 

 

Fig. 1. Chromosome representation 
 

 
Fig. 2. Example for chromosome representation 

 

Objective function is calculated based on MCGP. Two 
1 gN matrices are defined in which gN  is the number 
of aspiration levels used by decision maker. Each of these 
matrices shows the selected aspiration level for goals. For 
example if the 4thaspiration level is selected for goal 2, 
then the element 14b  is equal to 1 and all other elements 
are equal to 0 (Fig. 3).Finally, the total deviation is 
calculated for each chromosome. Fig. 3. Example for selecting aspiration levels 
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4.2.2. Selection 

GA needs to select parents for crossover and mutation 
functions. Selection process is used to stochastically 
select the basis of the next generation based on 
chromosomes fitness values. The chromosome fitness 
value is calculated by inversing the total deviation of the 
chromosome. The probability of selecting a chromosome 
is equal to the fitness value divided by the sum of fitness 
values of all chromosomes. 

1( )i iFitness TotalDeviation 

1, 2, ,i PopulationSize                                          (43) 

1

( ) i
i PopulationSize

i
i

FitnessP Selection
Fitness






1, 2, ,i PopulationSize                                         (44) 

If the total deviation of a chromosome is lower than 
the others, then its probability of selection will be higher 
and this makes the generations evolve through successive 
iterations. 

4.2.3. Crossover 

When two parents are selected by selection function, 
they should be merged using crossover function. The 

crossover is done only on matrix R or matrix Z because 
the probability of exiting from solution space is increased 
by using the crossover on both matrices. For a definite 
proportion of population, the crossover function is applied 
on matrix R and the remainder is done on matrix Z. As an 
example, if 100 parents are selected for crossover 
function, the crossover operator is applied on 30% of the 
population (30 chromosomes) on matrix R and 
consequently, the crossover operation is performed on the 
other 70 on matrix Z. 

First a row is selected randomly with uniform chance 
of selection. Then, the first n rows (with n being 
determined beforehand) are inherited from parent 1 and 
the other rows are inherited from parent 2. For the other 
child, it is vice versa. Fig. 4 shows the crossover function 
process. 

 
4.2.4. Mutation 

Mutation increases the diversification of algorithm 
and makes it possible to search the solution space 
thoroughly. Two types of mutation are used, one on 
matrix R and the other on matrix Z. First, mutation selects 
a row from matrix R and rebuilds it randomly. Second 
type of mutation selects randomly two rows of matrix Z 
and swaps them. Fig. 5 and Fig. 6 show two types of 
mutation for matrix R and matrix Z. 

 

 
Fig. 4. Crossover function 

 
Fig. 5. Mutation for Matrix R 
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0 4 0 0 0 0  0 4 0 0 0 0 
0 0 0 2 0 0  0 6 0 0 0 0 
0 0 0 0 0 7  0 0 0 0 0 7 
0 2 0 0 0 0  0 2 0 0 0 0 
0 6 0 0 0 0  0 0 0 2 0 0 
0 0 0 0 0 3  0 0 0 0 0 3 
0 0 0 5 0 0  0 0 0 5 0 0 

Before Mutation  After Mutation 
 

Fig. 6. Mutation for Matrix Z 

 
Because of strong relationships between all parts of each 
chromosome, it is possible that invalid solutions be 
produced by crossover and mutation functions; therefore, 
a checking function is used to check the satisfaction of 
constraints and feasibility of the offspring. If the checking 
function rejects the feasibility of the children, new parents 
are selected and the related function is performed again. 
Otherwise the children are transferred to the mating pool. 
This procedure is repeated until the needed population for 
next generation is obtained. 

The checking function ensures that the matrix R and 
matrix Z are kept in feasible space. To keep matrix X in 
the solution space after crossover and mutation 
procedures, it is randomly rebuilt according to constraints. 
This makes sure that the whole solution is a feasible 
solution. 

