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Abstract 

This paper presents a new mathematical model for a hybrid flow shop scheduling  problem with multiprocessor tasks in which sequence 
dependent set up times and preemption are considered. The objective is to minimize the weighted sum of makespan and maximum 
tardiness. Three meta-heuristic methods based on genetic algorithm (GA), imperialist competitive algorithm (ICA) and a hybrid approach 
of GA and ICA are proposed to solve the generated problems. The performances of algorithms are evaluated by computational time and 
Relative Percentage Deviation (RPD) factors. The results indicate that ICA solves the problems faster than other algorithms and the hybrid 
algorithm produced best solution based on RPD. 
Keywords: Hybrid flow shop scheduling; Multi-processor tasks; sequence dependent setup time; preemption. 

1. Introduction 

The flow shop scheduling is one of the main problems 
in the category of machine scheduling. This problem was 
introduced by Johnson (1954) in which a set of jobs flow 
through multiple stages in the same machine order, where 
each stage consists of only one machine (processor). 
Nowadays, the need to increase capacity or to balance the 
capacities of the stages has led to the duplication of some 
machines in some stages. This extended layout is usually 
addressed as Hybrid Flow Shop (HFS), Flexible Flow 
Shop (FFS), or flow shop with parallel machines. This 
paper refers to this shop floor configuration as HFS. Thus, 
the HFS problem has two basic characteristics as follows: 
(1) a set of n jobs is sequentially processed in a series of 
m stages, and (2) at least one of the stages has two or 
more machines in parallel. The early work on HFS was 
conducted by Rao (1970) and the first model on HFS was 
proposed by Arthanari and Ramamurthy (1971). The 
structure of a hybrid flow shop system is illustrated in Fig 
1. Gupta (1998) considered a special case with two-stage 
and one single machine in the first stage and two identical 
machines in the second stage, and showed that the case 
was NP-hard. In literature, the studies about Hybrid flow 
shops with sequence dependent setup times (SDST) are  

 
 

 
 

 
 
scarce. Kurz and Askin (2004) formulated the SDST/HFS 
as an Integer Programming (IP) model. Allahverdi et al. 
(2008) presented an extended survey regarding setup time 
consideration, with and without sequence dependency. 
Zandieh et al. (2006) proposed an immune algorithm, and 
compare it against the random keys genetic algorithm of 
Kurz and Askin (2004). Naderi et al. (2009) proposed a 
dynamic dispatching rule and an iterated local search 
algorithm for the problem. Zandieh and Rashidi (2009) 
presented an effective hybrid genetic algorithm for HFS 
with SDST and processor blocking. Ruiz et al (2010) and 
Ribas et al (2010) conducted a comprehensive review of 
relevant research on HFS problems, revealing that among 
them only a few studies discussed multiprocessor tasks 
where each job is processed on a number of identical 
machines simultaneously at each stage. Oguz et al. (2003) 
examined the multiprocessor task in a two-stage HFS 
problem motivated by a computer vision system. The 
problem can be encountered in a number of industrial 
environments, such as berth allocation of container 
terminals, real time machine-vision systems, and work 
force management. Allahverdi and Anzi (2006) addressed 
the problem of scheduling on multi-stage parallel 
processor architecture in computer centers with the 
objective of minimizing average completion time of a set 
of requests. Ying and Lin (2009) developed the first 
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simple constructive heuristic algorithm for the mentioned 
problem. Kahraman et al. (2010) developed a parallel 
greedy algorithm for the HFS problem with 
multiprocessor tasks.  Lahimer et al. (2011) developed the 
climbing depth-bounded adjacent discrepancy search 
which was shown to be effective for both small and large 
problems. Recently, metaheuristic algorithms have been 
developed for multiprocessor task-scheduling in an HFS 
system, including simulated annealing (SA) by Wang et 
al. (2011), genetic algorithm by Engin (2011), particle 
swarm optimization (PSO) algorithm by Chou (2013), and 
A hybrid artificial bee colony algorithm with bi-
directional planning by Lin et al. (2013). In this study a 
hybrid flow shop problem with multiprocessor task and 
sequence dependent set up times is presented in which job 
preemption is allowed and meta-heuristic approaches of 
GA, ICA and HGICA are used to solve the problem.  

 
Fig 1. Hybrid flow shop system 

The remainder of this study is organized as follows: 
Section 2 describes and formulates the hybrid flow shop 
problem. The Proposed GA and ICA are described in 
Sections 3 and 4 respectively, and the hybrid approach is 
described in Section 5. Design of experiments and 
parameter tuning are presented in Section 6. The 
computational experiments on the generated problems and 
analysis of the results are provided in Section 7. Finally, 
conclusions and future research are presented in Section 
8. 

