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Abstract 

Time, cost and quality are considered as the main components in managing each project. Previous studies have mainly focused on the time-
cost trade-off problems. Recently quality is considered as the most important factor in project’s success, which is influenced by time 
acceleration. That is the less time is spent, the more success is gained. In time-cost-quality trade-off problems, each activity can be done in 
various execution modes and determination of these execution modes is seen as to minimize the project time and cost and maximize its 
quality. In this paper, three integer programming models are provided and one of the main objectives is optimized in each model by 
assigning the proper bound to other objectives. Following the non-dominated solutions obtained by solving models, and by means of hybrid 
approach of  Fuzzy AHP strategy and VIKOR method regarded as multi-criteria decision making methods, the best possible alternative 
(from among non-dominated solutions) has been suggested. 
Key words: Project management, Time-cost-quality trade-off Problems, Multi-criteria decision making, Fuzzy AHP strategy, VIKOR 
method.

1. Introduction 

Shorter time, lower cost and higher quality are regarded 
as the main aims in a project. These three factors 
influence each other constantly. One of the main aspects 
of project management is understanding the appropriate 
information about the optimal balance between these 
objectives. 
The critical path method (CPM) was introduced by Kelly 
and Walker (1959) in the late 1950 as a useful tool in 
planning and scheduling the projects. In the calculations 
of this method, it is assumed that all activities can be 
executed in their normal and predicted time. In some 
cases, however, it is necessary to complete the project 
even earlier than the specified date. According to various 
policies and aims this date is usually determined by the 
employer or high-level management. It is obvious that in 
reaching shorter accomplished time, the time of some 
activities should be reduced. This reduction of time 
(known as crash activity time) is accompanied with 
increasing use of resources and spending more costs. On 
the other hand, performing the activities in a longer 
duration not only decreases the activity costs but it may 
also lead to an increase in the project’s duration that may 
incur certain penalties (Kelly, 1961). In relation to these  
 

 
 
 
 
advances and penalties, making a comprehensive and 
correct decision is a rigid challenge for managers. So, in 
this regard, time-cost trade-off was considered as the 
important issue. 
In practice, one of the most fundamental measures for 
project success is its quality, which can be influenced by 
time acceleration and additional costs (Babu and Suresh, 
1996). The goal of time-cost-quality trade-off is selecting 
a subset of activities for accelerating and selecting the 
proper execution modes so that the total project time and 
cost would minimize and its overall quality would 
maximize. In solving the time-cost and time-cost-quality 
trade-off problems, exact and heuristic methods have been 
mainly used. We often come to some non-dominated 
solutions in solving time-cost-quality trade-off problems 
that do not have any superiority or precedence over each 
other. It means that we cannot find a solution to be worse 
than another solution in all objective functions. In 
Practice, however, it is possible that the importance of the 
objective functions not be the same for the decision 
maker. For example, it is likely that the project’s 
completion time would be more important than its quality 
and costs. An appropriate approach for choosing the best 
solution in solving the multi-objective problems can be 
using hybrid approaches from multi-criteria decision-* Corresponding author Email address: Alireza.eydi@uok.ac.ir 
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making methods, which have not been used in the field of 
project management yet Therefore a hybrid approach of 
fuzzy hierarchical analysis and VIKOR has been applied 
in this paper where the significance of the objective 
functions is, at first, determined through Fuzzy AHP 
strategy and finally the best choice is picked up by 
VIKOR method from among the non-dominated 
solutions. 
In the following, the paper includes these sections: in 
section 2, we overview the related literature. In section 3, 
we provide the formulation of problem model. In section 
4 the used method for evaluation the solutions (non-
dominated ones) are explained. In section 5, the 
computational experiences are given. Finally, the 
concluding remarks are offered in section 6. 

2. Literature Review 

Assuming that the direct cost of an activity is changed by 
altering the performance time, mathematical 
programming models have been developed to minimize 
the direct costs. In the literature, these problems are 
known as continuous time-cost trade-off problems. This 
problem was studied for the first time by Kelly (1961). 
They considered a linear relationship between time and 
cost of an activity, and proposed a mathematical model 
and a heuristic algorithm to solve it. Fulkerson (1961) 
provided a solution method to determine complete time-
cost trade-off curve. In other words, for the realization of 
a project, efficient couples can be obtained related to the 
time and cost for all activities in order to minimize, under 
a limit on the project delivery time, the total cost of the 
project. In addition, other forms of activity cost-duration 
functions were studied by Falk and Horowitz (1972) and 
Kapur (1973). Moder et al. (1983) considered a general 
and continuous activity cost function and approximated 
the cost-duration curve by linear segments, then they tried 
to solve the simplified problem.  
In many practical cases, the resources are accessible in 
discrete units, such as number of machine, equipment, 
workers and so on. In the literature this problem is known 
as multi-mode problem or discrete time-cost trade-off 
problem; the best execution modes (time, cost) are 
determined for activities to optimize one objective with 
some constraint. The basic formulation of Discrete Time-
Cost Trade-off Problem (DTCTP) was provided by Meyer 
and Schaffer (1963). Later, other researchers began to 
improve the DTCTP mathematical model. Talbot (1982) 
introduced a zero-one programming model for standard 
multi-mode problems. In these problems, opposite to 
DTCTP that use only one non-renewable resource, several 
resources (including renewable and non-renewable 
resource) are used. Prabuddha et al. (1997) stated that 
DTCTP is NP-hard. Recent studies on this problem have 
paid much attention to solution procedures, which are 
classified into exact algorithms and heuristic algorithms. 
Exact algorithms are based on dynamic programming, 

