
 Journal of Computer & Robotics 12 (1), 2019 77-91

* Corresponding author. Email: shahrzad.oveisi@gmail.com

77

A New Approach to Promote Safety in the Software Life Cycle

Shahrzad Oveisi a,b,*, Mohammad Ali Farsi a, Mohammad Nadjafi a, Ali Moeini b
a Aerospace Research Institute (Ministry of Science, Research and Technology), Tehran, P.O.B. 14665-834, Iran

b Department of Algorithms and Computation, College of Engineering Sciences, University of Tehran, Tehran, Iran

Received 27 May 2019; Revised 10 November 2019; Accepted 27 November 2019; Available online 31 December 2019

Abstract

Developing a reliable and safe system is one of the most important features of advanced computer-based systems. The
software is often responsible for controlling the behavior of mechanical and electrical components as well as interactions
between components in systems. Therefore, considering software safety and fault detection are essential in software
development. This paper introduces an approach to engineering evidence that examines the software in its lifecycle
according to the principles of software safety and system safety engineering. This approach ensures that software risks are
identified and documented in the software lifecycle, after which the risks are reduced to an acceptable level in terms of
safety according to the proposed methods. The presented approach was applied to a real master case with positive results,
namely the Data and Command Unit.

Keywords: Safety, Life Cycle, Software Development, Software Safety, Computer-Based System.

1. Introduction

Safety based design with consideration of safety in
software is an essential component in the industries related
to modern sciences and their design processes. System
engineers define reliability and safety requirements to
achieve a system at a world-class level. This system should
work in various conditions and keep its performance at an
acceptable level. With the ever-increasing requirement of
reliability and safety for critical and vital systems, accurate
assessment of the pending failure of a system has become an
active research area over the past decades [1]. The existence
of software on systems increases complexity, and both
hardware and software can create faults in the system. The
faults in complex systems can cause a loss of features in the
system. For this reason, the need for methods is felt that can
prevent these faults and discuss software safety and
reliability [2, 4].

According to studies conducted by National Institute of
Standards and Technology, the cost of a software error in US
economy is approximately 59.5 billion US dollars per year
(nearly 0.6% of GDP). It is also estimated that over one-third
of costs (i.e. 22.2 billion US dollars) can be cut with the
improvement in infrastructure, including the use of software
assurance and tests that detect, anticipate, and eliminate the
fault. Considering the above statements, the application of a
method to increase software reliability seems to be essential
in these systems [31]. Safety addresses risk factors to
analyze and monitor their control and mitigation strategies.
In addition, Safety is related to the field of software
development, which involves testing and modeling the
ability of the software to function correctly without failures
or software faults causing software failures5-6.In order to
understand the importance of software safety, an example of

Computer
& Robotics

SH. Oveisi et al. / A New Approach to Promote Safety in the Software Life Cycle.

78

a software failure that resulted in system failures has been
presented below.

Demonstration of Autonomous Rendezvous Technology
(DART) is designed to be implemented in Multiple Paths
Beyond Line of Sight Communications (MUBLCOM) in a
variety of maneuvers in the satellite. These operations are
accomplished without assistance personnel engaged in the
ground activities. The activities of the DART team show that
software causes play a significant role in the history of
incidents, which has not been taken into account in many
events in the past and caused a big bug in accident
investigations. Also, the team believes that any changes in
the system software should be documented appropriately,
and safety-critical software should not be hypersensitive to
erroneous data [7]. Implementing a Software Safety
Program is the best routine to help confirm the identification
of potential software risks and reduce the respective risks.
Successful implementation of the Software Safety Program
involves the selection and application of effective analytical
tasks and methods tailored to specific project needs, which
meet the terms of the Software Safety Program.

The Data and Command Unit is one of the main
subsystems in aerospace systems, which issue the movement
start signal as the basis of all subsequent activities of this
type of system. The essential system operation software is
responsible for issuing commands such as sending and
receiving signals between internal parts of the system,
setting the micro timer, and so forth. Unexpected
interactions between hardware, software, and operating
environment can provide potentially dangerous and/or
hazardous conditions. Unlike electrical or mechanical
hardware, the software is not eroded over time, and it can be
said that the software does not experience the failure.
However, hardware performance requires proper software
running, and the desired function of the system, which is
determined by software, may not be executed by the
embedded system software. Failures in software can cause
downtime (out of service/and or out of operation time) and
poor performance of asystem [8]. The poor performance or
at worst case the downtime of a system can be listed in any
of the following ways: partial or entire system unavailability,
system imperfections and lack of accessibility, wrong
results, loss of or unusable data, and slow system
performance.

The main reasons for common software failures are the
inability to upgrade, a logic error in software code, a bug in a
core network device, resource exhaustion, data corruption,
hardware failures [9]. Also, common sources for the failure
of hardware, which can internally or externally control

software execution, are as follows: memory failures either in
the space of code or variables, CPU failures (ALU and
registers), external failures (ports, watchdog, timer, interrupt
manager, and so on). Errors of software logic may occur due
to defective or incompatible requirements as well as software
design errors or implementation of the code. Failure
conditions due to software logic errors may include endless
loops, false calculations, longer time to complete the
executive routines, and the like. Moreover, the software stored
on an embedded system may not be correct if the tools
necessary to configure and compile the software as expected
are lacking. For example, memory cell defects can lead to
conditions where the software jumps inadvertently to the end
of a routine or middle of another routine. Failure scenarios
such as returning the wrong priority or inability to return (and
thereby blocking interruptions of less importance) can also be
a function of memory failure. Embedded system designers can
use engineering procedures of system safety to deal with
software defects. However, the unique scenarios of possible
failure and general complexity of software will ensure that
other software-specific tasks and processes are included in the
overall system safety plan. To address this requirement, an
effective implementation program of safety techniques for the
command system should also involve software safety
practices. The Software Safety Program involves the
implementation of a number of software-related tasks aimed
at identifying and minimizing potential software failures [10].
While software safety requirements can be taken from
software guides and other published sources, there is a deficit
in research presenting all the approaches leading to software
safety of computer systems in all phases of the software
lifecycle. Therefore, in this paper, we have presented
approaches to establish software safety to be implemented on
a real case study (Data and Command Unit) in a path to safety
from the first phase of software to the end. The results showed
improvement in safety of this software system.

