
Scheduling of a Hybrid Flow Shop with Multiprocessor Tasks by a
Hybrid Approach Based on Genetic and Imperialist Competitive

Algorithms

Javad Rezaeiana ,*, Hany Seidgar b, Morteza Kiani c
a Assistant Professor, Department of industrial engineering, Mazandaran University of Science and Technology, Babol, Iran

b MSc, Department of industrial engineering, Mazandaran University of Science and Technology, Babol, Iran

c MSc, Department of industrial engineering, Mazandaran University of Science and Technology, Babol, Iran

Received 12 September, 2012; Revised 29 January, 2013; Accepted 20 February, 2013

Abstract

This paper presents a new mathematical model for a hybrid flow shop scheduling problem with multiprocessor tasks in which sequence
dependent set up times and preemption are considered. The objective is to minimize the weighted sum of makespan and maximum
tardiness. Three meta-heuristic methods based on genetic algorithm (GA), imperialist competitive algorithm (ICA) and a hybrid approach
of GA and ICA are proposed to solve the generated problems. The performances of algorithms are evaluated by computational time and
Relative Percentage Deviation (RPD) factors. The results indicate that ICA solves the problems faster than other algorithms and the hybrid
algorithm produced best solution based on RPD.
Keywords: Hybrid flow shop scheduling; Multi-processor tasks; sequence dependent setup time; preemption.

1. Introduction

The flow shop scheduling is one of the main problems
in the category of machine scheduling. This problem was
introduced by Johnson (1954) in which a set of jobs flow
through multiple stages in the same machine order, where
each stage consists of only one machine (processor).
Nowadays, the need to increase capacity or to balance the
capacities of the stages has led to the duplication of some
machines in some stages. This extended layout is usually
addressed as Hybrid Flow Shop (HFS), Flexible Flow
Shop (FFS), or flow shop with parallel machines. This
paper refers to this shop floor configuration as HFS. Thus,
the HFS problem has two basic characteristics as follows:
(1) a set of n jobs is sequentially processed in a series of
m stages, and (2) at least one of the stages has two or
more machines in parallel. The early work on HFS was
conducted by Rao (1970) and the first model on HFS was
proposed by Arthanari and Ramamurthy (1971). The
structure of a hybrid flow shop system is illustrated in Fig
1. Gupta (1998) considered a special case with two-stage
and one single machine in the first stage and two identical
machines in the second stage, and showed that the case
was NP-hard. In literature, the studies about Hybrid flow
shops with sequence dependent setup times (SDST) are

scarce. Kurz and Askin (2004) formulated the SDST/HFS
as an Integer Programming (IP) model. Allahverdi et al.
(2008) presented an extended survey regarding setup time
consideration, with and without sequence dependency.
Zandieh et al. (2006) proposed an immune algorithm, and
compare it against the random keys genetic algorithm of
Kurz and Askin (2004). Naderi et al. (2009) proposed a
dynamic dispatching rule and an iterated local search
algorithm for the problem. Zandieh and Rashidi (2009)
presented an effective hybrid genetic algorithm for HFS
with SDST and processor blocking. Ruiz et al (2010) and
Ribas et al (2010) conducted a comprehensive review of
relevant research on HFS problems, revealing that among
them only a few studies discussed multiprocessor tasks
where each job is processed on a number of identical
machines simultaneously at each stage. Oguz et al. (2003)
examined the multiprocessor task in a two-stage HFS
problem motivated by a computer vision system. The
problem can be encountered in a number of industrial
environments, such as berth allocation of container
terminals, real time machine-vision systems, and work
force management. Allahverdi and Anzi (2006) addressed
the problem of scheduling on multi-stage parallel
processor architecture in computer centers with the
objective of minimizing average completion time of a set
of requests. Ying and Lin (2009) developed the first

* Corresponding author E-mail: j_rezaeian@ustmb.ac.ir

Journal of Optimization in Industrial Engineering 13 (2013) 1-11

1

simple constructive heuristic algorithm for the mentioned
problem. Kahraman et al. (2010) developed a parallel
greedy algorithm for the HFS problem with
multiprocessor tasks. Lahimer et al. (2011) developed the
climbing depth-bounded adjacent discrepancy search
which was shown to be effective for both small and large
problems. Recently, metaheuristic algorithms have been
developed for multiprocessor task-scheduling in an HFS
system, including simulated annealing (SA) by Wang et
al. (2011), genetic algorithm by Engin (2011), particle
swarm optimization (PSO) algorithm by Chou (2013), and
A hybrid artificial bee colony algorithm with bi-
directional planning by Lin et al. (2013). In this study a
hybrid flow shop problem with multiprocessor task and
sequence dependent set up times is presented in which job
preemption is allowed and meta-heuristic approaches of
GA, ICA and HGICA are used to solve the problem.

Fig 1. Hybrid flow shop system

The remainder of this study is organized as follows:
Section 2 describes and formulates the hybrid flow shop
problem. The Proposed GA and ICA are described in
Sections 3 and 4 respectively, and the hybrid approach is
described in Section 5. Design of experiments and
parameter tuning are presented in Section 6. The
computational experiments on the generated problems and
analysis of the results are provided in Section 7. Finally,
conclusions and future research are presented in Section
8.