2. Problem Description and Mathematical Model 

In this study, a hybrid flow-shop problem with 
sequence dependent set up times is considered in which 
jobs are multi-task and preemption is allowed. Each job 
contains several tasks that may be operated in separated 
times and tasks of a job can be processed simultaneously 
on parallel machines. There is no precedence constraint 
between tasks of a job. Each task must be operated on 
only one machine and a machine can process only one 
task at a time. Without loss of generality, at the first and 
the end of sequences of jobs on each machine at each 
stage, a dummy job is inserted. In this problem, two kinds 
of set up time are regarded. The first one is the initial set 

up time for arrival tasks at the beginning of the operations 
on a machine. The second one is the dependent setup time 
that is considered between two different successive jobs 
on a machine. Job preemption is allowed but each task of 
a job is not separable. It is presumed that there is enough 
capacity between every two consecutive stages and 
transportation time is negligible. Due date of each job is 
predefined and the objective function is to minimize the 
sum of weighted makespan and maximum tardiness. 
Table 1 shows the characteristics of an example problem 
in which two jobs with three tasks should be processed on 
three machines at two stages. An achievable schedule of 
the considered problem is illustrated in Fig 2, in which (2-
1) indicates the first task of job 2. After initial setup times 
at stage one, the first and second tasks of job 2 are 
processed on machines 1 and 2 respectively. Subsequently 
the third task of job 2 is done on machine 2, and job 2 will 
be completed and moved to next stage. After preparation 
of machine 3, the third and first tasks of job 1 are 
processed respectively. The second task of job 1 is 
processed on machine 1 after dependent setup time (job2-
job1) and job 1 is completed by then. The scheduling of 
jobs at stage 2 can be inferred the same as stage 1. 
Table 1 
Illustrative example 

Stage1 Stage2 

Jobs Job1 Job2 Job1 Job2 

Due date 25 20 25 20 

Initial setup time 4 3 7 4 
Tasks 

 
1 2 3 1 2 3 1 2 3 1 2 3 

Processing time 2 3 6 9 7 3 6 6 3 6 6 5 

Dependent 
Setup times 

(job1-job2) (job2-job1) (job1-job2) (job2-job1) 

5 3 4 3 

 

 
Fig. 2. the schedule of the illustrative example 

The following notations are used through the paper. 

2.1. Notations 

Indices 

i,j          indices for jobs (i,j = 1,2,…,n) 
m           index for machines (m = 1,2,…,Mt) 
t             index for stages (t = 1,2,…,	ܰܵ) 
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Parameters 
Qit                 Number of tasks of job i at stage t  
௜ܵ௝
௧            Setup time between jobs i and j at stage t 
௝ܵ௧             Setup time of job j at stage t 
௝ܲ௧
௤            Process time of qth part of job j at stage t 
௝݀              Due date for job j 

NS             Number of stages 
 	and1	0	between	number	real	ܣ																	ߙ
M              A large number 
Decision variables 
௝௧ܥ
௤               Completion time of qth part of jth job at stage 

t 
  ௝௧             Completion time of job j at period tܥ
 Maximum completion time               ݔܽ݉ܥ
 Maximum Tardiness             ݔܽ݉ܶ
௝ܶ                     Tardiness of job j 

 
                      1   if	pth	part	of	݅ݐℎ	job	is	processd	before 

 ௜ܺ௝௠௧
௣௤    ݐ	stage	at	machine	݉th	on	job	ℎݐ݆	of	part	ℎݐݍ              :

                      0    otherwise 

Model: 

minݖ = ݔܽ݉ܥߙ + (1 −  (1)																																			ݔܽ݉ܶ(ߙ

St: 

෍෍෍ ௜ܺ௝௠௧
௣௤ = 1						∀݆, ,ݍ (2)																																								ݐ

௉௜௧

௣ୀଵ

௡

௜ୀ଴

ெ௧

௠ୀଵ

 

෍ ෍෍ ௜ܺ௝௠௧
௣௤ = 1				∀݅, ,݌ ݐ

ொ௝௧

௤ୀଵ

௡ାଵ

௝ୀଵ

ெ௧

௠ୀଵ

																																									(3) 