branch and bound algorithms and enumeration algorithms. 
In addition, different metaheuristic algorithms were used 
to solve DTCTP, and we can point to Liu et al. (2000) 
research as an example.  
Babu and Suresh (1996), as the first researchers, 
suggested that the project quality may be influenced by 
project acceleration. They assumed the cost and quality of 
each activity change linearly with change in project 
completion time. They optimized each objective by 
assigning desired bounds on the other objectives. Then the 
suggested model was applied in an actual cement factory 
construction project in Thailand by Khang and Myint 
(1999). These problems can be classified as time-cost-
quality trade-off problems .El-Rayes and Kandil (2005), 
for the first time, studied Discrete Time-Cost-Quality 
Trade-off Problem (DTCQTP). They used a real world 
instance and suggested a new function to consider product 
quality in time-cost-quality optimization problems for 
construction industries. Then DTCQTP problem was 
studied by Tareghian and Tahery (2006). They developed 
inter-related binary linear programming models that 
assumed project’s activities are performed in one of 
several execution modes. Also, the time and quality of 
each activity is a non-increasing function of a non-
renewable resource. Later this problem considered more 
and various metaheuristic algorithms based on genetic 
algorithm, ant colony algorithm etc. was developed to 
solve it. Iranmanesh et al. (2008) suggest a metaheuristic 
based on a genetic algorithm to solve multi-objective 
time-cost-quality trade-off problem and finding pareto 
solutions. Ravishankar et al. (2010) extended the 
traditional DTCTP to a new discrete resource quality 
constrained time cost-trade off problem (DRQTCTP), 
which involves renewable resources, non-renewable 
resources and quality constraints. Each execution mode 
has respective time, cost and quality and based on its 
nature, its devoted quality level is between zero and one. 
Hong and Feng (2010) suggest a fuzzy-multi-objective 
particle swarm optimization procedure to solve time-cost-
quality trade-off problems. In this study time, cost and 
quality are described by means of fuzzy numbers. 
Shahsavari et al. (2012) develop a model for DTCQTP in 
which one mode is chosen for each activity among several 
possible execution modes and assume that the time and 
cost of each mode is described by means of crisp numbers 
but their quality is stated by linguistic variable. They 
developed a new hybrid genetic algorithm to solve it. A 
new multi-objective multi-mode model was proposed for 
solving preemptive time–cost–quality trade-off project 
scheduling problems by Tavana et al. (2014). Huan Zheng 
(2014) studied the time-cost-quality-environment trade-
off problem of construction project and established a 
multi-objective decision making model under a fuzzy 
environment. Furthermore, a fuzzy based adaptive-hybrid 
genetic algorithm was developed for finding feasible 
solutions. 
As mentioned above, in solving DTCTP and DTCQTP 
problem, exact solving procedures (for small instances) 
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and heuristic and metaheuristic algorithms have been 
applied. Often, decision makers want to choose the best 
solution among various solutions (non-dominated 
solution) so that the desired levels of all measures are 
provided. Therefore, some researchers use multi-criteria 
decision-making methods or combination of them to 
compare the different solutions. Hybrid approaches of 
these methods have been used in the subjects such as 
Innovation capital indicator assessment of Taiwanese 
Universities (Wu, Chen and I-Shuo Chen, 2010), 
Marketing Strategy Selection (Mohaghar et al., 2012), 
benchmarking analysis in the hotel industry (Hsin-Pin Fu 
et al., 2011), Evaluating performance of Iranian cement 
firms (Rezaie et al., 2014), conservation priority 
assessment in coastal areas: Case of Khuzestan district 
(Pourebrahim et al., 2014), etc. 
Usually, solving the time-cost-quality trade-off Problems 
eventually leads to a number of non-dominated solutions 
that their numbers could be many in large scale problems. 
The situation makes selection of the proper execution 
modes difficult and sometimes confusing. Unlike previous 
researches that have only focused on presenting non-
dominated solutions, this paper tries to help decision 
makers to choose the best solution (among non-dominated 
solutions) by providing a hybrid approach of fuzzy 
hierarchical analysis and VIKOR method. 

3. Problem Formulation 

Here, the project is defined as a directed graph G(V,E), 
where V represents the set of nodes and E is the set of 
arcs. The project is displayed by activity on node network 
(AON) where the nodes show the project activities and 
their arcs represent the precedence relations. For each 
activity iV in a project, Mi is a set of various execution 
modes of activity i where for each execution mode such 
as k, a threefold (t,c,q) is assigned which show the time, 
cost and quality of an activity in that mode, respectively, 
so that tZ, cZ and 0<qZ<100. 
It is assumed, if r and k are two modes for execution 
activity i so that k≺r then tik>tir and 
cik<cir but qik≠qir. The goal of this paper is to achieve the 
optimal compound (tik, cik, qik) of each activity to perform 
the project in order to minimize the time and cost and 
maximize the quality. 
The time and cost of each activity is assumed as discrete 
and a function of a non-renewable resource (such as 
money, budget …). In defining DTCQTP, the following 
notations are used: 
Parameters: 
V: set of nodes (activities), V = {1, 2, . . ., n} 
E: set of arcs 
Mi: set of execution modes for activity i ,iV 
tik: duration of activity i in mode k, iV ,k=1,…,|Mi| 

cik: cost of performing activity i in mode k, iV, 
k=1,…,|Mi| 
qik: quality of performing activity i in mode k,  iV, 
k=1,…,|Mi| 
wi: weight of activity i such that ∑ ௜ݓ = 1௡

௜ୀଵ  ,  iV 
Tmax: upper bound for project deadline 
Cmax: upper bound for project cost 
Qmin: lower bound for the overall quality of project 
Decision variable: 
Si: start time of activity i 
xik: if activity is done in mode k, xik =1, otherwise xik=0 
Here, three inter-related integer programming models 
have been proposed as a framework to analyze trade-off 
between time, cost and quality factors, so that each model 
optimized one of these factors by assigning desired 
bounds on two other factors. The three objective functions 
are defined as follow: 
 

(1) ଵ݂ =ܵ௡ +෍ݐ௡௞ݔ௡௞

|ெ೔|

௞ୀଵ

 

(2) ଶ݂ =෍෍ܿ௜௞ݔ௜௞

|ெ೔|

௞ୀଵ

௡

௜ୀଵ

 

(3) ଷ݂ =෍ݓ௜෍ݍ௜௞ݔ௜௞

|ெ೔|

௞ୀଵ

௡

௜ୀଵ

 

 
The first model is followed as: 

(4)  Min f1  
  s.t.  