2. Problem Description and Mathematical Model

In this study, a hybrid flow-shop problem with
sequence dependent set up times is considered in which
jobs are multi-task and preemption is allowed. Each job
contains several tasks that may be operated in separated
times and tasks of a job can be processed simultaneously
on parallel machines. There is no precedence constraint
between tasks of a job. Each task must be operated on
only one machine and a machine can process only one
task at a time. Without loss of generality, at the first and
the end of sequences of jobs on each machine at each
stage, a dummy job is inserted. In this problem, two kinds
of set up time are regarded. The first one is the initial set

up time for arrival tasks at the beginning of the operations
on a machine. The second one is the dependent setup time
that is considered between two different successive jobs
on a machine. Job preemption is allowed but each task of
a job is not separable. It is presumed that there is enough
capacity between every two consecutive stages and
transportation time is negligible. Due date of each job is
predefined and the objective function is to minimize the
sum of weighted makespan and maximum tardiness.
Table 1 shows the characteristics of an example problem
in which two jobs with three tasks should be processed on
three machines at two stages. An achievable schedule of
the considered problem is illustrated in Fig 2, in which (2-
1) indicates the first task of job 2. After initial setup times
at stage one, the first and second tasks of job 2 are
processed on machines 1 and 2 respectively. Subsequently
the third task of job 2 is done on machine 2, and job 2 will
be completed and moved to next stage. After preparation
of machine 3, the third and first tasks of job 1 are
processed respectively. The second task of job 1 is
processed on machine 1 after dependent setup time (job2-
job1) and job 1 is completed by then. The scheduling of
jobs at stage 2 can be inferred the same as stage 1.
Table 1
Illustrative example

Stage1 Stage2

Jobs Job1 Job2 Job1 Job2

Due date 25 20 25 20

Initial setup time 4 3 7 4
Tasks

1 2 3 1 2 3 1 2 3 1 2 3

Processing time 2 3 6 9 7 3 6 6 3 6 6 5

Dependent
Setup times

(job1-job2) (job2-job1) (job1-job2) (job2-job1)

5 3 4 3

Fig. 2. the schedule of the illustrative example

The following notations are used through the paper.

2.1. Notations

Indices

i,j indices for jobs (i,j = 1,2,…,n)
m index for machines (m = 1,2,…,Mt)
t index for stages (t = 1,2,…,	ܰܵ)

Javad Rezaeian et al./ Scheduling of a Hybrid Flow Shop...

2

Parameters
Qit Number of tasks of job i at stage t
௜ܵ௝
௧ Setup time between jobs i and j at stage t
௝ܵ௧ Setup time of job j at stage t
௝ܲ௧
௤ Process time of qth part of job j at stage t
௝݀ Due date for job j

NS Number of stages
 	and1	0	between	number	real	ܣ																	ߙ
M A large number
Decision variables
௝௧ܥ
௤ Completion time of qth part of jth job at stage

t
 ௝௧ Completion time of job j at period tܥ
 Maximum completion time ݔܽ݉ܥ
 Maximum Tardiness ݔܽ݉ܶ
௝ܶ Tardiness of job j

 1 if	pth	part	of	݅ݐℎ	job	is	processd	before

 ௜ܺ௝௠௧
௣௤ ݐ	stage	at	machine	݉th	on	job	ℎݐ݆	of	part	ℎݐݍ :

 0 otherwise

Model:

minݖ = ݔܽ݉ܥߙ + (1 − (1)																																			ݔܽ݉ܶ(ߙ

St:

෍෍෍ ௜ܺ௝௠௧
௣௤ = 1						∀݆, ,ݍ (2)																																								ݐ

௉௜௧

௣ୀଵ

௡

௜ୀ଴

ெ௧

௠ୀଵ

෍ ෍෍ ௜ܺ௝௠௧
௣௤ = 1				∀݅, ,݌ ݐ

ொ௝௧

௤ୀଵ

௡ାଵ

௝ୀଵ

ெ௧

௠ୀଵ

																																									(3)

෍෍෍ܺ଴௝௠௧
௣௤ = 1

௉௜௧

௣ୀଵ

ொ௝௧

௤ୀଵ

௡ାଵ

௝ୀଵ

				∀݉, (4)																																											ݐ

෍෍෍ ௜ܺ 	௡ାଵ	௠	௧
௣௤ = 1

௉௜௧

௣ୀଵ

ொ௝௧

௤ୀଵ

௡

௜ୀ଴

			∀݉, (5)																																						ݐ

෍෍ ௜ܺ௞௠௧
௣௥

௉௜௧

௣ୀଵ

௡

௜ୀ଴

=෍෍ܺ௞௝௠௧
௥௤

ொ௝௧

௤ୀଵ

௡ାଵ

௝ୀଵ

				∀݉, ,ݐ ݇, (6)																				ݎ

௝௧ܥ
௤ ≥ ൫ ௝ܲ௧

௤ + ௝௧൯ݐ݁ݏ + ൫ܺ଴௝௠ଵ
௣௤ − 1൯.ܯ					∀݆, ,݌ (7)				݉,ݍ

௝௧ܥ
௤ ≥ ௜௧ܥ)

௣ + ௝ܲ௧
௤ + ௜௝௧݌ݑݐ݁ݏ) + ൫ ௜ܺ௝௠௧

௣௤ − 1൯.ܯ

																												∀݅ > 0, ݆, ,݌ ,݉,ݍ (8)																																				ݐ

௝௧ܥ
௤ ≥ ൫ܥ௝௧ିଵ + ௝ܲ௧

௤ + ௝௧൯ݐ݁ݏ + ൫ܺ଴௝௠௧
௣௤ − 1൯.ܯ

																	∀݆, ,݌ ,ݍ ݉, ݐ > 1																																																		(9)	

