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Abstract 

In some statistical process control applications, quality of a process or product can be characterized by a relationship between a response 
and one or more independent variables, which is typically referred to a profile. In this paper, polynomial profiles are considered to monitor 
processes in which there is a first-order autoregressive relation between the error terms in each profile. A remedial measure is first 
proposed to eliminate the effect of autocorrelation in phase-ІІ monitoring of auto-correlated profiles. Then, three methods are employed to 
monitor polynomial profiles where their performances are compared using the average run length criterion. 
Keywords: Statistical process control; Polynomial profiles; Phase-ІІ monitoring; Autocorrelation; Average run length. 

1. Introduction 

Sometimes, a relationship between a response and one or 
more independent variables, referred to a profile, can 
characterize the quality of a process or a product 
adequately. Many researchers including Stover and Brill 
(1998), Kang and Albin (2000), Mahmoud and Woodall 
(2004), Woodall et al. (2004), Wang and Tsung (2005), 
and Woodall (2007) discussed practical applications of 
profiles. Moreover, many authors, including Kang and 
Albin (2000), Kim et al. (2003), Mahmoud et al. (2007), 
Mahmoud and Woodall (2004), Mestek et al. (1994), 
Noorossana et al. (2010), and Stover and Brill (1998) 
studied Phase-І monitoring of simple linear profiles. The 
purpose of the Phase-І analysis is to evaluate the stability 
of a process and to estimate process parameters. 
Nonetheless, some authors including Eyvazian et al. 
(2011), Gupta et al. (2006), Kang and Albin (2000), Kim 
et al. (2003), Noorossana et al. (2004a), Zou et al. (2006), 
Niaki et al. (2007), and Saghaei et al. (2009) investigated 
Phase-ІІ monitoring of simple linear profiles. In phase-ІІ 
analysis, one is interested in detecting shifts in the process 
parameters as soon as possible. Sometimes more 
complicated models are needed to represent profiles. 
Kazemzadeh et al. (2008a) extended three Phase-І 
methods in polynomial profile monitoring. Zou et al. 
(2007) proposed a multivariate exponentially weighted 
moving average (MEWMA) control chart for monitoring 
general linear profiles in Phase ІІ. Kazemzadeh et al. 
(2008b) transformed polynomial regression to an 
orthogonal polynomial regression model and proposed a 
method based on using exponentially weighted moving 
average (EWMA) control charts to monitor the parameters  
 

 
 
 
of orthogonal polynomial model in Phase ІІ. Furthermore, 
Amiri et al. (2012) concentrated on phase II monitoring of 
multiple linear regression profiles and proposed a new 
dimension reduction method to overcome the 
dimensionality problem of some of the existing multiple 
linear regression profile monitoring methods. 
In all previous studies, it is assumed that the error terms 
of the model are independently and identically distributed 
normal random variables. However, in some cases these 
assumptions are violated. Noorossana et al. (2004b) 
investigated the effect of non-normality of the error terms 
on the performances of the EWMA/R method proposed 
by Kang and Albin (2000). Jensen et al. (2008) developed 
a linear mixed model (LMM) to account for the 
autocorrelation within a linear profile. Jensen and Birch 
(2009) showed that the use of mixed models has 
significant advantages when there is autocorrelation 
within nonlinear regression models. Noorossana et al. 
(2008) considered linear profiles and modeled 
autocorrelation between profiles as a first order 
autoregressive AR(1) process. Kazemzadeh et al. (2007 & 
2009) considered polynomial profiles in the presence of 
between profile autocorrelation modeled by AR(1). 
Soleimani et al. (2009) investigated the effect of within 
profile autocorrelation in simple linear profiles and 
proposed a transformation technique to eliminate the 
effect of autocorrelation. Recently, the Gaussian process 
model has been proposed by Zhang et al. (2013) to 
account for the autocorrelation within linear profiles. 
Besides, Eghbali et al. (2013) addressed the problem of 
monitoring a simple linear profile that is going through a 
multistage process in phase II. They proposed a U statistic 
to eliminate the cascade effect and modified the T2 
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control scheme to monitor the process.  
 In this paper, the work of Soleimani et al. (2009) 
is first extended to include polynomial profiles. In other 
words, processes are considered in which the relationship 
between a response and a single explanatory variable is 
defined by a kth order polynomial regression, where it is 
assumed that the error terms within each profile are 
correlated based on a first order autoregressive model. 
Moreover, we assume that there is no correlation between 
polynomial profiles. An application of this problem is 
discussed by Amiri et al. (2010) in which the quality of an 
automobile engine is characterized by a second order 
polynomial profile between the torque and speed in rpm 
with an AR(1) autocorrelation structure between error 
terms within each profile. Three methods are utilized to 
monitor polynomial regression profiles. The performances 
of the methods are next evaluated through simulation 
studies via the average run length (ARL) criterion. 
 The structure of the remainder of the paper is as 
follows: In Section 2, the problem formulation as well as 
assumptions are given. The transformation technique and 
the three monitoring methods are presented in Section 3. 
In Section 4, the effect of autocorrelation on the 