 

(5)  f2≤Cmax 

(6) f3≥Qmin 

(7)  ෍ݔ௜௞ = 1																																∀݅ ∈ ܸ

|ெ೔|

௞ୀଵ

 

(8) ௜ܵ +෍ݐ௜௞ݔ௜௞

|ெ೔|

௞ୀଵ

≤ ௝ܵ 																		∀݅, ݆ ∈ ܸ	 

(9)  ௜ܵ ≥ 0																											∀݅ ∈ ܸ	,  ݎ݁݃݁ݐ݊ܫ

௜௞ݔ  (10) ∈ {0,1}																		∀݅ ∈ ܸ	, ݇ ∈  ௜ܯ

The second model, which shares constraints (6)-(10) from 
the first model, is: 
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(11)  Min f2  
  s.t.  

(12)  f1≤Tmax 
 
At last the third model that share constraints (5), (7)-(10) 
from the first model is: 
 

(13)  Max f3  
  s.t.  

(14)  f1≤Tmax 
 
Objective function (1) and (2) minimize the total project 
time and cost respectively, while objective function (3) 
maximizes the overall quality of project activities. 
Constraint (5) shows the upper bound of the total cost, 
while constraint (6) represents the lower bound of overall 
quality of project activities. Constraint (7) ensures that 
one and only one execution mode is assigned to each 
activity. Constraint (8) represents the precedence relations 
between activities. Constraint (9) ensures non-negativity 
of decision variables, while constraint (10) is a binary 
mode indicator, which is 1 when mode k is assigned to 
activity i, and 0, otherwise. At last, the constraint (12) 
defines the project deadline. 

4. Evaluation Methods 

As mentioned earlier, we often come to some non-
dominated solutions in solving time-cost-quality trade-off 
problems that do not have any superiority over each other. 
In this paper, our goal is to find the best solutions by 
means of Fuzzy AHP and VIKOR methods based on their 
time, cost and quality. Although the problem is multi-
Objective, at first, it has been considered as the single 
objective and in each time, one of the objectives have 
been optimized with considering various levels on two 
other objectives as the lower and upper bounds. 
comparing the various solution points (threefold 
compounds of time, cost and quality), the non-dominated 
solutions – say answer A dominates answer B, if answer 
A in any objective be no worse than answer B and also 
the answer A is at least in one of the objective that is 
better than answer B. if there is no such situation between 
A and B, say answer A and B are non-dominated 
solutions- are detected. Then, Fuzzy AHP is used to 
determine the weight of each problem objectives that 
influence on selecting the various alternatives (from non-

dominated solutions). After this, the obtained weights are 
used in VIKOR method calculations. Ultimately, the 
various alternatives are ranked by VIKOR method. The 
general framework of suggested method is shown in 
figure 1. 
Following the various steps of Fuzzy AHP and VIKOR 
methods are illustrated, briefly. 

4.1. Fuzzy AHP method 

Hierarchical analysis process (AHP), as one of the most 
comprehensive and usable methods of decision-making 
with multi-criteria, reflects natural behavior and human 
thoughts. This technique evaluates the complex problems 
based on their mutual impact, and converts them into a 
simplified form and then solves them. The method that 
was introduced for the first time by Saaty (1980) is able to 
consider the qualitative and quantitative criteria. 
However, AHP facilitates the decision making procedure 
by pairwise comparisons, but pairwise comparisons are 
done with real (crisp) numbers. On the other hand, 
because the human evaluations may be vague and mental 
judgment –which this is one of the typical features in 
decision-making problems- so it seems using AHP with 
real number to explicit evaluation of relative importance 
of criteria and the performance of alternative towards 
criteria to be insufficient. Therefore, Fuzzy AHP was 
introduced to evaluate the problems in ambiguity and 
uncertainty situations. 
Numerous methods are suggested for Fuzzy AHP. In this 
paper Chang’s extent fuzzy AHP approach is used 
(Chang, 1996). Such as classic AHP procedure, Fuzzy 
AHP has a pairwise comparison matrix in which instead 
of constant numbers, triangular fuzzy numbers are used. 
Here for pairwise comparison among criteria, we use the 
linguistic variable and respective fuzzy number based on 
the Saati’s nine-point scale, which their advantage is 
simplicity in inexact pairwise comparisons. This linguistic 
variable and the corresponding fuzzy numbers are 
provided in Table 1. 
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Fig. 1: General framework of suggested method 

 
Table 1 
 Fuzzy comparison measures 

Triangular fuzzy numbers Linguistic terms 
(1,1,1) Equal importance 
(1,2,3) Middle value between 1 and 3 
(2,3,4) Weak importance 
(3,4,5) Middle value between 3 and 5 
(4,5,6) Strong importance 
(5,6,7) Middle value between 5 and 7  
(6,7,8) Very strong importance 
(7,8,9) Middle value of 7 and 9 

(8,9,10) Absolute importance 

 
Let Ã is considered as a n×n pairwise comparison matrix 
including triangular fuzzy numbers ãij, i,j {1,2,…,n} as 
following: 
 

ሚܣ = ൦

(1,1,1) ෤ܽଵଶ 										…										 ෤ܽଵ௡
෤ܽଶଵ(1,1,1)							…										 ෤ܽଶ௡

			⋮																			⋮														⋱													⋮	
෤ܽ௡ଵ ෤ܽ௡ଶ 											…						(1,1,1)

൪ 

 
Where ãij= (lij ,mij , uij) are triangular fuzzy numbers. 
Assume that M෩ଵ= (l1 , m1 , u1) and M෩ ଶ=(l2 , m2 , u2) are 
two triangular fuzzy number, the basic operations are 
defined as: 
 

(15) 
M෩ଵ ⊕M෩ ଶ = (݈ଵ + ݈ଶ	, ݉ଵ +݉ଶ	, ଵݑ +  (ଶݑ

(16) 
M෩ଵ ⊗M෩ ଶ = (݈ଵ݈ଶ	,݉ଵ݉ଶ	,  (ଶݑଵݑ

(17) 
M෩ଵିଵ = (

1
ଵݑ
	 ,
1
݉ଵ

	 ,
1
݈ଵ
) 

 
The general steps of Chang’s extent fuzzy AHP approach 
are given as following: 
Step 1- Calculating the summation of each row of Fuzzy 
decision matrix to get the fuzzy number vector RS. 
 