௝௧ܥ
௤ ≥ ௝௧ିଵܥ) + ௝ܲ௧

௤ + ௜௝௧݌ݑݐ݁ݏ) + ൫ ௜ܺ௝௠௧
௣௤ − 1൯.ܯ

∀݅ > 0, ݆, ,݌ ,݉,ݍ ݐ > 1																																				 (10)

௝௧ܥ ≥ ேௌ	௝ܥ
௤ 													∀݆, ,	ݐ (11)																																																	ݍ

ݔܽ݉ܥ ≥ ேௌ	௝ܥ 												∀݆																																																					(12)

௝ܶ = ௝௩ܥ
௤ − ௝݀																∀݆, (13)																																																	ݍ

ݔܽ݉ܶ ≥ ௝ܶ 																∀݆																																																					(14)	

௝ܶ , ௝௧ܥ , ௝௧ܥ
௤ , ݔܽ݉ܶ ≥ 0, ௜ܺ௝௠௧

௣௤ = {0,1}

 Eq. (1) expresses the objective function,
minimizing the weighted sum of makespan and maximum
tardiness. Eq. (2) and (3) determine the sequence of tasks
for each job. Eqs. (4) and (5) ensure that the precedence
of the first task and successor of the last task on a
machine are dummy jobs. Eq. (6) ensures the construction
of a consistent sequence at every stage. Eqs. (7)- (10)
determine the tasks completion time of a job. Eq. (11)
computes the completion time of a job at each stage. Eq.
(12) returns the value of makespan. Eq. (13) calculates the
tardiness of each job. Eq. (14) shows the maximum
tardiness.
 By increasing the characteristic size of the problem
and the growth of complexity, the search space will
expand and the computational time will increase
exponentially. To solve such problems, the meta-heuristic
algorithms have been employed due to their power in
seeking the search space and finding high-quality
solutions in a reasonable amount of time.

3. Proposed Genetic Algorithm

The main idea of the genetic algorithm was at first
proposed by Holland (1962). This algorithm which is
inspired by the natural evolution mechanism, devises a
guided random approach to search the solution space. In
the following sections, the details of the GA for solving
the proposed problem are described.

3.1. Chromosome encoding and initial solution

 In the first step of genetic algorithm, an initial
population of chromosomes must be generated in order to
form the first generation of solutions. The initial
population can be produced using different mechanisms
among them random production is utilized to make sure
of population diversity according to Gen (1997). In this
study, each chromosome is shown by a

Journal of Optimization in Industrial Engineering 13 (2013) 1-11

3

2×((∑ ∑ ܳ௜௧௡௦
௧ୀଵ

௡
௜ୀଵ)+ns-1) matrix. At first row, the value

of each gene represents the machine number and genes of
the second row indicate the tasks of jobs. For illustration,
consider a problem with 2 jobs, each one containing two
tasks, 2 stages and 3 machines at each stage. A typical
chromosome is shown in Fig. 3. The symbol (*) cuts the
chromosome in different stages. For instance, at stage 1
the first task of job 1 and the second task of job 2 are done
on machine 1. The first task of job 2 is processed on
machine 2 and the second task of job 1 is processed on
machine 3 respectively. At stage 2, the first task of job 2
and second task of job1 are done on machine 3 and the
processes of second task of job 2 and first task of job 1
are done on machine 2 respectively.

Machines 1 2 1 3 * 3 2 2 3

Jobs 1 2 2 1 * 2 2 1 1
Fig. 3. Illustration of chromosome

3.2. Selection mechanism

There are some selection mechanisms with the
responsibility to choose parent chromosomes from the
population to form the mating pool. In this study the
roulette wheel selection mechanism is used in which the
solutions with higher fitness values have more chance to
be selected. Since our objective is to minimize the
weighted sum of makespan and maximum tardiness, the
fitness value is computed by Eq.(15):
Fitness Value= ଵ

ఈ஼೘ೌೣା(ଵିఈ)்௠௔௫	
																															(15)

3.3. Genetic operators

3.3.1. Reproduction

A number of chromosomes with the highest fitness
values from the current generation will be copied to the
next one. This is called the elite strategy and it is an effort
to wish for production of better individuals in the next
generation out of the current high quality chromosomes.

3.3.2. Crossover operator

Crossover is the main operator of the GA. It works
with chromosomes that are selected from the selection
mechanism as parents, and mixes them to produce
children. Crossover operator makes an optimistic attempt
to swap parents sections and produce children that inherit
promising features from their parents.
In this study the modified position based crossover (PBX)
is applied through following steps:

Step 1: A set of random positions are selected from
parent 1.

Step 2: The genes located in the selected positions will
be copied to the same positions into the offspring. Then
the positions in parent 2 containing equal values with the
selected genes will be identified and omitted.

Step 3: The unfilled positions of the offspring will be
placed by the genes of the remainder positions from the
parent 2 respectively.
The mentioned steps are shown schematically in Fig. 4.