෍෍෍ܺ଴௝௠௧
௣௤ = 1

௉௜௧

௣ୀଵ

ொ௝௧

௤ୀଵ

௡ାଵ

௝ୀଵ

				∀݉,  (4)																																											ݐ

෍෍෍ ௜ܺ 	௡ାଵ	௠	௧
௣௤ = 1

௉௜௧

௣ୀଵ

ொ௝௧

௤ୀଵ

௡

௜ୀ଴

			∀݉,  (5)																																						ݐ

෍෍ ௜ܺ௞௠௧
௣௥

௉௜௧

௣ୀଵ

௡

௜ୀ଴

=෍෍ܺ௞௝௠௧
௥௤

ொ௝௧

௤ୀଵ

௡ାଵ

௝ୀଵ

				∀݉, ,ݐ ݇,  (6)																				ݎ

௝௧ܥ
௤ ≥ ൫ ௝ܲ௧

௤ + ௝௧൯ݐ݁ݏ + ൫ܺ଴௝௠ଵ
௣௤ − 1൯.ܯ					∀݆, ,݌  (7)				݉,ݍ

௝௧ܥ
௤ ≥ ௜௧ܥ)

௣ + ௝ܲ௧
௤ + ௜௝௧݌ݑݐ݁ݏ ) + ൫ ௜ܺ௝௠௧

௣௤ − 1൯.ܯ 

																												∀݅ > 0, ݆, ,݌ ,݉,ݍ  (8)																																				ݐ

௝௧ܥ
௤ ≥ ൫ܥ௝௧ିଵ + ௝ܲ௧

௤ + ௝௧൯ݐ݁ݏ + ൫ܺ଴௝௠௧
௣௤ − 1൯.ܯ 

																	∀݆, ,݌ ,ݍ ݉, ݐ > 1																																																		(9)	 

௝௧ܥ
௤ ≥ ௝௧ିଵܥ) + ௝ܲ௧

௤ + ௜௝௧݌ݑݐ݁ݏ ) + ൫ ௜ܺ௝௠௧
௣௤ − 1൯.ܯ 

∀݅ > 0, ݆, ,݌ ,݉,ݍ ݐ > 1																																				               (10) 

௝௧ܥ ≥ ேௌ	௝ܥ
௤ 													∀݆, ,	ݐ  (11)																																																	ݍ

ݔܽ݉ܥ ≥ ேௌ	௝ܥ 												∀݆																																																					(12) 

௝ܶ = ௝௩ܥ
௤ − ௝݀																∀݆,  (13)																																																	ݍ

ݔܽ݉ܶ ≥ ௝ܶ 																∀݆																																																					(14)	 

௝ܶ , ௝௧ܥ , ௝௧ܥ
௤ , ݔܽ݉ܶ ≥ 0, ௜ܺ௝௠௧

௣௤ = {0,1}                                                                               

        Eq. (1) expresses the objective function, 
minimizing the weighted sum of makespan and maximum 
tardiness. Eq. (2) and (3) determine the sequence of tasks 
for each job. Eqs. (4) and (5) ensure that the precedence 
of the first task and successor of the last task on a 
machine are dummy jobs. Eq. (6) ensures the construction 
of a consistent sequence at every stage. Eqs. (7)- (10) 
determine the tasks completion time of a job. Eq. (11) 
computes the completion time of a job at each stage. Eq. 
(12) returns the value of makespan. Eq. (13) calculates the 
tardiness of each job. Eq. (14) shows the maximum 
tardiness.  
      By increasing the characteristic size of the problem 
and the growth of complexity, the search space will 
expand and the computational time will increase 
exponentially. To solve such problems, the meta-heuristic 
algorithms have been employed due to their power in 
seeking the search space and finding high-quality 
solutions in a reasonable amount of time.     

3. Proposed Genetic Algorithm  

The main idea of the genetic algorithm was at first 
proposed by Holland (1962). This algorithm which is 
inspired by the natural evolution mechanism, devises a 
guided random approach to search the solution space. In 
the following sections, the details of the GA for solving 
the proposed problem are described. 

3.1. Chromosome encoding and initial solution 

      In the first step of genetic algorithm, an initial 
population of chromosomes must be generated in order to 
form the first generation of solutions. The initial 
population can be produced using different mechanisms 
among them random production is utilized to make sure 
of population diversity according to Gen (1997). In this 
study, each chromosome is shown by a 
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2×((∑ ∑ ܳ௜௧௡௦
௧ୀଵ

௡
௜ୀଵ )+ns-1) matrix. At first row, the value 

of each gene represents the machine number and genes of 
the second row indicate the tasks of jobs. For illustration, 
consider a problem with 2 jobs, each one containing two 
tasks, 2 stages and 3 machines at each stage. A typical 
chromosome is shown in Fig. 3. The symbol (*) cuts the 
chromosome in different stages. For instance, at stage 1 
the first task of job 1 and the second task of job 2 are done 
on machine 1. The first task of job 2 is processed on 
machine 2 and the second task of job 1 is processed on 
machine 3 respectively. At stage 2, the first task of job 2 
and second task of job1 are done on machine 3 and the 
processes of second task of job 2 and first task of job 1 
are done on machine 2 respectively. 