In Section II, we will review the research background. In
Section III, the status of the problem is reviewed. In Section
IV, the methods of safety in the software lifecycle will be
discussed, and in the final section, we will use these
approaches for DCU evaluation of a Data and Command Unit.

2. Research Background

Several methods, guidelines, and standards have been
developed to provide information in the field of software
safety and software safety processes. The requirements for
implementing a systematic technique/approach to software
safety have been standardized as essential and inseparable in

 Journal of Computer & Robotics 12 (1), 2019 77-91

79

the NASA-STD-8719.13A standard provided by the JSSC
committee. This standard is applied in software issues that
may contribute to reaching-detecting or taking corrective
action for a system in a specific dangerous state, which is
intended to mitigate the damage if a mishap occurs. During
the safety analyses of the subsystem/system, safety-critical
software is identified and the software safety level
determined based on the category of the system and the
severity of the hazard [11]. Moreover, the JSSC handbook
provides guidelines and technical approaches to
management and control of the risk issues associated with an
acceptable safety level with high assurance levels in order to
execute the software inside the system [12]. Accordingly,
MIL-STD-882C has provided system safety in detail and
covered the software safety process in part. Primarily, MIL-
STD-882C provides a process for the assessment of software
hazard risk in which the degree of control and potential
hazard severity are considered as the exercises of software
over the hardware [13]. Also, in the field of airborne systems
performance, required safety equipment according to
airworthiness requirements with high confidence intervals is
provided by Radio Technical Commission for Aeronautics
(RTCA): RTCA/DO-178B. In this guideline, the safety tasks
on software categories are discussed in detail [14]. The
MOD DEF STAN 00-55 standard emphasizes the necessary
procedures for design, production, specification, coding, and
maintenance activities in-service, as well as software
modification of safety-critical issues. Two categories related
to software are provided in the standard: safety-critical and
safety-related software. The former has discussed the
functions of systems that are imposed on critical conditions
related to the safety of the system. The latter is related to a
system safety function encompassing all Safety Integrity
Levels (SILs) and covering the high risked human-life to
recommend requirements for mitigating the causes from a
software point of view [15]. With respect to software
requirements and activities for safety phases of the lifecycle,
the IEC 61508 part 3 standard is should be used to develop
a safety-related system during the design and development
of safety-related software, as well as requirements for
software safety validation [16]. Furthermore, in the field of
automotive software, Motor Industry Software Reliability
Association (MISRA) has provided specific issues related to
the information on guidelines. While MISRA does not
directly address safety software, it presents a general
approach to software development with recommendations
[17]. As a final research background, APT Research Inc.
provided a process for verification and definition of
software’s critical safety functions in 15 steps. The process
involves identifying hazards of the system, detecting

requirements for software safety function, and safety efforts
tailored to critical situations [18].

As mentioned, software safety considerations have been
discussed in many papers, but the life cycle of the software
along with an actual case study has been relatively ignored.
Because of the importance of safety in a software process, in
this paper, methods have been developed to provide safety
and to apply a Data and Command Unit.

3. Statement of the Problem

As can be seen in Figure 1, if hardware or software faults
in the system are not detected by fault detection
methods/systems, they can lead to system errors, the
propagation of which can result in safety failure or hazard
that can ultimately cause an unfavorable event. According to
the above statements, a fault in the system can lead to the
occurrence of unfavorable events; therefore, the methods
capable of preventing these faults are vital to the system.
Considering the importance of this matter as well as the
crucial role of software in computer-based systems, this
paper discusses software production methods based on
safety in the life cycle.

Fig. 1. A view from fault to mishap.

3.1. Software Safety Methods in Risk Management Process

The success of a software development project depends
quite heavily on the amount of risk that corresponds to the
level of risk associated with each project activity. As a
project manager, it is not just sufficient to be aware of the
risks. To achieve a successful outcome, project leadership
must identify, analyze and evaluate all the major risks.
Then, the identified risks are reduced to an acceptable
level. Software assurance procedures are used to identify
the risks. In software, assurance must be considered safety,
reliability, quality, verification, and validation in the
software life cycle. To maintain these disciplines, a variety
of risk identification methods are used. We focus on safety

SH. Oveisi et al. / A New Approach to Promote Safety in the Software Life Cycle.

80

and its approaches, including FTA, FMEA, PHA, etc. As
shown in Figure2, software assurance methods generally
play a major role in the software risk management process.

Fig. 2. The software assurance methods in risk management process.

4. Safety in Software Lifecycle

In Figure 3, the safety tasks are shown in the software life
cycle. In this paper, we focus on safety in software
development, and in the rest of the paper, a number of
important tasks are explained and applied to a real case.

4.1. The Proposed Approach

Figure 4 shows the proposed approach to increase
software safety in engineering systems. The workflow of the
proposed method is shown in the following Figure.
Strategies are considered to reduce the risk severity of the
whole approach. In the conceptual design phase of the
approach, Preliminary Hazard Analysis (PHA) &Systems
Theoretic Process Analysis (STPA) are performed. During
the analysis phase, the requirements of Software Hazard
Analysis are usually performed by Fault Tree Analysis
(FTA), Failure Mode and Effects Analysis (FMEA) and
Preliminary Hazard Analysis (PHA). The output of these
methods is then applied to hazard testing. Critical Time is
considered in hazard testing, and finally, review of software
safety requirements is performed using one of the several
methods. These methods are classified into (a)Top-down
analysis of software safety requirements; (b) Analysis of
critical requirements; (c) Specifications analysis and (d)
Formal methods (B-method, Circle, KIV, Binary Decision
diagram, etc.)

Subsequently, in the design phase of software
architecture, SFTA, and SFMEA, the system level is
designed with the help of software architecture and analysis
phase outputs of requirements. In the code phase and
detailed design of software, SFTA and SFMEA are done
with the help of a map of sample variables as well as
defragmentation of results and programming. At the end,
Verification & Validation is done using a variety of tests.

Fig. 3. The Software safety tasks in the software lifecycle.

 Journal of Computer & Robotics 12 (1), 2019 77-91

81

Fig. 4. The workflow of the proposed approach.

4.2. Operational Strategies to Reduce Risk Severity

In a Real-World system, system elements are designed
with high quality, and there are several strategies to diminish
the severity of risk, including the strategies used to reduce
the risk in designing aerospace systems as follows [19].
These methods are used throughout the software safety
program approach.