3 2 2 3 * 3 1 2 1
Parent 1

1 1 2 2 * 1 2 2 1

3 3 1 3 * 2 1 1 1
Off

spring
1 2 1 2 * 1 2 2 1

3 3 1 1 * 2 3 1 1
Parent 2

1 2 2 1 * 1 2 1 2

 Fig. 4. Crossover operator

3.3.3. Mutation operator

The mutation operator revolves the structure of some
chromosomes in the generation in order to guaranty
diversification of solutions. It also helps to prevent from
falling into local optimum trap .The simple mutation
operator that is used here, randomly selects two positions
in a chromosome and exchange their genes with each
other. (Fig. 5)

3 3 1 3 * 1 1 3 1

1 2 2 1 * 2 2 1 1

3 3 1 3 * 1 1 3 1

1 2 2 1 * 1 2 1 2

Fig. 5. Illustration of mutation

 This procedure will be repeated in all iterations and
GA will be terminated after predefined number of
generations and final best solution will be taken.

4. Imperialist Competitive Algorithm (ICA)

 ICA is one of the newest methods in Meta-
heuristic field that was suggested and developed by
Atashpaz-Gargari (2007). This method is based on human
social and political behavior. Similar to GA, the ICA is a
population based algorithm and the population is
consisted of some countries which are classified in two

Javad Rezaeian et al./ Scheduling of a Hybrid Flow Shop...

4

categories: imperialists and colonies. Imperialist is a
country that rules a number of countries which are called
colonies. In other words, the policies, culture, religion and
other social measurements of a colony are delineated by
the imperialist in power.

 After producing initial population randomly, at
first step each country must be specified to either
imperialist or colony. The countries have several
attributes including culture, language, religion, economic
policy, etc. and are shown by vector F:

 F= [f1, f2… ே݂]

 In which ௜݂ indicates i'th attribute of a country.

 Next, the fitness value of countries will be calculated
and those with lowest cost are determined as imperialists
and other countries will be considered as colonies.
Then the numbers of each imperialist’s colonies are
calculated by Eqs. (16)- (19):

ܿ௜= Cost (country) (16)
௡ܥ									 = ௜{ܿ௜}ݔܽ݉ − ܿ௡ 																																													(17)

௡ܲ = ቚ ஼೙
∑஼೔

ቚ (18)

௡ݏ݁݅݊݋݈ܿ	݂݋	ݎܾ݁݉ݑ݊ =)݀݊ݑ݋ݎ ௡ܲ . ௖ܰ௢௟)															(19)

 Where ܿ௡ 	and ܥ௡ are the cost of nth imperialist and
its normalized cost respectively. ௡ܲ is imperialist’s power
and imperialists with lower cost are more powerful to
increase their chance of getting more colonies. After
specifying imperialists and their colonies, ICA devices
assimilation policy and revolution operators start to
search for better countries.

 Assimilation policy is performed on all colonies to
form new ones. In this policy each imperialist absorbs
colonies by making changes in their attributes such as
social, cultural, regional and etc. Next, the cost of new
colonies that are absorbed to the current imperialist must
be recalculated. If the new colony is better than its
imperialist, they will be exchange with each other
immediately. The second operator is revolution that
creates diversification in countries. This operator
randomly selects two attributes in a country and
exchanges their values. Then, the power of each emperor
is calculated by Eqs. (20)- (22):
ܶ. ௡ܥ
= (௡ݐݏ݈݅ܽ݅ݎ݁݌݉ܫ)ݐݏ݋ܥ
+ (20)																{(௡݁ݎ݅݌݉ܧ	݂݋	ݏ݁݅݊݋݈݋ܥ)ݐݏ݋ܥ}݊ܽ݁݉.ߞ
ܰ.ܶ. ௡ܥ = .ܶ}௜ݔܽ݉ {௜ܥ − ܶ. 		(21)																																					௡ܥ

௉ܲ௡ = อ
ܰ. ܶ. ௡ܥ

∑ ܰ.ܶ. ௜ܥ
ே௜௠௣
௜ୀଵ

อ																																																				(22)

 Where ܶ. ௡equivalent to total is cost of nth empireܥ
and ζ is a positive number which is considered to be
lower than1,	ܰ. ܶ. ௡ is power of nth empire and ௉ܲ௡ܥ is
possession possibility of each emperor.

The emperor with the lowest cost will be considered as
the weakest emperor. Then the other emperors compete
with each other to take possession of the weakest colonies
of the weakest emperor. ICA uses a selection process to
choose an emperor that will pick up the mentioned
colonies.
 The vector R created uniformly distributed random
number as following:
 R= [ݎଵ , [ே௜௠௣ݎ,…,ଶݎ
 From vector D in Eq. (23), the emperor with the
highest value will be selected and the weakest colony of
the weakest emperor will be assigned to it.
 D=P-R=[ܦଵ,ܦଶ,…,ܦே௜௠௣]=
௉ଵ݌] − ଵݎ , ௉ଶ݌ − ଶݎ ௣ಿ೔೘೛݌,…, − ௣ಿ೔೘೛] (23)ݎ

The stopping criterion of the algorithm is the
remaining of one emperor.

5. Hybrid Approach Based on GA and ICA

In proposed hybrid approach based on genetic and
imperialist competitive algorithms (HGICA), the best
solutions of GA after several iterations will be saved and
considered as starting solutions of ICA. Then ICA uses
these solutions as initial population to seek for better
solutions. In this approach, while GA is implemented to
seek for high quality solutions in the search space, the
ICA is used in an effort to intensify the search within the
region of solution space close to high quality solutions.
The procedure of this approach is illustrated in Fig. 6.