performance of 
2T control chart is shown and the 

performances of the proposed methods are investigated. 
Concluding remarks are given in Section 5. 

2. Modeling and assumptions 

Having a single explanatory variable x and assuming jth 
sample is being collected over time, the observations are 

shown by 
2 1 2k

i i i ij( x , x ,..., x , y ) ; i , ,...n
. In 

other words, the subscript i shows the ith observation 
within each profile, and subscript j shows the jth profile 
collected over time. When the process is in-control, the 
autocorrelated polynomial profile is modeled by  

2
0 1 2

1

k
ij i i k i ij

ij ( i ) j ij

y A A x A x ... A x
a



  

     

 
   (1) 

where ij s are the correlated error terms, ija
s are 

independent and identically distributed normal random 

variables with mean zero and variance
2 , 

kAAA ,...,, 10 are model parameters, and 1 1    is 
the autocorrelation coefficient. Moreover, it is assumed 
x -values are fixed and constant from profile to profile. In 
this paper, we consider a Phase-ІІ monitoring case, in 
which the in-control values of the 

parameters kAAA ,...,, 10 and 
2 are assumed known.  

 It can easily be shown that the existing 
autoregressive structure between the error terms, defined 
in Eq. (1), leads to autocorrelation between observations 
at different values of x  in each profile. It means that, the 

observations in each profile can be expressed as 

ij
k
ikiiij xAxAxAAy  ...2

210                (2) 
And 
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Leading to 
2 k

ij 0 1 i 2 i k i

2
( i 1 ) j 0 1 ( i 1 ) 2 ( i 1 )

k
k ( i 1 ) ij

y ( A A x A x ... A x )

[ y ( A A x A x ...

A x )] a

   



     

    



   (4) 

 In the next section, the transformation technique 
proposed by Soleimani et al. (2009) is first extended to be 
applied for the elimination of the autocorrelation effect. 
Then, three methods are utilized to monitor polynomial 
profiles.  

3. Proposed methods 

In order to eliminate the existing within-profile 
autocorrelation of polynomial profiles, the transformation 
technique proposed by Soleimani et al. (2009) is extended 
in the first step of the proposed methods. In this 
technique, all observations on the response variable are 
transformed via the following equation 

1ij ij ( i ) jY Y Y .          (5) 

If observations ijY
 and jiY )1(   in Eq. (5) are replaced by 

their equivalents in the regression model (1), a polynomial 
regression model with independent error terms is obtained 
by  

1

0 1 1

2 2
2 1 1

1 2

1

ij ( i ) j

ij i i

k k
i i k i i

( ) ; i , ,..., n
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A ( X X ) ... A ( X X )
 

 

 





 

  

     