 Design for Fail-Safe: In some systems, designers
can provide a state for the system as a safe mode. When
hazardous events occur or an operation may lead to a
dangerous condition, the system or operator detects a
hazard situation that can damage the system, operator
or environment, changes in working conditions of
system/operator, and transfer to a safe state. This
transfer can be performed by stopping hazardous
operation and starting a new mode or work with less
risk. This system is called a fail-safe system.

 Design for Fault-Tolerance: In a system design
process, designers can provide a situation for the
system, so that when a failure occurs in the system, the
system continues its operation and the failure is
covered. This method of design is called a fault-
tolerant design.

 Design for Redundancy: To increase the
reliability of a system and reduce its failure likelihood,
we should duplicate the critical items. In this case, the
designers often use the second item as a backup for the

failed item, which means having backup items that
automatically “kick in” should one component fail.
This scheme is recommended for single-point failures.

 Providing early warning: Failures that occur
without warning are more dangerous than those with a
warning. Catastrophic effects can be avoided by adding
a warning device to system design.

 Use of Hazard barrier: A barrier is defined as a
measure that is put in to prevent the release of a hazard
or the occurrence of a top event once the hazard is
released, and the barriers may be physical or non-
physical, including correct/valid operating procedures.
Time delays in processes decrease the speed of
equipment, leading to maintenance when due. A
compensating error is an accounting error that offsets
another accounting error. These errors can be difficult
to spot when they occur within the same account and
in the same reporting period since the net effect is zero.
A statistical analysis of an account may not find a
compensating error.

 Near-Miss Analysis: Near-miss analysis, which
refers to the detection and subsequent analysis of near-
misses, is a technique used in the domain of risk
analysis and safety, and near-miss analysis attempts to
identify the root cause of the accident and prevent a
recurrence, which has been used successfully in
various industries for decades [9].

SH. Oveisi et al. / A New Approach to Promote Safety in the Software Life Cycle.

82

 K-out-of-N system: In a sensitive and important
system such as the control system of a spacecraft or a
safety system, designer use K-out-of-N scheme to
improve and modify the system reliability. In this case,
Nun it's provided and the final output depends on K
units of the system. For instance, a system determines
a parameter, and if K of the units' output is similar, then
the system will work based on the output. In this
system, if a unit is failed, the system performance may
not be reduced. Only when the number of failed units
is more than (N-K) units is the system failed. The
system's reliability to achieve a safe system is
increased by this scheme.

4.3. Safety in Conceptual Phase

In the conceptual phase, at first, the user’s requirements
and the features that the system should have to be checked
for this work in the documentation and checklist of the
similar systems are assisted. Then the PHA for the system
should be prepared, which can be done with Hazard
Verification Matrix. PHA detects the failures and their
countermeasures and then provides a list of them. Of course,
PHA does not indicate those system failure scenarios that
occur simultaneously, which is a disadvantage that can be
mentioned. STPA is used for better identification of unsafe
control actions. These control hazards are used in PHA and
SFTA for phase requirement analysis. STPA provides
guidance and systematic process to identify the potential for
adequate control of the system, which could lead to a
hazardous state resulting from inadequate control or
enforcement of the safety constraints.

4.4. Safety in Requirements Analysis Phase

If software assurance assessment does not start from early
phases of software development, the cost of software failures
and errors is exponentially increased. The goals of Software
Safety Program are to eliminate, reduce, or control the
possible hazards associated with potential software failures.
Software safety requirements may include
national/international standards, customer requirements, or
corporate needs. A matrix for the identification of software
safety requirements can begin tracking requirements
throughout the development process. The methods used to
obtain software safety goals are categorized as into (a)
Software safety requirements review; (b) Hazard testing; (c)
Software hazard analysis; and (d) Operational strategies to
reduce risk severity

Software hazard analysis identifies the possible software
scenarios that can detect potential hazards during
preliminary hazard analysis (PHA).Using the relationship
created between software scenarios and potential hazards,
prevention requirements of software hazards are developed,
including specific software safety requirements through
which hazard testing is identified at specific response times
that must be provided by the operational software to help
ensure that potential risks are avoided [20]. Finally, the
examination of software safety requirements helps ensure
that they are fully compliant and operational strategies for
risk reduction, which are also considered in the design of
software and related hardware. In the following sections,
more detailed descriptions of software safety analysis
methods are provided, which may be used to achieve the
software safety objectives.

4.4.1. Software Hazard Analysis

Software hazard analysis involves the identification of
possible software hazards that may lead to potential system
hazards [21]. For any potential system hazard, possible
software scenarios leading to hazards are identified.
Software hazard analysis is obtained from a variety of
sources and is usually divided into two categories: general
and specific. General software safety requirements are
derived from a collection of requirements that can be used in
different applications and environments to solve common
software safety problems [22]. Specific software safety
requirements are taken from system-specific functionalities
or constraints identified by methods defined in Table 1.

Table. 1. The methods used for identifying operating system limitations or
functionality

The software fault tree is the most commonly used
method among the three addressed approaches. As stated, it
is a top-down method that identifies a number of unwanted
effects at a high level, a process that is repeated so that the
causes of related events as well as their associated factors are

Fault Tree Analysis (FTA):
FTA takes a top-down approach to system failure, proceeding from
the top to the intermediate and basic events, which are all events
that are undesirable and connected through cause-and-effect
relationships.

Method 1

Through Primary Hazard Analysis (PHA):
Preliminary hazard analysis(PHA)is a semi-quantitative analysis
that is performed to:
1.Identify all potential hazards and accidental events that may lead
to an accident
2.Rank the identified accidental events according to their severity
 3.Identify required hazard controls and follow-up actions

Method 2

Through bottom-up analysis of design data (for example, flow
diagrams, failure mode, effects and criticality analysis (FMECA).
FMECA uses an inductive approach to system design and
reliability. It identifies each potential failure within a system or
manufacturing process and uses severity classifications to show the
potential hazards associated with these failures.