6. Design of Experiments

In this section, the behavior of the proposed
algorithms under different levels of factors is studied in
order to achieve the desired effects. In Table 2, there are
five factors of GA and six factors of ICA. The
approximate levels of the factors are obtained
experimentally and then Response Surface Methodology
(RSM) is applied to find the appropriate value of each
factor for each size of problem. RSM is a technique to
determine and represent the cause-and-effect relationship
between true mean responses and input control variables
influencing the responses as a two-or three-dimensional
hyper surface Montgomery (1991).

In order to find the best values of the factors, the
problems are grouped into two categories: A and B.

Category A includes problems with 15 jobs or lower,
and problems with more than 15 jobs are presented by B.

Journal of Optimization in Industrial Engineering 13 (2013) 1-11

5

Fig. 6. Hybrid approach, based on GA and ICA
Table 2
Range of factors for GA and ICA

Method Factors Level

GA

Pop-Size (20-50)
Cross over Ratio (0.8-0.9)
Mutation Ratio (0.03-0.05)
PBX Ratio (0.2-0.4)
Iteration (200-500)

ICA

Number of Countries (150-350)
Number of Iteration (200-500)
Number of Imperialists (6-10)
Assimilation Ratio (0.8-0.9)
Revolution Ratio (0.1-02)
Zeta (ξ) (0.04-0.06)

For each category of problem and each algorithm,
some experiments are designed and the best parameters
are obtained and revealed in Tables 3 and 4.

Table 3
Tunned parameters of GA

Due
date

Process
Time

First Setup
Time

Middle Setup
Time

Tasks of
Jobs

[20,100] [5,20] [1,5] [1,6] [1,4]

Table 4
Tunned parameters of ICA

Category POP-Size Crossover Mutation PBX Iteration
A 50 0.8 0.03 0.2 500
B 48 0.8 0.03 0.2 500

Table 5
Problem characteristics

C
at

eg
or

y

Country Imperialist Assimilation Revolution Zeta Iteration

A 150 6 0.2 0.18 0.48 200
B 150 6 0.4 0.2 0.47 200

YES

Exchange the positions of that
imperialist and the colony

NO

NO

Yes

NO

Yes
End

Assimilate colonies

Initialize the empires

Revolve some colonies

Is there a colony in an empire
which has lower cost than that

of the imperialist?

Yes

Imperialist competition

Is there an empire with no
colonies?

Eliminate this empire

Unite similar empires
Stop condition

satisfied?

Compute the total cost of all empires

NO

Start

Set GA parameters

Generate initial population randomly

Evaluated fitness of initial population

Selection (Roulette wheel)

Crossover

Mutation

Reproduction

Evaluated fitness of new population

Stopping criterion
met?

Javad Rezaeian et al./ Scheduling of a Hybrid Flow Shop...

6

7. Computational Results

In this section, many test problems have been
designed to evaluate the proposed algorithms. The data of
the problems are randomly generated using uniform
distribution with parameters based on Table 5, and all
experiments have been performed on Intel CORE i5 CPU
and 4GB of RAM under Windows 7. As mentioned in
previous section, the problems are grouped in categories
A and B, and for simplicity and without loss of generality,
it is assumed that there are two stages in each problem
and the number of machines in stages are shown by (m1,

m2) in Table 6. CPU time (second) and Related
Percentage of Deviation (RPD) factors are implemented
to compare the efficiency of the algorithms.
RPD=஺௟௚ೞ೚೗ିெ௜௡ೞ೚೗

ெ௜௡ೞ೚೗
 (24)

 Where, ݈݃ܣ௦௢௟ is the value of the solution obtained
by related algorithm and ݊݅ܯ௦௢௟ is the Minimum obtained
value among the solutions of algorithms. In order to
compare the performance of the algorithms, the obtained
results are arranged according to the solving methods and
mean of RPD presented in Table 7.

Table 6
Results of expriments comparsion between GA, ICA, HGICA

HGICA ICA GA (m1,m2) problem
Time RPD OB.value Time RPD OB.value Time RPD OB.value

84 0 60.4 8 0 60.4 62 0 60.4 (2,2) A3
64 0 48.2 9 0 48.2 49 0 48.2 (2,4)
97 0 45.6 12 0 45.6 68 0 45.6 (4,2)
102 0 32.4 12 0 32.4 63 0 32.4 (4,4)
147 0 121.2 41 0 121.2 110 0 121.2 (2,2) A4
96 0 104.8 31 0.154 121 85 0 104.8 (2,4)
124 0 101.6 30 0 101.6 82 0 101.6 (4,2)
135 0 62.6 45 0.105 69.2 117 0 62.6 (4,4)
221 0 121.6 17 0.092 132.8 63 0 121.6 (2,2) A5

101 0 66 21 0.042 68.8 115 0.03 68 (2,4)
197 0 121 22 0 121 124 0 121 (4,2)
211 0 63.2 20 0 63.2 126 0 63.2 (4,4)
227 0 140.8 19 0.052 148.2 212 0.007 141.8 (2,2) A6

216 0 83.2 30 0.038 86.4 137 0.014 84.4 (2,4)
275 0 134.6 17 0.112 149.8 341 0 134.6 (4,2)
274 0 69.2 19 0.04 72 295 0.014 70.2 (4,4)
295 0 165.2 56 0.238 204.6 190 0.024 169.2 (2,2) A7