 
Machines 1 2 1 3 * 3 2 2 3 

Jobs 1 2 2 1 * 2 2 1 1 
Fig. 3. Illustration of chromosome 

3.2. Selection mechanism 

There are some selection mechanisms with the 
responsibility to choose parent chromosomes from the 
population to form the mating pool. In this study the 
roulette wheel selection mechanism is used in which the 
solutions with higher fitness values have more chance to 
be selected. Since our objective is to minimize the 
weighted sum of makespan and maximum tardiness, the 
fitness value is computed by Eq.(15): 
Fitness Value= ଵ

ఈ஼೘ೌೣା(ଵିఈ)்௠௔௫	
																															(15) 

3.3. Genetic operators 

3.3.1. Reproduction 

A number of chromosomes with the highest fitness 
values from the current generation will be copied to the 
next one. This is called the elite strategy and it is an effort 
to wish for production of better individuals in the next 
generation out of the current high quality chromosomes. 

3.3.2. Crossover operator 

Crossover is the main operator of the GA. It works 
with chromosomes that are selected from the selection 
mechanism as parents, and mixes them to produce 
children. Crossover operator makes an optimistic attempt 
to swap parents sections and produce children that inherit 
promising features from their parents. 
In this study the modified position based crossover (PBX) 
is applied through following steps: 

Step 1: A set of random positions are selected from 
parent 1. 

Step 2: The genes located in the selected positions will 
be copied to the same positions into the offspring. Then 
the positions in parent 2 containing equal values with the 
selected genes will be identified and omitted. 

Step 3: The unfilled positions of the offspring will be 
placed by the genes of the remainder positions from the 
parent 2 respectively. 
The mentioned steps are shown schematically in Fig. 4. 

3 2 2 3 * 3 1 2 1 
Parent 1 

1 1 2 2 * 1 2 2 1 

 

3 3 1 3 * 2 1 1 1 
Off 

spring 
1 2 1 2 * 1 2 2 1 

 

3 3 1 1 * 2 3 1 1 
Parent 2 

1 2 2 1 * 1 2 1 2 

                              Fig. 4. Crossover operator 

3.3.3. Mutation operator  

The mutation operator revolves the structure of some 
chromosomes in the generation in order to guaranty 
diversification of solutions. It also helps to prevent from 
falling into local optimum trap .The simple mutation 
operator that is used here, randomly selects two positions 
in a chromosome and exchange their genes with each 
other. (Fig. 5) 
 

3 3 1 3 * 1 1 3 1 

1 2 2 1 * 2 2 1 1 

         

3 3 1 3 * 1 1 3 1 

1 2 2 1 * 1 2 1 2 

Fig. 5. Illustration of mutation 

     This procedure will be repeated in all iterations and 
GA will be terminated after predefined number of 
generations and final best solution will be taken.  

4. Imperialist Competitive Algorithm (ICA) 

      ICA is one of the newest methods in Meta-
heuristic field that was suggested and developed by 
Atashpaz-Gargari (2007). This method is based on human 
social and political behavior. Similar to GA, the ICA is a 
population based algorithm and the population is 
consisted of some countries which are classified in two 
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categories: imperialists and colonies. Imperialist is a 
country that rules a number of countries which are called 
colonies. In other words, the policies, culture, religion and 
other social measurements of a colony are delineated by 
the imperialist in power.  

       After producing initial population randomly, at 
first step each country must be specified to either 
imperialist or colony. The countries have several 
attributes including culture, language, religion, economic 
policy, etc. and are shown by vector F: 

 F= [f1, f2… ே݂] 

      In which ௜݂ indicates i'th attribute of a country. 

 Next, the fitness value of countries will be calculated 
and those with lowest cost are determined as imperialists 
and other countries will be considered as colonies.              
Then the numbers of each imperialist’s colonies are 
calculated by Eqs. (16)- (19): 

ܿ௜= Cost (country)                                          (16) 
௡ܥ									 = ௜{ܿ௜}ݔܽ݉ − ܿ௡ 																																													(17) 

௡ܲ = ቚ ஼೙
∑஼೔

ቚ                                                     (18) 

௡ݏ݁݅݊݋݈ܿ	݂݋	ݎܾ݁݉ݑ݊ = )݀݊ݑ݋ݎ ௡ܲ . ௖ܰ௢௟)															(19) 

     Where ܿ௡ 	and ܥ௡ are the cost of nth imperialist and 
its normalized cost respectively. ௡ܲ is imperialist’s power 
and imperialists with lower cost are more powerful to 
increase their chance of getting more colonies. After 
specifying imperialists and their colonies, ICA devices 
assimilation policy and revolution operators start to 
search for better countries.   