Identification of objective or 
criteria 

Pairwise comparison between 
criteria using linguistic variables 

Ranking the alternatives (non-
dominated ones) using VIKOR 

method 

Choosing the best alternatives and 
identification of activities execution 

modes 

Evaluating and weight determining 
of criteria by means of Fuzzy AHP 

Solving the provided models 
and determining the non-

dominated solutions 
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(18) ܴܵ = ቎

ଵݏݎ
ଶݏݎ
⋮
௡ݏݎ

቏ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡෍ ෤ܽଵ௝

௡

௝ୀଵ

෍ ෤ܽଶ௝

௡

௝ୀଵ
⋮

෍ ෤ܽ௡௝

௡

௝ୀଵ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡(෍݈ଵ௝

௡

௝ୀଵ

,෍݉ଵ௝

௡

௝ୀଵ

,෍ݑଵ௝

௡

௝ୀଵ

)

(෍݈ଶ௝

௡

௝ୀଵ

,෍݉ଶ௝

௡

௝ୀଵ

,෍ݑଶ௝

௡

௝ୀଵ

)

⋮

(෍݈௡௝

௡

௝ୀଵ

,෍݉௡௝

௡

௝ୀଵ

,෍ݑ௡௝

௡

௝ୀଵ

)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Step 2- normalizing the rows of RS fuzzy vector to get 
fuzzy synthetic extent value vector S. 
 

(19) ሚܵ = ൦

ଵݏ̃
ଶݏ̃
⋮
௡ݏ̃

൪ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
௜ݏݎଵ⨂൭෍ݏݎ⎡

௡

௜ୀଵ

൱
ିଵ

௜ݏݎଶ⨂൭෍ݏݎ

௡

௜ୀଵ

൱
ିଵ

⋮

௜ݏݎ௡⨂൭෍ݏݎ

௡

௜ୀଵ

൱
ିଵ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Where (∑ ௜௡ݏݎ

௜ୀଵ )ିଵ is calculated as follow: 
 

(20) 
൭෍ݏݎ௜

௡

௜ୀଵ

൱
ିଵ

= ቆ
1

∑ ∑ ௜௝௡ݑ
௝ୀଵ

௡
௜ୀଵ

,
1

∑ ∑ ݉௜௝
௡
௝ୀଵ

௡
௜ୀଵ

,
1

∑ ∑ ݈௜௝௡
௝ୀଵ

௡
௜ୀଵ

ቇ 

 
Step 3- Computing the degree of possibility to get the 
non-fuzzy weight vector V.s෤ଵ 
 

(21) ܸ = ቎

ଵݒ
ଶݒ
⋮
௡ݒ
቏ = ൦

minܸ( ଵݏ̃ ≥ (௜ݏ̃
minܸ( ଶݏ̃ ≥ (௜ݏ̃

⋮
minܸ( ௡ݏ̃ ≥ (௜ݏ̃

൪						 ,

݅ ∈ {1,2,… , ݊} 
 
Where the degree of possibility of ̃ݏଶ= (l2, m2, u2)≥̃ݏଵ=(l1, 
m1, u1) is obtained by (22). 
 

(22) 

ଶݏ̃)ܸ ≥ (ଵݏ̃

=

⎩
⎨

⎧
1,																																							݂݅				݉ଶ ≥ ݉ଵ
0,																																							݂݅						݈ଵ ≥ 	ଶݑ

݈ଵ − ଶݑ
(݉ଶ − (ଶݑ − (݉ଵ − ݈ଵ)

݁ݏ݅ݓݎℎ݁ݐ݋					,
 

 
Step 4- Define the final non-fuzzy normalization weight 
vector W. 
 

ݓ (23) = ቎

ଵݓ
ଶݓ
⋮
௡ݓ
቏ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
ଵݒ⎡ ෍ݒ௜

௡

௜ୀଵ

ൗ

ଶݒ ෍ݒ௜

௡

௜ୀଵ

ൗ

⋮

௡ݒ ෍ݒ௜

௡

௜ୀଵ

ൗ
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

4.2. VIKOR method 

VIKOR is a multi-criteria decision-making in solving 
discrete decision-making problems with conflicting and 
non-commensurable criteria (various measurement units).  
This method innovated by Opricovic and Tzeng (2007) 
focused on the ranking and selecting from a set of 
alternatives and determine the compromise solutions for a 
problem with conflicting criteria. The compromise 
solution is a feasible solution that is the nearest solution to 
the ideal solution. The compromise solution means it is 
based on mutual agreement between criteria. VIKOR 
method has been developed based on Lp-metric:   
 

௣,௜ܮ (24) = ቐ෍ቈߤ௝ ×
൫ ௝݂

∗ − ௜݂௝൯
൫ ௝݂

∗ − ௝݂
ି൯
቉
௣௡

௝ୀଵ

ቑ

ଵ ௣ൗ

									1 ≤ ݌

≤ +∞				,				݅ = 1,2,… ,݉ 
 

Where ߤ௝ is the weight of the jth criterion,  fij is the rating 
(score) of the jth criterion for ith alternative and ௝݂

∗and ௝݂
ି 

denote the best (positive ideal) and the worst (negative 
ideal) value of the scores, respectively. This method can 
provide a maximum group utility for the majority and a 
minimum of an individual regret for the opponent .If p is 
small, the group utility is concerned and if p increases, the 
individual regrets receive more weight. The advantage of 
this method over other methods, mainly TOPSIS, is that 
VIKOR method uses the linear normalization. So the 
normalized values in VIKOR are independent of criteria 
measurement unit. On the other hand, in VIKOR method, 
always compromise solution is the closest alternative to 
ideal solution, while TOPSIS does not consider the 
distance relative importance from positive and negative 
ideal solutions, that is why the best solution in TOPSIS is 
not necessarily the closest alternative to positive ideal 
solution. 
The steps of this method are as follows: 
Step 1: Construct comparison matrix: this matrix is 
constructed with regard to the evaluation of all 
alternatives based on various criteria. Assume that having 
a multi-criteria decision-making problem with m 
alternatives and n criteria, xij denotes the performance of 
ith alternative based on jth criteria. 