277 0 94.4 86 0.238 116.4 216 0.046 98.8 (2,4)
337 0 137.4 85 0.311 180.2 229 0.165 160.2 (4,2)
341 0 80.2 38 0.311 100.2 151 0.039 83.4 (4,4)
464 0 180.8 89 0.049 189.6 195 0.049 189.8 (2,2) A8

457 0 120.4 140 0.122 135.2 352 0.064 128.2 (2,4)
397 0.052 179.8 91 0 178.2 274 0.081 192.8 (4,2)
312 0 91 73 0.076 98 103 0.041 94.8 (4,4)
505 0 195.6 35 0.144 255.2 490 0.144 223.8 (2,2) A9

273 0 175.2 47 0.165 204.2 222 0.07 187.6 (2,4)
574 0 189.4 28 0.166 221 237 0.018 192.8 (4,2)
527 0 120.8 95 0.049 126.8 215 0 120.8 (4,4)
649 0 252 121 0.096 278.4 352 0.097 276.4 (2,2) A10

340 0 210.4 48 0.098 232.4 355 0.048 220.6 (2,4)
626 0 219.2 112 0.098 240.8 366 0.038 227.6 (4,2)
624 0 145.2 79 0.074 156 215 0.07 155.4 (4,4)
512 0 384.6 82 0.137 437.4 314 0.049 403.6 (2,2) B15
469 0 302 99 0.129 341.2 317 0.094 330.4 (2,4)
625 0 250.6 75 0.268 317.8 345 0.189 298.2 (4,2)
567 0.103 233.2 111 0.078 228 347 0 211.4 (4,4)
964 0 523.4 234 0.115 583.6 717 0.057 553.6 (2,2) B20

1014 0 407 222 0.158 471.6 720 0.069 435.2 (2,4)
987 0 334.6 188 0.349 451.4 685 0.204 403 (4,2)
998 0 267.8 124 0.166 312.4 628 0.05 281.4 (4,4)

1013 0 555 174 0.03 572 886 0.027 570 (2,2) B25
1042 0 423 216 0.199 507.4 903 0.164 492.6 (2,4)
1645 0 322.2 233 0.244 401 1211 0.16 374 (4,2)
1784 0 225.2 406 0.522 342.8 1058 0.25 281.6 (4,4)
2042 0 712.8 392 0.145 816.8 1919 0.07 762.8 (2,2) B30
2280 0 582.2 214 0.145 667.2 1259 0.09 635 (2,4)
2326 0 500.8 290 0.243 622.8 1920 0.132 567 (4,2)
2035 0 362.6 440 0.201 435.8 1342 0.087 394.2 (4,4)

Journal of Optimization in Industrial Engineering 13 (2013) 1-11

7

Table 7
Comparsion of GA, ICA, HGICA based on mean of RPD

Problem Method
Performance

 തതതതതതതതതࡰࡼࡾ			
(2,2) (2,4) (4,2) (4,4)

A3
GA 0 0 0 0 0
ICA 0 0 0 0 0

HGICA 0 0 0 0 0

A4
GA 0 0 0 0 0
ICA 0 0.154 0 0.105 0.064

HGICA 0 0 0 0 0

A5
GA 0 0.03 0 0 0.007
ICA 0.092 0.042 0 0 0.033

HGICA 0 0 0 0 0

A6

GA 0.07 0.014 0 0.014 0.024
ICA 0.052 0.038 0.112 0.076 0.084

HGICA 0 0 0 0 0

A7

GA 0.024 0.046 0.165 0.039 0.068
ICA 0.238 0.238 0.311 0.311 0.274

HGICA 0 0 0 0 0

A8

GA 0.049 0.064 0.081 0 0.048
ICA 0.049 0.122 0 0.076 0.061

HGICA 0 0 0.052 0 0.013

A9

GA 0.144 0.07 0.018 0 0.058
ICA 0.144 0.165 0.166 0.049 0.131

HGICA 0 0 0 0 0

A10

GA 0.097 0.048 0.038 0.07 0.063
ICA 0.096 0.098 0.098 0.074 0.091

HGICA 0 0 0 0 0

problem Method
Performance

 തതതതതതതതതܦܴܲ				
(2,2) (2,4) (4,2) (4,4)

B15
GA 0.049 0.094 0.189 0 0.083
ICA 0.137 0.129 0.268 0.078 0.153

HGICA 0 0 0 0.103 0.025

B20
GA 0.017 0.069 0.204 0.05 0.085
ICA 0.115 0.158 0.349 0.166 0.197

HGICA 0 0 0 0 0

B25
GA 0.027 0.164 0.16 0.25 0.15
ICA 0.03 0.199 0.244 0.522 0.248

HGICA 0 0 0 0 0

B30
GA 0.07 0.09 0.132 0.087 0.094
ICA 0.145 0.145 0.24 0.201 0.182

HGICA 0 0 0 0 0

Analyzing the experiments results in Tables 6 and 7, it
can be noticed that GA almost provides higher quality
solutions and it provides lower mean of RPD than ICA
(Fig. 7). Although GA outperforms ICA in quality of
solutions, but in CPU time measurement, ICA works
better and finds solutions in significantly lower amount of
time (Fig. 8). Accordingly, these algorithms are
hybridized in order to make high quality solutions in
reasonable amount of time. Comparing the results of
Table 7, it is shown that HGICA performs better than
both GA and ICA, but it consumes more time. In order to
confirm higher performance of the HGICA than GA,

equal condition should be adjusted for both of them. So,
the GA procedure was allowed to search the solution
space for more computational time, but there wasn’t any
considerable improvement in the results. As it is
illustrated in Fig. 9, HGICA finds much better solutions
than GA in the same period of time.