     Assimilation policy is performed on all colonies to 
form new ones. In this policy each imperialist absorbs 
colonies by making changes in their attributes such as 
social, cultural, regional and etc. Next, the cost of new 
colonies that are absorbed to the current imperialist must 
be recalculated. If the new colony is better than its 
imperialist, they will be exchange with each other 
immediately. The second operator is revolution that 
creates diversification in countries. This operator 
randomly selects two attributes in a country and 
exchanges their values. Then, the power of each emperor 
is calculated by Eqs. (20)- (22): 
ܶ. ௡ܥ
= (௡ݐݏ݈݅ܽ݅ݎ݁݌݉ܫ)ݐݏ݋ܥ
+  (20)																{(௡݁ݎ݅݌݉ܧ	݂݋	ݏ݁݅݊݋݈݋ܥ)ݐݏ݋ܥ}݊ܽ݁݉.ߞ
ܰ.ܶ. ௡ܥ = .ܶ}௜ݔܽ݉ {௜ܥ − ܶ.  		(21)																																					௡ܥ

௉ܲ௡ = อ
ܰ. ܶ. ௡ܥ

∑ ܰ.ܶ. ௜ܥ
ே௜௠௣
௜ୀଵ

อ																																																				(22) 

     Where ܶ.  ௡equivalent to total is cost of nth empireܥ
and ζ  is a positive number which is considered to be 
lower than1,	ܰ. ܶ. ௡ is power of nth empire and ௉ܲ௡ܥ  is       
possession possibility of each emperor. 

The emperor with the lowest cost will be considered as 
the weakest emperor. Then the other emperors compete 
with each other to take possession of the weakest colonies 
of the weakest emperor. ICA uses a selection process to 
choose an emperor that will pick up the mentioned 
colonies.  
      The vector R created uniformly distributed random 
number as following: 
              R= [ݎଵ ,  [ே௜௠௣ݎ,…,ଶݎ
      From vector D in Eq. (23), the emperor with the 
highest value will be selected and the weakest colony of 
the weakest emperor will be assigned to it. 
             D=P-R=[ܦଵ,ܦଶ,…,ܦே௜௠௣]= 
௉ଵ݌]            − ଵݎ , ௉ଶ݌ − ଶݎ ௣ಿ೔೘೛݌,…, −                                       ௣ಿ೔೘೛]          (23)ݎ

The stopping criterion of the algorithm is the 
remaining of one emperor. 

5. Hybrid Approach Based on GA and ICA 

In proposed hybrid approach based on genetic and 
imperialist competitive algorithms (HGICA), the best 
solutions of GA after several iterations will be saved and 
considered as starting solutions of ICA. Then ICA uses 
these solutions as initial population to seek for better 
solutions. In this approach, while GA is implemented to 
seek for high quality solutions in the search space, the 
ICA is used in an effort to intensify the search within the 
region of solution space close to high quality solutions. 
The procedure of this approach is illustrated in Fig. 6. 

6. Design of Experiments 

In this section, the behavior of the proposed 
algorithms under different levels of factors is studied in 
order to achieve the desired effects.  In Table 2, there are 
five factors of GA and six factors of ICA. The 
approximate levels of the factors are obtained 
experimentally and then Response Surface Methodology 
(RSM) is applied to find the appropriate value of each 
factor for each size of problem. RSM is a technique to 
determine and represent the cause-and-effect relationship 
between true mean responses and input control variables 
influencing the responses as a two-or three-dimensional 
hyper surface Montgomery (1991). 

In order to find the best values of the factors, the 
problems are grouped into two categories: A and B. 

Category A includes problems with 15 jobs or lower, 
and problems with more than 15 jobs are presented by B. 
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Fig. 6. Hybrid approach, based on GA and ICA 
Table 2 
Range of factors for GA and ICA 

Method Factors Level 

GA 

Pop-Size (20-50) 
Cross over Ratio (0.8-0.9) 
Mutation Ratio (0.03-0.05) 
PBX Ratio (0.2-0.4) 
Iteration (200-500) 

ICA 

Number of Countries (150-350) 
Number of Iteration (200-500) 
Number of Imperialists (6-10) 
Assimilation Ratio (0.8-0.9) 
Revolution Ratio (0.1-02) 
Zeta (ξ) (0.04-0.06) 

 

For each category of problem and each algorithm, 
some experiments are designed and the best parameters 
are obtained and revealed in Tables 3 and 4. 
 