         (6) 

that results in 
2

0 1 2
k

ij i i k i ijY A A X A X ... A X a               (7) 

where 1ij ij ( i ) jY Y Y    ,                                       (8)                 
2

1
2 2

1 1

i i i i
k k k

i i i i i

X X X , X
X X ,..., X X X



 


 

   

  
,                  (9) 

 and 

0 0 1 1 2 21 k kA A ( ), A A , A A ,..., A A              (10) 

In Eq. (7), ija s are independent random variables with 

mean zero and variance 2 . In this paper, we consider 
Phase-ІІ monitoring of polynomial profiles where   is 
assumed a known parameter. Now, three control charts 
are developed to monitor the parameters of the 
polynomial profile in Eq. (7). 
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3.1. 
2T method 

The first method is a modified version of the 2T control 
chart proposed by Kang and Albin (2000).To reduce the 
effect of autocorrelation that exists between error terms 
within profiles, all the parameters, ),...,,,( 210 kAAAA , 
of the original model are replaced by their transformed 
ones. This method is used when the number of parameters 

)(k  is not very large. The modified 2T statistic is 
obtained by 

 
 
 
 

1 22 1

1 2

1 2

1 2

T

oj j j kj
j

oj j j kj

oj j j kj

oj j j kj

ˆ ˆ ˆ ˆA , A , A ,..., A
T

A , A , A ,..., A

ˆ ˆ ˆ ˆA ,A ,A ,..., A

A ,A ,A ,..., A

 
     
 
     
     
 
     

    (11) 

where 
2 1T[ ( X X ) ]                    (12) 

 

3.2. Residual-based 
2T  

 In the second method, the residuals of the 
transformed model is used, where the residual are 
obtained as 

2
0 1 2

1 2
ij ij i i

k
k i

e y ( A A X A X

... A X ) ; i , ,..., n

        

   
               (13) 

The 
2T  statistics and the upper control limit for the 

residual-based T2 chart, 
2

residualT thereafter, are 
determined using the following equations, respectively.  

12 0 0
j

T
j jj e

T ( e ) ( e )        (14) 

2
1n ,UCL        (15) 

where 2 3
T

j j j nje ( e ,e ,...,e ) , 2

je
I  , I is the 

identity matrix , 0  is a zero vector, n  is the number of 

x  values, and 2
,1 n  is the upper 100(1 ) percentile 

of the chi-square distribution with 1n  degrees of 
freedom.  

3.3. REWMA /  

An EWMA control chart in combination with the R-chart 
is employed as the third method to monitor not only the 
average value of the residuals, but also to detect shifts in 
the process variance. These charts are the same as the 
ones proposed by Kang Albin (2000), where the residuals 
are obtained using Eq. (12) and the average value of the 

residuals for the jth profile are calculated by 

2
1

n

j ij
i

( n )e e


                                               (16) 

The EWMA control chart statistic, denoted by jz  for 

1, 2, ...,j  is given by 

  11j j jz e z        (17) 

where  0 1, ,    is a smoothing constant and 

00 z . The lower and the upper control limits for the 
EWMA control chart are 

2 1LCL L ( )( n )        (18) 

2 1UCL L ( )( n )                                     (19) 
respectively, where ( 0)L   is a constant selected to give 
a specified in-control ARL.  
The R control chart statistic denoted by jR  is calculated 

by j ij ijR max ( e ) min ( e )  with the lower and 
upper control limits as 

   2 3 2 3andLCL d Ld UCL d Ld     (20) 
respectively, where ( 0)L  is a constant chosen to give a 

specified in-control ARL. The values of 2d  and 3d are 
constants that depend on the sample size n. 
In the next section, the performances of the above control 
charts are evaluated based on out-of-control average run 
lengths using simulation experiments. 