ܺ = ൥
ଵଵݔ ⋯ ଵ௡ݔ
⋮ ⋱ ⋮

௠ଵݔ ⋯ ௠௡ݔ
൩ 
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Step 2: determination of criteria weight vector: According 
to the importance and rate of various criteria in decision-
making the criteria weight vector is calculated using 
different methods. Here Fuzzy AHP method has been 
used for determining the weight of criteria. 
Step 3: determining the best (positive ideal) and the worst 
(negative ideal) values: For each criterion, the best and 
worst alternatives were detected and were called them fj

* 
and fj

‾ respectively. Assuming that the criteria are profit 
type, then: 

(25)  fj
*= Max fij          , i=1,2,…,m  ,  j=1,2,…,n  

(26)  , i=1,2,…,m  ,  j=1,2,…,n fj
‾= Min fij  

With associates all fj
*, we would obtain an optimal 

combination with the highest score (positive ideal 
solution). Similarly, for fj

‾ a negative ideal solution is 
obtained.  
Step 4: Computing the distance of alternatives to ideal 
solution. 

 (27) ௜ܵ =෍ݓ௝ ×
൫ ௝݂

∗ − ௜݂௝൯
൫ ௝݂

∗ − ௝݂
ି൯

௡

௝ୀଵ

 

(28) ܴ௜ = ݔܽܯ ቊݓ௝ ×
൫ ௝݂

∗ − ௜݂௝൯
൫ ௝݂

∗ − ௝݂
ି൯
ቋ 

 
Where Si represents the relative distance of the ith 
alternative to the positive ideal solution and Ri represents 
the relative distance of the ith alternative to the negative 
ideal solution. 
Step 5: VIKOR index calculation: 
 

(29)  ܳ௜ = ݒ ቂௌ೔ିௌ
∗

ௌషିௌ∗
ቃ + (1 − (ݒ ቂோ೔ିோ

∗

ோషିோ∗
ቃ         ,        

v[0,1]  
 
Where 
ܵି = ݔܽܯ

௜ ௜ܵ	 					,						ܵ∗ = ݊݅ܯ
௜ ௜ܵ					,	 

ܴି = ݔܽܯ
௜

ܴ௜	 					,						ܴ∗ = ݊݅ܯ
௜
ܴ௜	 

when the v is bigger than 0.5, the Qi index will lead to 
majority agreement, and when v is less than 0.5 the Qi 
index will indicate majority negative attitude, generally 
when v is equal to 0.5, this shows the compromise attitude 
of evaluation experts. 
Step 6: ranking the alternatives by sorting out each S, R 
and Q values in a decreasing order. Alternative a׳ is 
proposed as a compromise solution if it has first rank 
based on Q value and the following two conditions are 
satisfied: 
Condition 1: Acceptable advantage 
 

ܳ(ܽʺ) − 	ܳ(ܽʹ) 	≥
1

݅ − 1 (30) 

Where a" is the alternative with second position in the 
ranking list by Q and i is the number of alternatives. 
Condition 2: Acceptable stability in decision-making: 
Alternative a׳ must also be the best ranked based on S or 
R value or both of them. 
If one of the above conditions is not satisfied, then a set of 
compromise solutions are suggested: 
i. if only condition 2 is not satisfied  then alternatives a׳ 
and a" are suggested. 
ii. If condition 1 is not satisfied then alternatives a׳, 
a",…,am are suggested. And am is determined by the 
following relation for the maximum of m: 

ܳ(ܽ௠) − 	ܳ(ܽʹ) <
1

݅ − 1 (31) 

5. Computational Experiments 

In order to solve the time-cost-quality trade-off problem 
by means of hybrid approach of Fuzzy AHP and VIKOR 
method, an example including a project with 15 activities 
is provided in an AON network (see Fig. 2). Each activity 
has a weight based on its importance. In this example the 
weight of each activity has been randomly chosen from 
{1/30, 2/30, 3/30, 4/30}, with considering this constraint 
that the summation of all weight must be equal to one. In 
this network, the precedence relations between activities 
are finish to start relation with zero lag time. For each 
activity there are several execution modes that is 
randomly chosen from the discrete uniform distribution 
|Mi|[2,8]. Each execution mode has three parameters 
(time, cost and quality). The duration of each mode is 
randomly sampled from DU(20, 100). Then, for each 
activity, the generated durations of execution modes, are 
sorted in an ascending order. For each activity, the 
corresponding cost with the activity’s mode, with the 
shortest time which includes the maximum cost mode are 
selected randomly from DU(100,200). The costs for other 
modes are determined as follows; if ck is the cost of an 
activity in mode k and tk is the execution time of that 
activity in mode k, then the execution cost in mode k is 
sampled randomly from DU(ck-1+(tk-tk-1),ck-1+4(tk-tk-1)). It 
is assumed that the acceleration of activity duration do not 
necessarily result in reducing its quality, so the execution 
quality of each mode is randomly sampled from DU(60, 
99). Table 2 shows the activity weight and also time, cost 
and quality values of various execution modes.  
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Fig.2. Project network 

 

The suggested models in this paper are coded in GAMS 
24.0.2 optimizer software on a machine with Intel 
Pentium processor Core i7 2.93 GHz, 6 GB of RAM. The 
models are solved by allocating the various bounds into 
two objectives and finding the optimal solution of the 
other objective. Some of the obtained results from solving 
the models are shown in Tables 3, 4 and 5. Then, among 
the obtained solutions from solving the models, 186 non-
dominated solution were detected which some of them are 
shown in Table 6. 
 