Moreover, to calculate significant differences, the LSD
(Least significance difference) method is used. The
obtained results reveal that there is not any significant
difference between GA, ICA and HGICA. The results of
this experiment are shown in Fig. 10.

Javad Rezaeian et al./ Scheduling of a Hybrid Flow Shop...

8

Fig. 7. Mean RPD plot for ICA and GA

Fig. 8. CPU time of ICA and GA

Fig. 9. Mean of RPD for GA and HGICA

HGICAICAGA

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

R
P
D

Interval Plot of GA; ICA; HGICA
95% CI for the Mean

Fig. 10. Means plot and LSD intervals (at the 95% confidence level) for the type of algorithms

0

0.05

0.1

0.15

0.2

0.25

0.3

A3 A4 A5 A6 A7 A8 A9 A10 B15 B20 B25 B30

RP
D

Problems

GA

ICA

0
200
400
600
800

1000
1200
1400
1600
1800

A3 A4 A5 A6 A7 A8 A9 A10 B15 B20 B25 B30

C
PU

 T
im

e

Problems

GA

ICA

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

A3 A4 A5 A6 A7 A8 A9 A10 B15 B20 B25 B30

RP
D

Problems

GA

HGICA

Journal of Optimization in Industrial Engineering 13 (2013) 1-11

9

For testing the obtained results of proposed
algorithms, the t-test is used as a method for statistical
testing. The conducted hypothesis tests are as follows:

૙(૚)ࡴ = ࡭ࡳ	ࢌ࢕	࢘࢕࢘࢘ࢋ	ࢋࢍࢇ࢘ࢋ࢜ࢇ	ࢋࢎ࢚ <
= ܣܥܫ	݂݋	ݎ݋ݎݎ݁	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ

૚(૚)ࡴ = ࡭ࡳ	ࢌ࢕	࢘࢕࢘࢘ࢋ	ࢋࢍࢇ࢘ࢋ࢜ࢇ	ࢋࢎ࢚
> ܣܥܫ	݂݋	ݎ݋ݎݎ݁	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ

In this statistical testing, statistic is
଴ݐ =

௑ಸಲି௒಺಴ಲ

ௌ೛భ.ට
భ

೙೉ಸಲ
ା భ
೙ೊ಺಴ಲ

= −2.31603	Where ܵ௣ଵଶ =

(௡௑ಸಲିଵ).ఋಸಲ
మା(௡௒಺಴ಲିଵ).ఋ಺಴ಲ

మ

௡௑ಸಲା௡௒಺಴ಲିଵ
	 and the range of acceptance

is (-∞, ఈ,௡௑ಸಲା௡௒಺಴ಲିଶ] .we cannot reject null hypothesisݐ
at 95% significance level because statistic is not greater
than	ݐఈ,௡௑ಸಲା௡௒಺಴ಲିଶ.

૙(૛)ࡴ = ࡭࡯ࡵࡳࡴ	ࢌ࢕	࢘࢕࢘࢘ࢋ	ࢋࢍࢇ࢘ࢋ࢜ࢇ	ࢋࢎ࢚ <
= ܣܩ	݂݋	ݎ݋ݎݎ݁	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ

૚(૛)ࡴ = ࡭࡯ࡵࡳࡴ	ࢌ࢕	࢘࢕࢘࢘ࢋ	ࢋࢍࢇ࢘ࢋ࢜ࢇ	ࢋࢎ࢚
> ܣܩ	݂݋	ݎ݋ݎݎ݁	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ

In this statistical testing, statistic is
଴ݐ =

௓ಹಸ಺಴ಲି௑ಸಲ

ௌ೛మ.ට
భ

೙೉ಸಲ
ା భ
೙ೋಹಸ಺಴ಲ

= −4.71643	 where 	ܵ௣ଶଶ =

(௡௑ಸಲିଵ).ఋಸಲ
మା(௡௓ಹಸ಺಴ಲିଵ).ఋಹಸ಺಴ಲ

మ

௡௑ಸಲା௡௓ಹಸ಺಴ಲିଵ
	 , and the range of

acceptance is (-∞, ఈ,௡௑ಸಲା௡௓ಹಸ಺಴ಲିଶ] ,because statistic isݐ
not greater than	ݐఈ,௡௑ಸಲା௡௓ಹಸ಺಴ಲିଶ ,we cannot reject null
hypothesis at 95% significance level.

These results of statistical testing imply that the
average error of HGICA isn't statistically worse than other
proposed algorithms.

Fig. 11. shows the RPD values for GA ,ICA and
HGICA in different values of machines

Fig. 11. RPD for different value of machine of problem

In this research a new mathematical model was presented
for a hybrid flow shop scheduling problem with sequence
dependent set up time while job preemption is allowed.
Three meta-heuristics are proposed for solving the
problem and many instances are applied to evaluate their
performances. The parameters of the algorithms are
calibrated by the RSM. The obtained results indicate that
the hybrid algorithm produces best solutions based on
RPD. For future research, it is worthwhile to develop the
presented model by considering precedence constraint
between jobs and also some other optimization algorithm
may be investigated for the problem.