4.2.5. Handling infeasible chromosomes 

Two mechanisms are designed to deal with the 
infeasible chromosomes: one mechanism is applied 
immediately after the mutation and crossover operations 
to check that if the constraints (6), (11), (12) and (13) are 
held. If the chromosome does not satisfy the 
aforementioned constraints, the mutation and crossover 
operations are repeated until a feasible solution is 
obtained. 

The other mechanism reconstructs the whole matrix, 
X, to make it feasible. Specifically, after utilizing 
mutation and crossover operator for Z and R matrices, 
matrix X is totally reconstructed in order to prevent 
creating infeasible chromosomes. The reason behind this 
mechanism is the fact that there is a strong relationship 
between different parts of a chromosome; especially, for 
matrix X. It should be noted that other constraints are 
maintained by the way the solution is represented. 

4.2.6. Elitism 

When offspring are generated, they are placed in a 
mating pool with the parents, and then the best individuals 
are selected for the next generation. This procedure makes 
sure that if there are any individual with suitable 
characteristics among parents they are transferred to the 
next generation. 

4.2.7. Stopping criterion 

In this study a convergence condition is used for 
stopping criterion. If the mean of objective function of 
population is equal to the best of objective function for 
several iterations it shows that the population is 
converged to one solution and the algorithm will stop 
(Bootaki et al., 2014). 

4.2.8. Numerical results 

The randomly generated examples presented in the 
previous section are solved and the results are described 
and compared in Table 4.The comparison between GA 
and LINGO9.0 software shows the efficiency of GA. 
Because of negligible deviation from optimal solution in 
small- and medium-sized problems, GA can be used  for 
large-sized problems (Gap column). For large-sized 
problems the LINGO 9.0 software could not even reach to 
feasible space after several hours of computing (Example 
7-10).  

The convergence charts for example 1 and example 2 
are shown in Fig. 7 and Fig. 8(Red dots are best values of 
objective function and blue dots are mean of objective 
function on each iteration), respectively. The results show 
that the branch and bound method is not suitable for 
medium- and large-sized problems; however, the 
designed GA yields satisfying results in shorter times. 

 
  
 
 
 
 

Swapped 
rows 

Selected 
rows 

Swap 
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Table 4 
Comparison of GA and MCGP 

 Example Sizes Lingo 9.0 Results GA Results 
Gap 

 
No. of  
Parts 

No. of 
Machines 

No. of 
Locations 

No. of 
Cells CPU Time (s) Objective 

function CPU Time (s) Objective function 

Example 1 3 5 5 2 18 1266850 3 1266850 0 
Example 2 4 5 7 3 671 970308 57 970441 0.02 
Example 3 6 8 10 2 8083 3234821 158 3286578 1.6 
Example 4 8 8 12 2 22984 5716492 252 5853687 2.4 
Example 5 10 14 16 2 36000 7131675 347 7359887 3.2 
Example 6 10 14 16 3 36000 6712903 335 7088825 5.6 
Example 7 12 15 20 2 36000 - 446 93802171 - 
Example 8 14 15 20 2 36000 - 476 107619615 - 
Example 9 14 17 22 3 36000 - 554 130729164 - 

Example 10 18 20 25 3 36000 - 743 141620361 - 

 

Fig. 7. Convergence curves for Example 1 

 

Fig. 8. Convergence curves for Example 2 

5. Conclusion 

In this paper, a mathematical model is designed for 
solving a VCM problem to decide about various design 
factors such as selecting machines and locations, grouping 
machines in virtual cells and selecting suitable route 
among predefined routes while minimizing the intra-cell 
movements and balancing the cells loads. The proposed 
model is solved by MCGP for small problems. However, 
for medium- and large-size problems, the MCGP is not 

efficient. Therefore a GA is designed based on MCGP 
and the results show the effectiveness of GA compared to 
exact method. 

The problem can be extended in various ways. For 
example, the demand can be considered as a stochastic or 
fuzzy parameter and the problem can take place in 
continuous environment. Other design features such as 
worker assignment, outsourcing, considering time 
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periods, machine utilization, etc. can be considered. 
Solution approaches are other ways of extending this 
study by using exact methods or heuristic methods such 
as NSGA-II, Ant Colony, Taboo Search and etc. 
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