 

Table 3 
Tunned parameters of GA 

Due 
date 

Process 
Time 

First Setup 
Time 

Middle Setup 
Time 

Tasks of 
Jobs 

[20,100] [5,20] [1,5] [1,6] [1,4] 

Table 4 
Tunned parameters of  ICA 

Category POP-Size Crossover Mutation PBX Iteration 
A 50 0.8 0.03 0.2 500 
B 48 0.8 0.03 0.2 500 

Table 5 
Problem characteristics 

C
at

eg
or

y 

Country Imperialist Assimilation Revolution Zeta Iteration 

A 150 6 0.2  0.18 0.48 200 
B 150 6 0.4  0.2 0.47 200 

YES 

Exchange the positions of that 
imperialist and the colony 

NO 

NO 

Yes 

NO 

Yes 
End 

Assimilate colonies 

Initialize the empires 

Revolve some colonies 

Is there a colony in an empire 
which has lower cost than that 

of the imperialist? 

Yes 

Imperialist competition 

Is there an empire with no 
colonies? 

Eliminate this empire 

Unite similar empires 
Stop condition 

satisfied? 

Compute the total cost of all empires 

NO 

Start 

Set GA parameters 

Generate initial population randomly 

Evaluated fitness of initial population 

Selection (Roulette wheel) 

Crossover 

Mutation 

Reproduction 

Evaluated fitness of new population 

Stopping criterion 
met? 
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7. Computational Results 

In this section, many test problems have been 
designed to evaluate the proposed algorithms. The data of 
the problems are randomly generated using uniform 
distribution with parameters based on Table 5, and all 
experiments have been performed on Intel CORE i5 CPU 
and 4GB of RAM under Windows 7. As mentioned in 
previous section, the problems are grouped in categories 
A and B, and for simplicity and without loss of generality, 
it is assumed that there are two stages in each problem 
and the number of machines in stages are shown by (m1, 

m2) in Table 6. CPU time (second) and Related 
Percentage of Deviation (RPD) factors are implemented 
to compare the efficiency of the algorithms. 
RPD=஺௟௚ೞ೚೗ିெ௜௡ೞ೚೗

ெ௜௡ೞ೚೗
                                                      (24) 

      Where, ݈݃ܣ௦௢௟ is the value of the solution obtained 
by related algorithm and ݊݅ܯ௦௢௟ is the Minimum obtained 
value among the solutions of algorithms. In order to 
compare the performance of the algorithms, the obtained 
results are arranged according to the solving methods and 
mean of RPD presented in Table 7. 

Table 6 
Results of expriments comparsion between GA, ICA, HGICA 

HGICA  ICA  GA (m1,m2) problem 
Time RPD OB.value  Time RPD OB.value  Time RPD OB.value   

84 0 60.4  8 0 60.4  62 0 60.4 (2,2) A3 
64 0 48.2  9 0 48.2  49 0 48.2 (2,4) 
97 0 45.6  12 0 45.6  68 0 45.6 (4,2) 
102 0 32.4  12 0 32.4  63 0 32.4 (4,4) 
147 0 121.2  41 0 121.2  110 0 121.2 (2,2) A4 
96 0 104.8  31 0.154 121  85 0 104.8 (2,4) 
124 0 101.6  30 0 101.6  82 0 101.6 (4,2) 
135 0 62.6  45 0.105 69.2  117 0 62.6 (4,4) 
221 0 121.6  17 0.092 132.8  63 0 121.6 (2,2) A5 

101 0 66  21 0.042 68.8  115 0.03 68 (2,4) 
197 0 121  22 0 121  124 0 121 (4,2) 
211 0 63.2  20 0 63.2  126 0 63.2 (4,4) 
227 0 140.8  19 0.052 148.2  212 0.007 141.8 (2,2) A6 

216 0 83.2  30 0.038 86.4  137 0.014 84.4 (2,4) 
275 0 134.6  17 0.112 149.8  341 0 134.6 (4,2) 
274 0 69.2  19 0.04 72  295 0.014 70.2 (4,4) 
295 0 165.2  56 0.238 204.6  190 0.024 169.2 (2,2) A7 

277 0 94.4  86 0.238 116.4  216 0.046 98.8 (2,4) 
337 0 137.4  85 0.311 180.2  229 0.165 160.2 (4,2) 
341 0 80.2  38 0.311 100.2  151 0.039 83.4 (4,4) 
464 0 180.8  89 0.049 189.6  195 0.049 189.8 (2,2) A8 

457 0 120.4  140 0.122 135.2  352 0.064 128.2 (2,4) 
397 0.052 179.8  91 0 178.2  274 0.081 192.8 (4,2) 
312 0 91  73 0.076 98  103 0.041 94.8 (4,4) 
505 0 195.6  35 0.144 255.2  490 0.144 223.8 (2,2) A9 

273 0 175.2  47 0.165 204.2  222 0.07 187.6 (2,4) 
574 0 189.4  28 0.166 221  237 0.018 192.8 (4,2) 
527 0 120.8  95 0.049 126.8  215 0 120.8 (4,4) 
649 0 252  121 0.096 278.4  352 0.097 276.4 (2,2) A10 