8. References

[1] Atashpaz-Gargari, E. and Lucas, C. (2007). Imperialist
Competitive algorithm: an algorithm for optimization
inspired by imperialist competition. Proceedings of the
IEEE Congress on Evolutionary Computation, Singapore,
4661–4667.

[2] Allahverdi, A., Ng, C.T., Cheng, T.C.E. and Kovalyov,
M.Y. (2008). A survey of scheduling problems with setup
times or costs. European Journal of Operational Research,
187 (3), 985–1032.

[3] Allahverdi, A. and Al- Anzi, F.S. (2006). Scheduling
multi-stage parallel-processor services to minimize
average response time, Journal of the Operational
Research Society, 57, 101–110.

[4] Arthanari, T.S. and Ramamurthy, K.G. (1971). An
extension of two machines sequencing problem. Opsearch,
8, 10–22.

[5] Chou, F. (2013). Particle swarm optimization with cocktail
decoding method for hybrid flow shop scheduling
problems with multiprocessor tasks, International Journal
of Production Economics, 141, 137–145.

[6] Engin, O., Ceran, G. and Yilmaz, M.K. (2011). An
efficient genetic algorithm for hybrid flow shop
scheduling with multiprocessor task problems. Applied
Soft Computing, 11, 3056–3065.

[7] Johnson, S. M. (1954). Optimal two- and three-stage
production schedules with setup times included. Naval
Research Logistics Quarterly, 1, 61–68.

[8] Gen, M. and heng, R.C. (1997). Genetic algorithms and
engineering design. John Wiley & Sons.

[9] Gupta, J. (1988). Two stages hybrid flow shop scheduling
problem. Journal of Operation Research Soc, 39(4), 359-
64.

[10] Holland, J.H. (1962). Outline for logical theory of adaptive
systems, Journal of the association of computing
machinery.

[11] Kahraman, C., Engin, O., Kaya, I. and Ozturk, R.E.,
(2010). Multiprocessor task scheduling in multistage
hybrid flow-shops: a parallel greedy algorithm approach.
Applied Soft Computing, 10, 1293–1300.

[12] Kurz, M. and Askin, R. (2004). Scheduling flexible flow
lines with sequence-dependent setup times. European
Journal of Operation Research, 159(1), 66–82.

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

RP
D

(m1-m2)

GA

ICA

HGICA

(2-2) (4-2) (2-4) (4-4)

Javad Rezaeian et al./ Scheduling of a Hybrid Flow Shop...

10

[13] Lahimer, A., Lopez, P. and Haouari, M., (2011). Climbing
depth-bounded adjacent discrepancy search for solving
hybrid flow shop scheduling problems with multiprocessor
tasks. Lecture note on computer science, 6697, 117–130.

[14] Lin, S.W., Ying, K.C. and Huang, C.Y. (2013).
Multiprocessor task scheduling in multistage hybrid
flowshops: A hybrid artificial bee colony algorithm with
bi-directional planning. Computers & Operations
Research, 40, 1186–1195.

[15] Montgomery, D.C. (1991). Design and analysis of
experiments. John Wiley & Sons.

[16] Naderi, B., Zandieh, Khaleghi-Ghoshe-Balagh, M.A. and
Roshanaei, V. (2009). An improved simulated annealing
for hybrid flow shops with sequence-dependent setup and
transportation times to minimize total completion time and
total Tardiness. Expert Systems with Applications, 36(6),
9625–9633.

[17] O˘guz, C., Ercan, M.F., Cheng, T.C.E. and Fung, Y.F.
(2003). Heuristic algorithms for multiprocessor task
scheduling in a two-stage hybrid flow shop. European
Journal of Operational Research,149, 390–403.

[18] Rao, T.B.K. (1970). Sequencing in the order a, b, with
multiplicity of machines for a single operation. Journal of
the Operational Research Society of India, 7, 135–144.

[19] Ribas, I., Leisten, R. and Framin, J.M. (2010). Review and
classification of hybrid flow shop scheduling problems
from a production system and a solutions procedure
perspective. Computers & Operations Research, 37, 1439–
1454.

[20] Ruiz, R. and Vazquez-Rodriguez, J.A. (2010). The hybrid
flow shop scheduling problem. European Journal of
Operational Research, 205, 1–18.

[21] Shokrollahpour, E., Zandieh, M. and Dorri, B. (2010). A
novel imperialist competitive algorithm for bi-criteria
scheduling of the assembly flowshop problem.
International Journal of Production Research, 1–17.

[22] Zandieh, M., Ghami, S.M.T.F. and Husseini, S.M.M.
(2006). An immune algorithm approach to hybrid flow
shops scheduling with sequence-dependent setup times.
Applied Mathematics and Computation, 180, 111–127.

[23] Zandieh, M. and Rashidi, E. (2009). An effective hybrid
genetic algorithm for hybrid flow shops with sequence

dependent setup times and processor blocking. Journal of
Industrial Engineering, 4, 51- 58.

[24] Wang, H.M., Chou, F.D. and Wu, F.C. (2011). A
simulated annealing for hybrid flow shop scheduling with
multiprocessor tasks to minimize makespan. International
Journal of Advanced Manufacturing Technology, 53, 761–
776.

[25] Ying, K.C. and Lin, S.W. (2009). Scheduling multistage
hybrid flowshops with multi- processor tasks by an
effective heuristic. International Journal of Production
Research, 47, 3525–3538.

Journal of Optimization in Industrial Engineering 13 (2013) 1-11

11