4. Simulation Experiments 

In this section, we first evaluate the performance of the 
2

residualT control chart for monitoring polynomial profiles 
when within-profile autocorrelation is present and the 
proposed transformation method is not utilized. The 
following example is used to study the performance:  

23 2ij i i ijy x x    
                  (21) 

1ij ( i ) j ija                                                       (22) 

where ija  follows a normal distribution with mean zero 
and variance one and x-values are 
1 2 3 4 5 6 7 8 9 and 10, , , , , , , , , .  In the simulation 
experiments the effect of different autocorrelation 
coefficients   on the performance of 2

residualT control 

chart under different shifts in the intercept  , the second 
parameter  , the third parameter  , and error standard 
deviation   using the in-control average run length 
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criterion is studied in 10,000 simulation runs. The results 
are summarized in Table 1. In this table,  ,, and   
are measured in multiples of  and the in-control average 
run length is considered 200. 
As shown in Table 1, when the transformation technique 
is not used, the in-control ARLs of 2

residualT control chart 

decrease in the presence of autocorrelation within 
profiles, leading to its poor performance. Moreover, this 
effect is more considerable when the autocorrelation 
coefficient gets larger.  
 

 
Table 1 
 The effect of autocorrelation on in-control ARL performance of  2

residualT control chart under different shifts in intercept, second parameter, third parameter, 
and error standard deviation without utilizing the proposed transformation method 

  (Shift in the intercept) 

   
Autocorrelation  

coefficients 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0 200  183.1 144.9 101.4 66.4 41.5 26.1 16.3 10.6 7.0 4.8 

0.1  168.4 153.7 119.8 81.6 53.3 33.4 21.5 13.9 9.2 6.3 4.5 
0.3  58.5 54.2 43.2 32.7 23.6 16.4 11.9 8.7 6.3 4.8 3.7 
0.5 14.9  14.4 13.3 11.2 9.3 7.7 6.2 5.1 4.2 3.5 3.0 
0.7 4.8  4.7 4.5 4.4 4.1 3.7 3.5 3.1 2.8 2.6  2.4 
0.9 2.2  2.1 2.1 2.1 2.1 2.0 2.0 2.0 1.9  1.9  1.8 

  (Shift in the second parameter) 

    
Autocorrelation  

coefficients 

  0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 
0 200  160.6 92.4 44.0 20.2 9.8 5.2 3.1 2.1 1.5 1.3 

0.1  168.9 132.4 73.2 35.3 17.3 8.7 4.8 3.1 2.1 1.6 1.2 
0.3  57.7 47.5 30.9 17.7 10.1 6.2 3.9 2.6 1.9 1.6 1.3 
0.5 15.1  13.5 10.7 7.7 5.7 4.1 3.1 2.3 1.9 1.6 1.4 
0.7  4.8 4.6 4.3 3.7 3.3 2.8 2.4 2.1 1.8 1.6 1.4 
0.9 2.1  2.1 2.1 2.0 2.0 1.9 1.8 1.7 1.7 1.6 1.5 

  (shift in the third parameter) 

   
Autocorrelation  

coefficients  

  0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0  200 36.3 3.97 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
0.1 169.5  30.1 3.7 1.3 1.1 1.0 1.0 1.0 1.0 1.0 1.0 
0.3 58.3  15.7 3.2 1.4 1.1 1.0 1.0 1.0 1.0 1.0 1.0 
0.5 15.1  7.3 2.8 1.5 1.1 1.1 1.0 1.0 1.0 1.0 1.0 
0.7 4.9  3.7 2.3 1.5 1.2 1.1 1.0 1.0 1.0 1.0 1.0 
0.9 2.2  2.1 1.8 1.5 1.2 1.1 1.1 1.0 1.0 1.0 1.0 

  (shift in the standard deviation) 