Method 3

 Journal of Computer & Robotics 12 (1), 2019 77-91

83

investigated. This analysis continues until a group of causes
is identified [23]. These are underlying causes for software
scenarios to analyze software system-level hazards. The
requirements analysis phase obtains its safety inputs from
the conceptual design phase, which is defined for our system
as follows. The goal of PHA is to identify all potential
hazards and hazardous events that may cause accidents and
to detect required hazard controls and follow-up actions.
PHA is performed in the conceptual phase of system
development; therefore, safety requirements to control the
identified hazards can be decided and incorporated into the
initial design [24].STPA provides guidance and systematic
process to identify the potential for adequate control of the
system, which could lead to a hazardous state resulting from
inadequate control or enforcement of the safety constraints.

4.4.2. Hazard Testing

Software safety requirements have been set for each of
the possible software failures. During the hazard test, the
need for real testing of the system under potential risk is
assessed. The results of this test specify the deviation of error
response times and the level required by the system. The
main principle to be considered at this stage is the critical
times and safety automation, which are briefly reviewed
below [25].

• Critical Time: Safety-critical systems sometimes have
a "critical time" feature, which is the interval between the
occurrence of an error and system’s reaching to an unsafe
state. This interval is a period during which it is possible to
perform automated/manual operation or protection through
software, hardware, or a human operator. The design of
recovery and protective measures should fully take into
account the real-world conditions and crisis time [26].

• Automatic safety: The automatic safety is often needed
if the critical time is shorter than the actual response time by
a human operator, or if no human being is involved. This can
be done by hardware, software, or a combination of them,
considering the best system design to achieve safety.

• Analyzing Software Safety Requirements:
Verification of requirements analysis activities is left to the
software safety requirements, which can also search for new
hazards, software functions that may be used to control the
hazards and ways through which the software can run
unexpectedly. Exploring software safety requirements is a
recognized need for software safety compromised by
hazards to help ensure the integrity and compliance of the
software. Delayed detection of software safety needs can

affect expense, timing, and so on. The final product of this
work is a collection of software safety requirements that are
based on the early development of system-level safety, as
well as the results of hazard analysis and hazard testing. The
requirements may also include general guidelines for
software safety programming, industry, government, or
international programming standards to be reviewed by the
software development team. The analyses commonly related
to software requirements are: (a) Top-down analysis of
software safety requirements; (b) Analysis of critical
requirements; (c) Specifications analysis; (d) Formal
methods and model checking; and (e) Model-checking.

To explain the analysis methods in above, we Top-Down
analysis and analysis of critical requirements have been
described in the previous section. Formal specifications
remove ambiguities and uncertainties, allowing for the
detection of non-configurable errors. Elimination of defects
is far less expensive when they are found and corrected early
in the lifecycle. In other words, formal methods are a
mathematical approach for determining and validating a
software system. Specification analysis evaluates the
completeness, correctness, consistency, and testability of
software, and requirement specification analysis should
evaluate requirements individually and as an integrated set.
The important techniques used to perform specification
analysis are: (a) Reading Analysis; (b) Traceability
Analysis; (c) Control-flow analysis; (d) Information
analysis; and (e) Functional simulation.

Reading analysis examines the requirements
specifications to uncover inconsistencies, conflicts and
ambiguous or missing requirements. The control-flow
analysis inspects the order in which software functions will
be performed. It identifies missing and inconsistently
specified functions. The information-flow analysis explores
the relationship between functions and data. Incorrect,
missing and inconsistent input/output specifications are
identified. Data flow diagrams are commonly used to report
the results of this activity. Functional simulation models
investigate the features of the software component for
predicting quality, checking the human understanding of
system features and assessing feasibility.

4.5. Software Architecture Design Phase

The software architecture of a system is the set of
structures needed to reason about the system, which
comprise software elements, relations among them, and
properties of both. As shown in Fig.3, the methods used in
this phase are as follows (Table 2).

SH. Oveisi et al. / A New Approach to Promote Safety in the Software Life Cycle.

84

Table. 2. The Methods in software architecture design phase

Task Method

Formal inspection focus on the major breakdown of software components, verifying the modularity and independence of all
safety-critical component.

Formal Inspection design products

Model Checking is a form of the formal methods that verifies a finite-state system. Model checking is an automatic method, and
tools exist to provide that automation(for instance: SPIN and SMV)

Formal Methods and model checking

The main purpose of SFTA is to identify possible deficiencies in software requirements, design, or implementation, which may
result in undesirable events in software.
FMEA aims to identify, classify, and evaluate the hazards and risks associated with them.

SW FMEA/FTA

Each software element that is not safety-critical is examined to assure that it cannot cause or contribute to a hazard Hazard risk assessment

Each software element examines to assure that it cannot cause or contribute to a hazard. Software element analysis

Verify that safety-critical computer software components(CSCs) should be independent of non-critical functions independence
analysis is a way to verify it.

Independence Analysis

Evaluates the description and intended use of each data item in the software design Design Data Analysis

Verifies the proper design a software component interfaces with other components of a system Design Interface Analysis

This analysis ensures that each safety-critical software requirement is covered and that an appropriate criticality level is assigned
to each software element

Design Traceability Analysis

The dynamic flow graph methodology (DFM) is an integrated methodological approach to modeling and analyzing the behavior
of software-driven embedded systems for the purpose of reliability/safety assessment and verification[45].

Dynamic Flow Graph Methodology

Rate monotonic analysis is a mathematical method for analyzing a set of real-time tasks that applied to priority inversion, task
interactions,and aperiodic tasks.

Rate Monotonic Analysis(RMA)

The requirement state machine(RSM) is sometimes called the Finite State Machine(FSM). An RSM is a computation model or
depiction of a system or subsystem, showing states and the transitions between the states.

The requirement state machine(RSM)

We examine the software system FMEA/FTA to review
software safety in this paper. In this phase of software
development, the objectives of the software safety program
include the identification of important components of
software and functions, the use of appropriate high-level
analysis methods for these components and functions that
contribute to avoidance or reduction of potential risks. The
software development team defines necessary software
components and functions to create a working system
detecting all software safety requirements. The software risk
analysis method can estimate the accuracy or criticality level
for each software component or function. The criticality
level depends on potential risks that can arise from a detailed
defect in a software component or function. A higher level
of analysis is required if there is a high level of criticality.
To achieve these goals, there is a need for an extended fault
tree analysis to detect specific software components or
functions generating software scenarios that may lead to
probable hazards. System-level SFMEA analysis identifies a
wide range of possible failures. The dedicated critical
software components or functions are based on maximum
probable risk developed in failure trees due to potential
software problems.