 
 
 
 

Table 2 
Detailed data of the example 

Mode 7 Mode 6 Mode 5 Mode 4 Mode 3 Mode 2 Mode 1 
weight Activity 

Q C T Q C T Q C T Q C T Q C T Q C T Q C T 
            87 160 75 79 145 81 95 136 89 1/30 1 

65 269 54 70 253 56 67 240 59 75 229 66 86 215 71 80 198 74 97 188 81 2/30 2 
         68 155 43 76 140 47 96 128 53 82 113 59 1/30 3 
               65 149 64 87 133 75 3/30 4 
            74 168 44 81 151 48 92 134 54 2/30 5 
   65 165 28 76 151 31 74 137 34 87 125 38 81 111 42 97 104 50 1/30 6 
            73 161 54 77 157 61 94 148 69 1/30 7 
      71 201 34 66 189 37 78 172 41 89 159 46 97 152 50 2/30 8 
            74 183 72 93 170 79 84 158 89 2/30 9 
         72 180 67 86 169 73 96 156 80 85 145 88 1/30 10 
               96 123 72 86 110 85 3/30 11 
         66 243 46 81 221 50 95 209 56 73 195 64 2/30 12 

62 187 29 66 169 31 78 158 36 76 139 40 86 125 45 79 113 51 99 104 60 4/30 13 
      63 211 37 72 190 41 86 175 46 81 162 50 96 148 53 3/30 14 
   61 235 47 68 219 51 79 203 55 72 187 61 83 179 68 99 165 76 2/30 15 

 
Table 3 
 Project deadline when its quality and cost is varied 

upper 
bound for 

project cost 

lower bound for the overall quality of project 

65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 
2133 587 587 587 587 587 587 587 587 587 587 587 587 587 587 INF INF INF INF 

2160 563 563 563 563 563 563 563 563 563 563 563 563 563 569 577 INF INF INF 

2190 542 542 542 542 542 542 542 542 542 542 545 545 545 547 561 INF INF INF 

2220 524 524 524 524 524 524 524 524 524 524 524 524 529 536 543 569 INF INF 
2250 504 504 504 504 504 504 504 504 504 504 511 511 513 521 534 569 INF INF 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

2760 424 424 424 424 424 424 424 424 430 433 445 454 467 489 519 569 INF INF 

2790 424 424 424 424 424 424 424 424 430 433 445 454 467 489 519 569 INF INF 
INF: Infeasible 
 
 
 

1 
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Table 4 
 Project cost when its quality and deadline is varied 

upper 
bound for 

project 
deadline 

lower bound for the overall quality of project 

65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 

424 2580 2580 2580 2580 2580 2580 2593 2607 INF INF INF INF INF INF INF INF INF INF 

430 2524 2524 2524 2524 2524 2524 2524 2538 2585 INF INF INF INF INF INF INF INF INF 

440 2470 2470 2470 2470 2470 2470 2470 2470 2478 2505 INF INF INF INF INF INF INF INF 

450 2423 2423 2423 2423 2423 2423 2423 2423 2423 2437 2459 INF INF INF INF INF INF INF 

460 2379 2379 2379 2379 2379 2379 2379 2379 2379 2390 2405 2427 INF INF INF INF INF INF 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

580 2140 2140 2140 2140 2140 2140 2140 2140 2140 2140 2140 2140 2140 2144 2158 2198 INF INF 
587 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2158 2198 INF INF 

INF: Infeasible 
 

Table 5 
 Project quality when its deadline and cost is varied 

upper 
bound for 

project 
deadline 

upper bound for project cost 

424 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 587 

2133 INF INF INF INF INF INF INF INF INF INF INF INF INF INF INF INF INF 91.3 

2160 INF INF INF INF INF INF INF INF INF INF INF INF INF INF INF 92 93.4 93.8 

2190 INF INF INF INF INF INF INF INF INF INF INF INF INF 91.6 92.9 94.8 94.9 94.9 

2220 INF INF INF INF INF INF INF INF INF INF INF 89.5 92.6 94.2 94.9 95.2 95.2 95.2 

2250 INF INF INF INF INF INF INF INF INF 84 90.6 92.4 94.1 94.6 94.9 95.2 95.2 95.2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

2760 79.9 81.1 84.5 86.3 88 89.3 90.4 91.2 91.9 92.6 93.2 93.9 94.3 94.6 94.9 95.2 95.2 95.2 
2790 79.9 81.1 84.5 86.3 88 89.3 90.4 91.2 91.9 92.6 93.2 93.9 94.3 94.6 94.9 95.2 95.2 95.2 

INF: Infeasible 
 
 

Table 6 
 Some of the non-dominated solutions of the example 

Alternatives Time Cost Quality 

1 497 2280 85 

2 519 2310 93 

3 520 2250 90.6 

4 448 2430 81 

5 587 2160 93.8 

⋮ ⋮ ⋮ ⋮ 

181 460 2460 88 

182 450 2490 86.3 

183 490 2340 90 

184 464 2370 83 

185 430 2610 81.1 

186 424 2640 79.9 
 
As mentioned in section 3.4, we want to compare the 
importance rate of criteria or objectives related to each 
other. Here we encountered with time, cost and quality 

criteria. Pairwise comparisons between the objectives are 
done by linguistic variables and corresponding Fuzzy 
numbers with decision-maker opinion. In this example, 
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based on the decision-maker’s opinion, pairwise 
comparison matrix between criteria is according to Table 
7.  

 
Table 7 
 Pairwise comparison between criteria 

 Time Cost Quality 

Time (1,1,1) (1,2,3) (2,3,4) 
Cost (1/3,1/2,1) (1,1,1) (1,2,3) 

Quality (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) 
 
Then, we calculate the value of fuzzy synthetic extent: 
 
rs1= (4, 6, 8) 
rs2= (2.33, 3.5, 5) 
rs3= (1.58, 1.83, 2.5)  and   (∑ ௜௡ݏݎ

௜ୀଵ )ିଵ= (0.0645, 
0.0882, 0.1263) 

As a result, we have: 
 ଵ= (0.258, 0.529, 1.01)ݏ̃
 ଶ= (0.151, 0.309, 0.632)ݏ̃
 ଷ= (0.102, 0.162, 0.316)ݏ̃
 
Now for each possible double state, we calculate the 
degree of possibility: 
 

V(̃ݏଷ ≥  (ଵݏ̃
=0.136 

V(̃ݏଶ ≥  (ଵݏ̃
=0.629 V(̃ݏଵ ≥  ଶ) =1ݏ̃

V(̃ݏଷ ≥  (ଶݏ̃
=0.529 V(̃ݏଶ ≥ ଵݏ̃)ଷ) =1 Vݏ̃ ≥  ଷ) =1ݏ̃

 
At least, the minimum degree of possibility for each 
criteria towards other criteria and also the final non-fuzzy 
normalization weights of criteria are shown in Table 8.