   
Autocorrelation  

coefficients  

  1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

0  200 46.9 17.1 8.2 4.7 3.2 2.5 1.9 1.6 1.5 1.3 
0.1 168.2  41.5 15.6 7.7 4.6 3.2 2.3 1.9 1.6 1.4 1.3 
0.3  57.8 20.5 9.6 5.5 3.6 2.7 2.1 1.8 1.6 1.4 1.3 
0.5 15.1  7.9 4.8 3.3 2.5 2.1 1.8 1.6 1.4 1.3 1.2 
0.7 4.9  3.4 2.7 2.2 1.8 1.6 1.5 1.4 1.3 1.2 1.2 
0.9  2.3 1.9 1.7 1.6 1.4 1.4 1.3 1.3 1.2 1.2 1.1 

 
 
When the proposed transformation method is used 
however, the performances of  2

residualT , 2T , and 
EWMA/R  are then compared employing the same 
example introduced earlier in (21-22). Two 
autocorrelation coefficients 0 1.  (weak 
autocorrelation) and 0 9.   (strong autocorrelation) are 
considered where all control-charting methods are 
designed to have an overall in-control ARL of 200. To 
achieve this, the smoothing constant   in the EWMA 
control chart is set 0.2. Furthermore, in the 

EWMA/R control chart, we set the value of L equal to 
2.973 for both 0 1.  and 0 9.   autocorrelation 
coefficients. For 2T and 2

residualT  charts UCLs are set 
12.84 and 23.59, respectively. We used 10,000 simulation 
runs to study out-of-control ARL under different shifts in 
the intercept, the second parameter, the third parameter, 
and the error standard deviation. The results are 
summarized in Tables 2 through 5. 
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Table 2 

 Out-of-control ARL comparisons under shifts from 0A to 0A  with 0 1.   and 0 9.   

0 1.       
Methods 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 
2

residualT   198.5 188.5 152.9 112.8 78.5 53.2 34.7 23.1 14.9 10.3 6.9 

 
2T  200 173.7 122.3 76.2 44.6 26.9 16.6 10.4 7.8 4.7  3.5 

EWMA/R   200 11.8 38.7 17.4 10.1 6.9 5.2 4.2 3.6 3.1 2.7 

 0 9.     

Methods 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

2
residualT   199.8 197.6 199.3 197.6 198.6 196.6 195.1 190.2 188.4 186.5 184.1 

 
2T  200.1 198.4 196.7 196.2 195.2 193.0 187.3 183.0 180.6 172.2 169.8 

EWMA/R  200 200 192.1 187.1 179.2 164.5 152.0 137.6 125.2 112.5 102.1 

 
Table 3 

 Out-of-control ARL comparisons under shifts from 1A to 1A  with 0 1.  and 0 9.   

0 1.       

Methods 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

 
2

residualT  200.3  164.1 103.1 53.4 26.7 13.2 7.1 4.2 2.6 1.8 1.4 

 
2T   200.1 190.6 158.9 122.2 90.4 64.1 45.5 32.2 22.8 16.7 12.4 

EWMA/R  200.7  63.4 16.7 7.9 5.1 3.8 3.0 2.5 2.5 2.0 1.8 

 0 9.     

Methods 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 
2

residualT    197.8 197.1 186.7 179.6 165.2 149.3 131.8 114.3 99.4 86.3 73.1 

 
2T   198.4 196.5 192.2 180.4 169.5 152.9 141.1 126.8 112.8 98.5 85.1 

EWMA/R  197.3 181.90 133.8 85.3 55.1 35.7 25.1 18.5 14.1 11.3 9.4 

 
Table 4 

 Out-of-control ARL comparisons under shifts from 2A to 2A  with 0 1.  and 0 9.   

0 1.       

Methods 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

 
2

residualT   200.7 43.6 5.2 1.5 1.1 1.1 1.0 1.0 1.0 1.0 1.0 

 
2T   199.2 174.6 127.5 80.1 49.7 29.4 18.5 11.9 7.7 5.4 3.9 

EWMA/R   200.3 8.4 3.1 2.1 1.5 1.1 1.1 1.0 1.0 1.0 1.0 

 0 9.     
Methods 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

2
residualT    197.1 159.1 92.7 45.2 20.8 10.1 5.3 3.1 2.1 1.5 1.2 

 
2T   200.4 191.6 167.8 138.4 109.7 84.2 63.6 47.6 35.7 27.4  20.3  

EWMA/R  200.2 60.6 15.7 7.5 4.9 3.6 2.9 2.4 2.1 1.9 1.8 
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Table 5 
 Out-of-control ARL comparisons under standard deviation shifts from  to   with 0 1.   and 0 9.   