4.5.1. Fault Tree Analysis

At this phase of development, the existing fault tree is
revised, so that it includes specific software modules. This
typically involves a replacement based on structural analysis
of software architecture.

4.5.2. System SFMEA

As mentioned, SFMEA can be done at different design
phases to match the system design process. The system-level
SFMEA during software safety architecture analysis is
meant to examine the structure and protect the underlying
system design, and the system risk test results and PHA are
essential to system-level SFMEA inputs.

4.6. Software Coding and Detailed Design Phase

As can be seen in Figure 3, the following points are
considered in the software architecture phase. Evidently, we
will review the detailed FMEA/FTA and defensive
programming to examine the software safety. Software
safety detailed analysis includes: (a) Software detailed
FMEA/FTA; (b) Software safety code analysis; (c)
Defensive programming; (d) Formal inspections of safety-
critical code; and (e) Code data and logic analysis.

At this phase of software development, the objectives of
the software safety program include a detailed analysis of
software design and implementation to help ensure that the
required level of safety is reached. The subsystem interfaces
may be analyzed to identify the potential risks associated
with subsystems, and the analysis may be checked for
intrinsically insecure situations caused by I/O scheduling,
out-of-order events, lateral environments, etc. Detailed
SFTA and SFMEA are two methods that can be used to
achieve the goals of the software safety program. The high-

 Journal of Computer & Robotics 12 (1), 2019 77-91

85

level software risk analysis using FTA in architecture and
requirements phases can be further developed to analyze the
inherent risks detected in software scenarios and variables.
Detailed FMEA can be performed for all or a majority of
software modules at risk by tracking intrinsic failures in
input variables and logical process. In this section, FTA and
FMEA procedures have been described and compared in
detailed design and code level.

Table. 3. The Methods of software coding and detailed design phase

Task Method

detailed software FMEA method is a systematic review
of real-time software of a product in order to identify the
effects of potential faults in unique variables used in the
software.

Software detailed
FMEA/FTA

Using the detailed design of software and existing codes,
the fault tree can be extended to the detection of low-level
software components, which are directly allocated to high-
level software components in the previous fault tree.

Defensive
programming

defensive programming is a set of methods, techniques,
and algorithms designed to prevent errors that lead to
failure.

Formal Inspections
of safety-critical
code

Formal inspections are one of the best methodologies
available to evaluate the quality of code components and
program sets.

Code data and logic
analysis

4.6.1. Detailed Software FTA

The existing fault tree links high-level components and
functions to potential risks from software architecture phase.
Using the detailed design of software and existing codes, the
fault tree can be extended to the detection of low-level
software components, which are directly allocated to high-
level software components in the previous fault tree. These
low-level software components can be considered as the core
safety, and any software risk avoidance requirement can then
be detected. When the results of detailed software FMEA
method are available, FTA and FMEA results can be
compared for compatibility and integrity. The same goal is
pursued when FTA is used for software. Software risk
becomes the top event with system elements, processes,
procedures, and so on. In this method, the templates are
given for each large structure in a given program, and the
fault tree for the program is then generated by combining
these templates. Unfavorable events are detected to perform
software FTA.SFTA, which is considered as a verification
tool, is used to identify the defective site in software design.

4.6.2. Detailed Software FMEA Method

As stated above, the detailed software FMEA method is a
systematic review of real-time software of a product in order
to identify the effects of potential faults in unique variables
used in the software. To help perform the FMEA, various
maps have been developed to design all input, output, local,

and global software variables in accordance with the
software programs. Therefore, each variable, whether input
or output, has its own design. Each of the input variables is
another hardware variable or output of the program.

4.6.3. Integration of Results

When FMEA is implemented on each of the software
modules, output variables are used to present a project
between these modules. The effect of the fault on the input
of a module is followed by its correspondent input fault
mode in the next module. Such tracking of the mode or
impact of variables’ faults will be repeated until the variables
reach a high level of the program. To prove this, the tracking
creates software sequences linking software modules and
acquired data variables to final inputs. A fault map for risks
is detected when a set of fault effects are followed up to high-
level programs. Detailed FMEA of software is similar to the
hardware FMEA with the exception that the variables
replace the signals and electronic hardware signal paths.
Finally, when detailed FMEA is finished, a map of possible
high-level risks for top-level key variables will be provided.
Top-level key variables are those necessary and sufficient to
activate the potential risk of software mode. If detailed
FMEA detects a probable failure mode that follows potential
risks, then the false implementation of software safety will
be detected and corrected. Similar to system-level FMEA,
software design defects should be detected and the required
information updated. Safety test information is updated
using other safety software specifiying the demands in a
detailed design and coding step.

4.6.4. Defensive Programming

In addition to FTA and FMEA methods applied at this
phase of software development, accepted or extended
programming guidelines often indicate that the developers
implement defensive programming techniques. The
defensive programming of software writing style can handle
anything that happens on it; in other words, defensive
programming is a set of methods, techniques, and algorithms
designed to prevent errors that lead to failure. A strategy
should be considered at the beginning of the program to deal
with defects, faults, and errors. To write the program, this
paper proceeds as follows: the essential functions of the code
are separated from unnecessary functions to reduce the
likelihood of a possible fault leading to potential risks. The
use of 0 and 1 logics to interpret the scenarios or decision-
making results of original safe functions is not recommended
due to quantitative reasons.

SH. Oveisi et al. / A New Approach to Promote Safety in the Software Life Cycle.

86

4.7. Software Verification and Validation Phases

In this phase of software development, the following
points can be mentioned based on safety. The goal of the
software safety program is to implement the test plans
ensuring that the software has met all the software safety
requirements. This typically includes unit testing and an
integration test. Testing programs prove that fault detection
and inhibition have been fulfilled as expected. The
documents that are written in this phase are summarized in
Table 4.

Table. 4. Documentation for the verification and validation phase

Document Software safety

Integration Test Plan

Testing should exercise the connections between
safety-critical units and non-critical units or
systems.

System Test Plan

Extreme, but possible, environments should be
tested (heavy load, other stressors) to verify the
system continues to function safely within all
plausible environments.

Test Reports

Verify test was completed as planned and all safety-
critical elements were properly tested. Report
results of testing safety-critical interfaces versus the
requirements outlined in the Software Test Plan.
Any safety-critical findings should be used to
update the hazard reports.