 
Table 8 
 Minimum degree of possibility and final weights of the criteria 

Criteria minimum degree of possibility final weights 

Time v1=1 w1=0.567 

Cost v1=0.629 w1=0.356 

Quality v1=0.136 w1=0.077 

 
 
Until now, the weight of each criterion has been 
calculated using Fuzzy AHP. In the following, these 
values are used in VIKOR method to determine the best 
alternative.  
At first, we construct the decision matrix, which has 186 
rows or alternative (equal to number of non-dominated 
solutions) and 3 columns (equal to number of criteria). 
The first column represents the time criteria and the 
second and third columns represent the cost and mean 
quality of performing project, respectively. 
 

ܺ =

⎣
⎢
⎢
⎢
⎢
⎡
497 2280 85
519 2310 93
⋮

464
430
424

⋮
2370
2610
2640

⋮
83
81.1
79.9⎦

⎥
⎥
⎥
⎥
⎤

 

 
For each criterion, we choose the best and worst 
alternatives: 
 

f3
* = 95.2 f2

* = 2133 f1
* = 424 

f3
 * = 76.9 f2

*= 2640 f1
 * = 587 

 
Then we calculate the Si and Ri values for all alternatives. 
After determining the maximum and minimum values of 
Si and Ri, we calculate the VIKOR index. In Table 9 the 
Si, Ri and Qi indexes are shown for some alternatives.  
 

R * = 0.1600 S * = 0.3518  

R ‾ = 0.5670 S ‾ = 0.5918 

Ultimately, we rank the alternatives and then check the 
two mentioned condition in section 2-3. Table 10 shows 
the ranking of number of eight alternatives based on Si, Ri 
and Qi indexes. 

 
Table 9  
Si, Ri and Qi  values of some alternatives 

Alternative Time Cost Quality Si Ri Qi 

1 497 2280 85 0.4001 0.2539 0.2160 

2 519 2310 93 0.4640 0.3305 0.4431 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

184 464 2370 83 0.3596 0.1664 0.0185 

185 430 2610 81/1 0.4151 0.3349 0.3469 

186 424 2640 79.9 0.4204 0.3560 0.3837 
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Table 10 
 Ranking the alternatives according to Qi, Si and Ri values 

Based on Ri 

values 
Based on Si 

values 
Based on Qi 

values Rank 

83 44 84 1 
84 76 34 2 
28 172 35 3 
33 38 83 4 
34 77 79 5 
35 169 33 6 
165 34 165 7 
29 80 80 8 
⋮ ⋮ ⋮ ⋮ 

 
Examining the two conditions, we conclude that none of 
them are satisfied. So, the numbers of alternatives are 
chosen based on the minimum value of VIKOR index 
while the following relation is satisfied considering the 
maximum value of m. 
Here m is equal to 3. 
 

ܳ(ܽ௠) − 	ܳ(ܽʹ) <
1

݅ − 1 
 
Finally, the proposed alternatives are according to Table 
11. These three alternatives are among the best possible 
alternatives based on the determined weight for each 
objective. The alternative 84 has a higher time than two 

other alternatives, while its cost is lower than both of 
them and its quality is higher than alternative 34 and it is 
almost equal to alternative 35. In deed though alternative 
34 has a lower quality rather than two other alternatives, 
its execution time is lower than them too.    
 
Table 11 
 Proposed alternatives 

Quality Cost Time Alternative 
83.2 2358 470 84 

82.9 2368 464 34 

83.3 2371 467 35 

 
As seen in the sample example, 186 solutions were 
identified as non-dominated solutions with different 
amounts of time, cost and quality. But the number of 
solutions makes decision on choosing the appropriate 
execution mode difficult, since the level of the objective 
functions’ importance could not be equal for decision 
makers. Therefore, the importance rate of each objective 
function was determined by Fuzzy AHP method. Finally, 
using VIKOR method, 3 solutions were selected, from 
among 186 possible alternatives, as the best solutions. 
Table 12 shows the activity execution modes based on the 
3 suggested alternatives. 
 
 

 
Table 12 
The execution modes of activities for proposed alternatives 

Execution mode for activity i Proposed alternatives 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
4 1 1 1 1 4 3 1 1 4 2 1 1 5 3 84 
4 1 2 1 1 4 3 1 1 3 2 1 1 6 3 34 
4 1 1 1 1 4 3 1 1 4 2 1 1 6 3 35 

6- Conclusion 

Project manager should deliver the project in time, with 
the lowest cost and highest quality. Making decisions 
about these conflicting objectives is an essential issue. In 
this paper the discrete time-cost-quality trade-off problem 
is studied in which for each activity several execution 
modes have been defined and each execution mode has its 
own time, cost and quality. So, three integer programming 
models were presented. Each model optimized one 
objective (minimizing the total project time or cost and or 
maximizing the mean quality of project) with considering 
proper bounds for two other objectives. Then non-
dominated solutions were detected and the best possible 
solutions were determined using the hybrid approach of 
Fuzzy AHP and VIKOR methods. Fuzzy AHP method 
has been used to determine the importance rate of each 
objective. In this method linguistic variables were used  
 

 
 
 
which take us closer to reality. At the end, through 
applying these weights in VIKOR method, the best 
possible alternatives (among non-dominated solutions) 
were found. Using this hybrid approach can help 
managers, to a great extent, in selecting the appropriate 
solution so that maximum desirability is obtained due to 
the importance rate of the objective functions from the 
viewpoint of decision maker. 
Using other hybrid approaches of multi-criteria decision-
making methods, considering time, cost and quality 
values as fuzzy numbers, developing the expressed model 
by generalized precedence relations and using the real 
world examples can be the proposed topics for future 
researches.    
 