0 1.       

Methods 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

 
2

residualT  200.5  47.2 16.6 8.1 4.7 3.2 2.4 1.9 1.6 1.4 1.3 

 
2T  197.4  72.1 32.4 17.9 11.5 8.0 5.9 4.6 3.7 3.2 2.7 

EWMA/R   199.3 61.7 24.7 12.4 7.2 4.7 3.4 2.6 2.1 1.8 1.6 

 0 9.     

Methods 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 
2

residualT    199.3 47.1 17.2 7.9 4.6 3.1 2.3 1.9 1.6 1.4 1.3 

 
2T   200.6 70.4 32.8 18.1 11.3 7.9 5.8 4.6 3.7 3.2 2.7 

EWMA/R  199.4 61.2 24.8 7.1 4.7 3.4 2.6 2.2 2.2 1.8 1.6 

 
The results in Table 2 show that under the intercept shift 
from 0A  to 0A  in both weak and strong 
autocorrelations ( 0 1.   and 0 9.  ), while the 
EWMA/R chart uniformly performs better than the other 
two, the 2

residualT chart has the worst performance. Further, 
it can be seen that the out-of-control ARLs for the strong 
autocorrelation case are larger than the ones in the weak 
autocorrelation situation. 
Under the shifts in the second parameter from 1A to 

1A , the results in Table 3 show that while the 
EWMA/R chart performs uniformly better than the other 
two charts in both the weak and the strong autocorrelation 
cases, the 2T  chart performs better than 2

residualT . 
As shown in Table 4, for the third parameter shifts under 
the strong autocorrelation coefficient, the results are 
similar to those obtained for the intercept and the second 
parameter shifts. Moreover, under the weak 
autocorrelation coefficient when very small shifts are 
present, the EWMA/R chart performs better than the other 
two schemes, as expected. However, the 2

residualT chart is 
the best in medium shifts. Meanwhile, as the magnitude of 
the shift increases the performance of the EWMA/R and 

2T become similar.   
Finally, the results in Table 5 show that under the 
standard deviation shift from   to   in both weak and 

strong autocorrelation situations, the 2
residualT control chart 

performs uniformly better than other two charts. In 
addition, similar performances are obtained for both weak 
and strong autocorrelations. This means that the 
autocorrelation coefficient does not affect the out-of-
control ARL under the standard deviation shift. 
 
 

5. Conclusions  

In this paper, first, the effect of within-profile 
autocorrelation on the performance of a 2

residualT chart 
designed to monitor polynomial profiles under 
independency of the error terms was investigated. As 
shown in Table 1, when the transformation technique was 
not used, the in-control ARLs of 2

residualT scheme would 
decrease in the presence of autocorrelation within 
profiles, leading to its poor performance. Moreover, this 
effect was more considerable when the autocorrelation 
coefficient was larger. Then, the transformation technique 
of Soleimani et al. (2009) that was originally proposed for 
simple linear profile was extended and employed for the 
polynomial profile. Finally, the performances of 2T , 

2
residualT , and EWMA/R control charts in terms of out-of-

control average run lengths using the transformation 
technique in 10,000 simulation runs showed that the 
EWMA/R scheme performs better than the other charts 
under the step shifts in the regression parameters. 
However, the 2

residualT method had better performance in 
comparison with the other two methods under the shifts in 
the standard deviation. We also showed that 
autocorrelation would not affect the out-of-control ARL of 
the chart under the standard deviation shift.  
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