Configuration Management
Audit Report

Verify that the configuration management system is
properly used, especially for safety-critical
elements.

Formal Inspections Report
All defects related to safety-critical elements should
be considered major (must fix).

Analysis Reports
Identification of any safety-related aspects or safety
concerns.

Problem or Failure Reports

Problem or Failure reports should be reviewed for
any safety implications. Any corrective action
should be verified to not cause an additional hazard
or to adversely impact any other safety-critical
software or hardware.

Traceability Matrix

Verify that requirements are traceable all the way
into the test cases. Verify that all safety
requirements have been adequately tested.

The following tests are performed at this stage. Test
simulation, load testing, stress testing, boundary value tests,
test coverage analysis, functional testing, performance
monitoring, disaster testing, resistance to failure testing, red
team testing, regression testing.

5. Case Study

We applied the results of our approach to part of a real
Cyber-physical system known as Data and Command Unit.

Fig. 5. The data and command unit system.

In Figures5 and 6, part of a command system is shown;
the most important goal of the Data and Command Unit is to
issue commands for separation of the nose, engine, and
parachutes based on the simulated time and flight profile.
This section requires the detection of the movement start and
must, in fact, receive the Start signal as a trigger. The start
signal is produced by the simultaneous cut of cord and
compression of mass and spring switch. It is a command
provided to start the operations of the two system processors,
which use data from pressure sensors and the timeline of
their internal timers to perform their operations. The
movement start in cord cable is detected via separation of
male and female parts. In this way, the two bases in the
female part of this connector, which remains on the ground
after the launch, are connected and soldered. In the male part
located on the rocket, one of the bases is connected to the
ground, and the other base is considered as the movement
start signal of cord movement in addition to its connection
to Vcc (Maximum Power Supply Value) by a resistor. When
the male and female parts of cord connector are connected,
the output signal is 0; however, through the separation of
male and female parts of cord connector, the command
signal is connected to Vcc by a resistor and equals to1.
Spring-mass system is, in fact, an acceleration-sensitive
system that activates a bi-directional electrical switch by
sensing a minimum of acceleration. If the acceleration
exceeds a certain threshold, the mass will change form
downward with a certain value to activate the switch located
under the mass. The spring-mass system has been designed
to become active in a minimum acceleration of 2g, indicating
that if an acceleration lower than this value is applied to the
load, the spring-mass system will not be activated. For
example, if a minor acceleration is introduced into the
system when transporting the system or during the tests, a
lack of function of the spring-mass system is ensured. By
connecting the common side of the switch to the ground and
receiving output from the normally closed part, the output
signal becomes 0 before the launch, which turns into1after

 Journal of Computer & Robotics 12 (1), 2019 77-91

87

the launch by the Pull Up resistor. To achieve higher
reliability, the outputs of these mechanisms are added to
each other by AND via hardware arrangement, which is sent
as the movement start signal to different parts. Schematic
representation of connections in this part before and after the
launch is shown in Figure 7.

Fig. 6. Detection of data and command unit of the movement start.

Fig. 7. The block diagram of the movement start detection unit.

Using the above connections, the start signal is equal
to1before the launch and turns0 if the umbilical cord
connector is separated and both the mass and spring are
compressed. The potential risk of such a system is that the
movement start signal is not produced, which is an unwanted
system operation. The unwanted operation of the system can
lead to undesirable system behavior that could potentially be
dangerous. Some causes of unwanted system operation are
shown in Table 5. A system lacking safety strategy has a
high potential risk because an unwanted event may occur.
However, the potential risk decreases after incorporating
appropriate safety features specified by the safety strategy.

5.1. Conceptual Phase

As mentioned, the input of the requirements analysis
phase is taken from the conceptual design phase where the
PHA&STPA is applied to the command system, and the
results are presented as follows (Figure8 and Table 5).

Motor pressure is monitored to increase system
reliability. The safety strategy of 1.2 in table 5is described as
follows. By detecting an average engine pressure higher than
a bar, its relevant t1 time is recorded. If the engine pressure
remains more than A bar for B seconds after t1, then t1 time
is considered as the movement start time for micro (A and B
are determined based on engine type and processing
conditions). With this proposed strategy, the movement start
signal can be triggered as follows. The movement start is
detected via the activation of (spring-mass) and (cord) for
two seconds with or without the proposed safety strategy. By
detecting each of these two cases for movement signal, the
next item is ignored. The movement start is detected by one
of the logic methods: (a) Activation of spring-mass and cord
eruption; or (b) Pressure change based on the proposed
safety strategy.

Fig. 8. Identification of unsafe control actions (STPA).

1
2

UMB_M

1
2

UMB_F

GND

2
3

1

Mass_Spring

GND

R

VCC

Start Signal = 0

Before Launch

SH. Oveisi et al. / A New Approach to Promote Safety in the Software Life Cycle.

88

Table. 5. PHA to identify the movement start in the conceptual design phase

Hazard Name Causes
Hazard

Risk
Safety Strategy

Revised Hazard
Risk

Failure in the movement start

1. Physical damage of mass and spring.
2. Crash and damage of pins.
3. Improper disconnection of cord on
the launcher.
4. The signal sending function does not
work correctly.
5. The connector between the cords,
mass, spring, and the mainboard is
disconnected.
6. The wire or connector is opened
because of impact during or before
throwing.
7. The power supply IC is disconnected.
8. IC is out of order.

high

1. The integrity of mass and spring must be
checked before final assembly/
1.1. Use of two spring‐mass systems
1.2. Sending the command issue signal by
checking the engine pressure
2. The shipment should move in safe conditions
and not be hit in any of its parts.
3. There should be a safe mechanism to unplug
the cord on the launcher.
4. Use of fault-tolerant system approaches in the
software (multiple versions).
5. The connector should withstand the applied
acceleration.
6. The tightness of the connector at the moment
of assembly should be ensured.
7. Soldering of the connector should be such that
it is not disconnected by the applied vibration
before and after throwing off the wire.

Low

5.2. Software Requirement Phase

Considering the mentioned cases in section 4.4, the
methods in this section are shown by a real case study (a part
of the data and command unit system).

With respect to PHA, which was derived from the
conceptual design phase, software hazards led to hazards
according to Table5. Figure 9 shows the software fault tree
analysis (SFTA).