340 0 210.4  48 0.098 232.4  355 0.048 220.6 (2,4) 
626 0 219.2  112 0.098 240.8  366 0.038 227.6 (4,2) 
624 0 145.2  79 0.074 156  215 0.07 155.4 (4,4) 
512 0 384.6  82 0.137 437.4  314 0.049 403.6 (2,2) B15 
469 0 302  99 0.129 341.2  317 0.094 330.4 (2,4) 
625 0 250.6  75 0.268 317.8  345 0.189 298.2 (4,2) 
567 0.103 233.2  111 0.078 228  347 0 211.4 (4,4) 
964 0 523.4  234 0.115 583.6  717 0.057 553.6 (2,2) B20 

1014 0 407  222 0.158 471.6  720 0.069 435.2 (2,4) 
987 0 334.6  188 0.349 451.4  685 0.204 403 (4,2) 
998 0 267.8  124 0.166 312.4  628 0.05 281.4 (4,4) 

1013 0 555  174 0.03 572  886 0.027 570 (2,2) B25 
1042 0 423  216 0.199 507.4  903 0.164 492.6 (2,4) 
1645 0 322.2  233 0.244 401  1211 0.16 374 (4,2) 
1784 0 225.2  406 0.522 342.8  1058 0.25 281.6 (4,4) 
2042 0 712.8  392 0.145 816.8  1919 0.07 762.8 (2,2) B30 
2280 0 582.2  214 0.145 667.2  1259 0.09 635 (2,4) 
2326 0 500.8  290 0.243 622.8  1920 0.132 567 (4,2) 
2035 0 362.6  440 0.201 435.8  1342 0.087 394.2 (4,4) 
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Table 7 
Comparsion of GA, ICA, HGICA based on mean of  RPD 

Problem Method 
Performance 

 തതതതതതതതതࡰࡼࡾ			
(2,2) (2,4) (4,2) (4,4) 

A3 
GA 0 0 0 0 0 
ICA 0 0 0 0 0 

HGICA 0 0 0 0 0 

A4 
GA 0 0 0 0 0 
ICA 0 0.154 0 0.105 0.064 

HGICA 0 0 0 0 0 

A5 
GA 0 0.03 0 0 0.007 
ICA 0.092 0.042 0 0 0.033 

HGICA 0 0 0 0 0 

A6 

GA 0.07 0.014 0 0.014 0.024 
ICA 0.052 0.038 0.112 0.076 0.084 

HGICA 0 0 0 0 0 

A7 

GA 0.024 0.046 0.165 0.039 0.068 
ICA 0.238 0.238 0.311 0.311 0.274 

HGICA 0 0 0 0 0 

A8 

GA 0.049 0.064 0.081 0 0.048 
ICA 0.049 0.122 0 0.076 0.061 

HGICA 0 0 0.052 0 0.013 

A9 

GA 0.144 0.07 0.018 0 0.058 
ICA 0.144 0.165 0.166 0.049 0.131 

HGICA 0 0 0 0 0 

A10 

GA 0.097 0.048 0.038 0.07 0.063 
ICA 0.096 0.098 0.098 0.074 0.091 

HGICA 0 0 0 0 0 

problem Method 
Performance 

 തതതതതതതതതܦܴܲ				
(2,2) (2,4) (4,2) (4,4) 

B15 
GA 0.049 0.094 0.189 0 0.083 
ICA 0.137 0.129 0.268 0.078 0.153 

HGICA 0 0 0 0.103 0.025 

B20 
GA 0.017 0.069 0.204 0.05 0.085 
ICA 0.115 0.158 0.349 0.166 0.197 

HGICA 0 0 0 0 0 

B25 
GA 0.027 0.164 0.16 0.25 0.15 
ICA 0.03 0.199 0.244 0.522 0.248 

HGICA 0 0 0 0 0 

B30 
GA 0.07 0.09 0.132 0.087 0.094 
ICA 0.145 0.145 0.24 0.201 0.182 

HGICA 0 0 0 0 0 
 

Analyzing the experiments results in Tables 6 and 7, it 
can be noticed that GA almost provides higher quality 
solutions and it provides lower mean of RPD than ICA 
(Fig. 7). Although GA outperforms ICA in quality of 
solutions, but in CPU time measurement, ICA works 
better and finds solutions in significantly lower amount of 
time (Fig. 8). Accordingly, these algorithms are 
hybridized in order to make high quality solutions in 
reasonable amount of time. Comparing the results of 
Table 7, it is shown that HGICA performs better than 
both GA and ICA, but it consumes more time. In order to 
confirm higher performance of the HGICA than GA, 

equal condition should be adjusted for both of them. So, 
the GA procedure was allowed to search the solution 
space for more computational time, but there wasn’t any 
considerable improvement in the results. As it is 
illustrated in Fig. 9, HGICA finds much better solutions 
than GA in the same period of time. 