Journal of Optimization in Industrial Engineering 19 (2016) 105-116

115



References 

Babu A.J.G. and Suresh N. (1996), Project management with 
time-cost and quality considerations. European Journal of 
Operational Research,88: 320-327.    

Chang, D.Y. (1996), Applications of the extent analysis method 
on fuzzy AHP. European Journal of Operational Research, 
95(3): 649-655. 

El-Rayes K. and Kandil A. (2005), Time-cost-quality trade-off 
analysis for highway construction. Journal of Construction. 
Engineering Management, 131(4): 477-485. 

Falk J., Horowitz J. (1972), Critical path problem with concave 
cost curves. Management Science, 19: 446–455. 

Fulkerson D. (1961), A network flow computation for project 
cost curves. Management Science, 7: 167–178. 

Hong Zhang and Feng Xing. (2010), Fuzzy-multi-objective 
particle swarm optimization for time-cost-quality tradeoff in 
construction. Automation in Construction, 19: 1067-1075.  

Hsin-Pin Fu, Kuo-Kuang Chu, Pei Chao, Hung-Hsuan Lee & 
Yen-Chun Liao. (2011), Using fuzzy AHP and VIKOR for 
benchmarking analysis in the hotel industry. The Service 
Industries Journal, 31 (14): 2373-2389. 

Huan Zheng, (2014), The Fuzzy Time-Cost-Quality-
Environment Trade-off Analysis of Multi-mode 
Construction Systems for Large-scale Hydroelectric 
Projects. Proceedings of the Seventh International 
Conference on Management Science and Engineering 
Management, 242: 1403-1415. 

Hung-Yi Wu, Jui-Kuei Chenand I-Shuo Chen. (2010), 
Innovation capital indicator assessment of Taiwanese 
Universities: A hybrid fuzzy model application. Expert 
Systems with Applications, 37 (2): 1635-1642. 

Iranmanesh., H ,Skandari M.R and Allahverdiloo. (2008), 
Finding pareto optimal front for the multi-mode time, cost, 
quality trade-off in project scheduling. International Journal 
of Computer and Information and System Science and 
Engineering, 2: 118-122.   

Kapur K.C., (1973), An algorithm for the project cost/ duration 
analysis problem with quadratic and convex cost functions, 
IIE Transactions, 5:314–322. 

Kelly J.E. and Walker M.R. (1959), Critical-path planning and 
scheduling. Proceedings of the Easter Joint Computer 
Conference, New York, 16: 160-173. 

Kelley, J.E., (1961), Critical Path Planning and Scheduling: 
Mathematical Basis, Operations Research, 9(3), 296-320. 

Khang D.B. and Myint Y.M. (1999), Time cost quality trade-off 
in project management: A case study. International Journal 
of project Management, 17 (4): 249-256. 

Liu S.X, Wang M.G, Tang L.X, et al. (2000), Genetic algorithm 
for the discrete time/cost trade-off problem in project 
network. J Northeastern Univ [China], 21(3): 257–9. 

Meyer, W.L. and Schaffer L.R., (1963), Extensions of the 
Critical Path Method through the Application of Integer 
Programming, Department of Civil Engineering, University 
of Illinois, Chicago, Ill.  

ModerJ. J, Phillips C.R,  Davis E.W. (1983), Project 
management with CPM, PERT and precedence 
diagramming (3rd ed.). 

Mohaghar Ali, Mohammad Reza Fathi, Mohammad Karimi 
Zarchi, Asie Omidian. (2012), A Combined VIKOR – Fuzzy 
AHP Approach to Marketing Strategy Selection. Business 
Management and Strategy, 3(1): 2157-6068. 

Opricovic, S. and Tzeng, G.H. (2007), Extended VIKOR 
method in Compromise with outranking method. European 
Journal of Operational Research, 178: 178-514. 

Pourebrahim S., Hadipour M., Mokhtar M.B. and Taghavi S, 
(2014), Application of VIKOR and fuzzy AHP for 
conservation priority assessment in coastal areas: Case of 
Khuzestan district, Iran, Ocean & Coastal Management, 98: 
20–26. 

Prabuddha D.E, Dunne E.J, Ghosh J.B, et al., (1997), 
Complexity of the discrete time–cost tradeoff problem for 
project networks. European Journal of Operational Research, 
45(2): 302–6. 

Ravi Shankar N ,Raju M.M.K , Himabindu P. (2010), Discrete 
time, cost and quality trade off problem with renewable and 
non-renewable resources. International journal of 
computational science and mathematics, 285-290. 

Rezaie K., Saeidi Ramiyani S., Nazari-Shirkouhi S. and 
Badizadeh A., (2014), Evaluating performance of Iranian 
cement firms using an integrated fuzzy AHP–VIKOR 
method, Applied Mathematical Modelling, 38: 5033–5046. 

Saaty,T.L. (1980), The Analytic Hierarchy Process: Planning, 
Priority Setting, Resource Allocation, McGraw Hill, NY. 

Shahsavari PourN, Modarres M. and Tavakkoli-Moghaddam R. 
(2012), Time-Cost-Quality Trade-off in Project Scheduling 
with Linguistic Variables. Word Applied Sciences Journal, 
18 (3): 404-413. 

Talbot F.B. (1982), Resource-Constrained Project Scheduling 
with Time-Resource Tradeoffs: The Nonpreemptive Case. 
Management Science, 28: 1197-1210.  

Tareghian H.R. and Taheri S.H. (2006), On discrete time, cost 
and quality trade-off problem. Applied Mathematics and 
Computation, 181: 1305-1312. 

Tavana M., Abtahi A.R. and Khalili-Damghani K., (2014), A 
new multi-objective multi-mode model for solving 
preemptive time–cost–quality trade-off project scheduling 
problems, Expert Systems with Applications, 41(4): 1830–
1846. 

Alireza Eydi et al./ A Hybrid Method Based...

116