Fig. 9. The Software fault tree in the requirements analysis phase.

For the software system of the mentioned system, the
software fault tree in Figure 9 shows potential detected
software faults. For each of these potential software faults,
the high level of software safety requirement is highlighted.

Table. 6. Software safety requirements

Req. No. Software Safety Requirement

SW-SAFETY-1
The data are sent in two ways (multiple
versions).

SW-SAFETY-2
If the signal is not sent by mass & spring and
umbilical or Engine Pressure, send an alert signal.

SW-SAFETY-3

Using single-version programming techniques,
multi-programming techniques (software fault
tolerance techniques) to prevent incorrect
calculation of micro

SW-SAFETY-4 Sending an alert message if the ICs fail.

For each of the possible software faults, the lowest level
of FTA is shown in (Figure 9). The software safety
requirements are set and during the hazard test, the
requirements are developed for real testing of the system
under a possible hazard. The results of this test specify the
deviation of the error response times and the level required
by the system.

5.3. Analyzing Software Safety Requirements in DCU Systems

According to the methods described in Section 3.5,
methods 1 and 2 are used in this paper.

 Top-down analysis of software safety requirements

 Analysis of critical requirements

Figure 8 (Top-down analysis) and Table 7 (Analysis of
critical requirement) present results and requirements of the
safety analysis in this phase. Table 4 presents the updated
requirements.

Table. 7. Modified Software Safety Requirements

REQ. No Requirements

SW-SAFETY-1

The system sending warning signal must detect
the signal deviation in TBD ms (mass and
spring).
The system should send an alert signal after ms
if the signal is not sent by mass & spring and
umbilical or Engine Pressure).

SW-SAFETY-2

The system sending warning signal must detect
the signal deviation in TBD ms (IC).
(The system should send an alert signal after ms
if the message is not sent from IC).

SW-SAFETY-3
All software must comply with MISRA C
programming guidelines.

SW-SAFETY-4
The software failure management routine should
start turning off the system controller
immediately after detecting the failure.

SW-SAFETY-6
The data received by the two data transmission
pathways should be compared. In case of a
difference, a warning message must be sent.

 Journal of Computer & Robotics 12 (1), 2019 77-91

89

For the movement start detection system, safety results
and requirements are reviewed for compatibility and safety
in Tables 2 and 3, as well as Figure 6. Table 4 shows the
updated requirements. SW-Safety-1 and SW-Safety-2
conditions are obtained with values that are directly
specified. The SW-Safety-3 and SW-Safety-4 conditions are
added to determine the system behavior after identifying a
defect. SW-Safety-5 shows that the software must follow the
programming instructions of Motor Industry Software
Reliability Association (MISRA) to help ensure that the best
programming techniques are employed.

5.4. Software Architectural Design

To help understand the analytic methods presented in this
section, software architecture for the movement start is shown
in Table 8. This software architecture must comply with
detected safety requirements specified in Table 7, and in some
cases, it should involve specific software modules (warning
message system). This architecture includes adjusting the
micro timer and checking the micro pin inputs in the initial
state, and there is also the main loop and a final mode. The
information in this Table is written according to Table 6.

Table. 8. The software architecture of movement start

Init:
Check input of micro pins
Set the timer

Main loop:
Receive Sensor Information
Diagnose Sensor Input
Alert message system (sensor)
Detect motor mode

Receive m&s and umb information
Alert message system (m&s and umbilical)

Send the movement start signal

Final:
Finish (the movement start signal is sent)

5.4.1. Fault Tree Analysis

As discussed in the previous sections, at this phase of
development, the revised fault tree in which the fault tree
includes certain software modules typically involving the
replacement of software part contained in the fault tree (a
point that is essentially based on software knowledge but is
not present in structural software) is substituted with a new
subtree according to structural analysis of software
architecture. The developed subtree is compared with the old
one to ensure that no knowledge has disappeared. For the
software architecture of movement start, the software part of
the failure tree depicted in Figure 10 is replaced with a tree
developed by identifying the immediate causes of the main
software event. This tree is created by traversing the

software architecture shown in the Figure to detect software
designs of software components. The event description in
the tree is measured based on Table requirements. Part of the
revised tree is presented in Figure 10.

5.5. Coding and Detailed Design Phase of Software

As shown in Figure. 11, the main cause of system failure

is the failure in engine turnoff detection. Accordingly, given

the higher sensitivity level of this module, it has been

examined in more detail.

Fig. 10. Revised Fault Tree.

Determine Engine Mode (Boolean Flag 1, Boolean Flag 2)
{

Enumerated System State = (Normal, off);
System state = Lookup state (Flag 1, Flag 2)

If (Engine state = off)then
Call off Task ()

}

Fig. 11. The pseudo code for determination of engine mode.

5.6. Detailed SFMEA Method

As described in Section 5.2, to help the Detailed SFMEA,

various maps are created in order to outline all input, output,

local, and global variables in accordance with software

programs. As stated, when an FMEA is executed in each of

the software modules, the output variables are used to

present a design between these modules. Finally, SFMEA is

shown in the design phase in Tables 9-11.

SH. Oveisi et al. / A New Approach to Promote Safety in the Software Life Cycle.

90

Table. 9. Variables map

Alert
message
system

Diagnose
sensor
input

Determine
relays state

Alert
message
system

The
movement
start signal

Detect
motor
mode

Alert
message
system

Diagnose
sensor
input

Read Sensor
Information

Variable/Routine

 Input Output Variable-1

 output output Input Variable-2

 Input Variable-3

... … Variable...

Output Input Output Variable-n

Table. 10. Detailed SFMCEA

Table. 11. Detailed SFMCEA

Recommendation Potential
Severity

System effect Local effect Software
modules affected

Failure Modes variables
Replace Boolean flags with the
enumerated data type.
Use of fault detection and diagnostic
methods

8
The system will shut
down and thus cause
loss of performance

The engine state does not
correctly detect and cause
a false action.

Determine engine
mode

Normal and off mode is not
correctly detected Flag1

Replace Boolean flags with the
enumerated data type.
Use of fault detection and diagnostic
methods.

10
The system may
provide an incorrect
output

System mode may be
normal when it should be
failed, so no call when
there is a call to off

Determine engine
mode

Normal and off mode is not
correctly detected. Flag 2

Following the solutions presented in Tables 10 and 11,

using the Delphi method, the investigations show the

potential severity reduction, all failure modes, and system

acceptability.