Moreover, to calculate significant differences, the LSD 
(Least significance difference) method is used. The 
obtained results reveal that there is not any significant 
difference between GA, ICA and HGICA. The results of 
this experiment are shown in Fig. 10. 
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Fig. 7. Mean RPD plot for ICA and GA 

  

Fig. 8. CPU time of ICA and GA 

 

Fig. 9. Mean of RPD for GA and HGICA 
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Fig. 10. Means plot and LSD intervals (at the 95% confidence level) for the type of algorithms 
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For testing the obtained results of proposed 
algorithms, the t-test is used as a method for statistical 
testing. The conducted hypothesis tests are as follows: 

૙(૚)ࡴ = ࡭ࡳ	ࢌ࢕	࢘࢕࢘࢘ࢋ	ࢋࢍࢇ࢘ࢋ࢜ࢇ	ࢋࢎ࢚ <
=  ܣܥܫ	݂݋	ݎ݋ݎݎ݁	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ

૚(૚)ࡴ = ࡭ࡳ	ࢌ࢕	࢘࢕࢘࢘ࢋ	ࢋࢍࢇ࢘ࢋ࢜ࢇ	ࢋࢎ࢚
>  ܣܥܫ	݂݋	ݎ݋ݎݎ݁	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ

In this statistical testing, statistic is  
଴ݐ =

௑ಸಲି௒಺಴ಲ

ௌ೛భ.ට
భ

೙೉ಸಲ
ା భ
೙ೊ಺಴ಲ

= −2.31603	Where ܵ௣ଵଶ =

(௡௑ಸಲିଵ).ఋಸಲ
మା(௡௒಺಴ಲିଵ).ఋ಺಴ಲ

మ

௡௑ಸಲା௡௒಺಴ಲିଵ
	 and the range of acceptance 

is (-∞,  ఈ,௡௑ಸಲା௡௒಺಴ಲିଶ] .we cannot reject null hypothesisݐ
at 95% significance level because statistic is not greater 
than	ݐఈ,௡௑ಸಲା௡௒಺಴ಲିଶ. 
 

૙(૛)ࡴ = ࡭࡯ࡵࡳࡴ	ࢌ࢕	࢘࢕࢘࢘ࢋ	ࢋࢍࢇ࢘ࢋ࢜ࢇ	ࢋࢎ࢚ <
=  ܣܩ	݂݋	ݎ݋ݎݎ݁	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ

૚(૛)ࡴ = ࡭࡯ࡵࡳࡴ	ࢌ࢕	࢘࢕࢘࢘ࢋ	ࢋࢍࢇ࢘ࢋ࢜ࢇ	ࢋࢎ࢚
>  ܣܩ	݂݋	ݎ݋ݎݎ݁	݁݃ܽݎ݁ݒܽ	ℎ݁ݐ

In this statistical testing, statistic is  
଴ݐ =

௓ಹಸ಺಴ಲି௑ಸಲ

ௌ೛మ.ට
భ

೙೉ಸಲ
ା భ
೙ೋಹಸ಺಴ಲ

= −4.71643	  where 	ܵ௣ଶଶ =

(௡௑ಸಲିଵ).ఋಸಲ
మା(௡௓ಹಸ಺಴ಲିଵ).ఋಹಸ಺಴ಲ

మ

௡௑ಸಲା௡௓ಹಸ಺಴ಲିଵ
	  , and the range of 

acceptance is (-∞,  ఈ,௡௑ಸಲା௡௓ಹಸ಺಴ಲିଶ]  ,because statistic isݐ
not greater than	ݐఈ,௡௑ಸಲା௡௓ಹಸ಺಴ಲିଶ ,we cannot reject null 
hypothesis at 95% significance level.  

These results of statistical   testing imply that the 
average error of HGICA isn't statistically worse than other 
proposed algorithms. 

Fig. 11. shows the RPD values for  GA ,ICA and 
HGICA in different values of  machines 

 

Fig. 11. RPD for different value of machine of problem 

In this research a new mathematical model was presented 
for a hybrid flow shop scheduling problem with sequence 
dependent set up time while job preemption is allowed. 
Three meta-heuristics are proposed for solving the 
problem and many instances are applied to evaluate their 
performances. The parameters of the algorithms are 
calibrated by the RSM. The obtained results indicate that 
the hybrid algorithm produces best solutions based on 
RPD. For future research, it is worthwhile to develop the 
presented model by considering precedence constraint 
between jobs and also some other optimization algorithm 
may be investigated for the problem.     
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