5.7. Use of Operational Strategies to Reduce Risk Severity

in the Movement Start

According to the methods mentioned in section 4.2, the
methods used to reduce the risk severity are explained in this
section. As noted, data transmission pathways are doubled
to reduce risk, improve performance, and promote the
reliability of data transmission pathways. To prevent the
occurrence of common cause failure, two different
redundant mechanisms are used for sending and
communicating. Moreover, to provide early warnings, an
alert system was considered, and as mentioned, safety
requirements were also considered. Multiprogramming and
single programming techniques are the software fault
tolerance methods used to reduce risk, which is shown in
Table 6 as Software Safety Requirements.

Following the methods outlined in this section to reduce
risk severity and the Delphi method of success, it is seen that
severity has decreased.

6. Conclusion

This paper presents software safety methods in the
software lifecycle and then examines the effective
application of these processes on one subsystem of
aerospace systems, namely the data and command unit
system. The successful implementation of the software
safety program is dependent on the experience of the
involved individuals, selection and application of safety
analysis, and evaluation methods during the software
development cycle. For further research, we suggest other
methods proposed in this paper (those presented in Tables 2,
3 and 4), as well as analysis and noise detection in software
systems and the safety in multi-thread programming
methods. Also, the maintenance policy based on risk and
safety criteria can be considered in the next study.

Recommendation Potential
Severity

System Effect Local Effect Failure Modes Software
Element

In specific time units, the specified amount of
data is read and the average is calculated and
compared with the average of previous times if
the difference is greater than the specified value,
and the processor must be given an alert.

10

The system uses the last read
signal value and the processor
will not detect the failure. If the
output is different from the
calculated output of the system, it
may cause a mishap.

No Sensor signal
read Fails to execute Sensor input

It may be due to a problem in the analog to digital
section, sensor failure, the computational error of
the processor, and so on. For hardware bugs,
regular checking of components and systems, and
for fault detection and diagnostic methods for
software bugs.

10

The processor takes the wrong
information and if it is within
range, it does not recognize the
wrong inputs and may cause a
mishap.

Some or all of the
sensor signals are
incorrect

Erroneous Sensor input

 Journal of Computer & Robotics 12 (1), 2019 77-91

91

References

[1] Farsi, M. A., "Develop an Adaptive Prognostic Approach for RUL
Estimation", Technical Report, Aerospace Research Institute
(Ministry of Science, Research and Technology) (2016).

[2] Van Driel, W.D.; Schuld, M.; Wijgers, R.; Van Kooten, W.E.J.,
"Software reliability and its interaction with hardware reliability", In
thermal, mechanical and multi-physics simulation and experiments in
microelectronics and Microsystems (eurosime), IEEE 15th
international conference, pp. 1-8 (2014).

[3] Kooli, M.; Kaddachi, F.; Di Natale, G.; Bosio, A.; Benoit, P.; Torres,
L., "Computing reliability: On the differences between software
testing and software fault injection techniques", Microprocessors and
Microsystems, vol. 50, pp.102-112 (2017).

[4] Park, J.; Kim, H.J.; Shin, J.H.; Baik, J., "An embedded software
reliability model with consideration of hardware related software
failures", In Software Security and Reliability (SERE), IEEE 6th
International Conference, pp: 207-214 (2012).

[5] Lutz, R.R., "Software engineering for safety: a roadmap", ACM In
Proceedings of the Conference on the Future of Software Engineering,
pp. 213-226 (2000).

[6] Habli, I.; Hawkins, R.; Kelly, T., "Software safety: relating software
assurance and software integrity", International Journal of Critical
Computer-Based Systems, vol. 1 no. 4, pp. 364-383 (2010).

[7] Wong, W.E.; Debroy, V.; Restrepo, A., "The role of software in recent
catastrophic accidents", IEEE reliability society 2009 annual
technology report, vol. 59, no. 3 (2009).

[8] Pertet, S.; Narasimhan, P., "Causes of failures in Web applications",
Carnegie Mellon University: Parallel Data Lab, Technical Report
CMU-PDL-05-109 (2005).

[9] Bella, M. B.; Eloff, J. H., "A near-miss management system
architecture for the forensic investigation of software failures",
Forensic science international, vol. 259, pp. 234-245 (2016).

[10] Oveisi, SH; Farsi, M.A, "Software Safety Analysis with UML-Based
SRBD and Fuzzy VIKOR-Based FMEA", International Journal of
Reliability, Risk and Safety: Theory and Application (ijrrs), vol. 1,
pp.1-9 (2018)

[11] NASA,1987, Software Safety: NASA Technical Standard, NASA-
STD-8719.13A.

[12] Albericoet, D. and et al. "JSSC Software System Safety Handbook; A
Technical & Managerial Team Approach", (1999).

[13] Department of Defense, System Safety Program Requirements, MIL-
STD-882C (Department of Defense). 1984.

[14] RTCA, SW Considerations in Airborne Sys. and Equip. Cert.,
RTCA/DO-178B (RTCA);1994.

[15] MOD, Requirements for Safety Related Software in Defense
Equipment; Part 1: Requirements; Part 2: Guidance, MOD DEF STD
00-55 (Ministry of Defense); 1997.

[16] IEC, International Standard; Functional Safety of Electrical
/Electronic /Programmable Electronic Safety-Related Systems – Part
3: Software Reqs., IEC 61508-3 ;1998.

[17] MISRA, Development Guidelines for Vehicle Based Software
(MISRA, November 1994).

[18] Kuettner Jr, H. D.; Owen, P. R, "Definition and Verification of
Critical Safety Functions in Software", In Proceedings of the
International System Safety Conference (ISSC), pp. 337-346 (2001).

[19] FAA system safety handbook, chapter; system software safety,
December 2000.

[20] NASA-STD-8719.13A NASA Software Safety Standard, September
1997.

[21] Swarup, M. B.; Ramaiah, P. S., "A software safety model for safety-
critical applications", International Journal of Software Engineering
and Its Applications, vol. 3, no. 4, pp. 21-32 (2009).

[22] Hiraoka, Y.; Murakami, T.; Yamamoto, K.; Furukawa, Y.; Sawada,
H., "Method of Computer-Aided Fault Tree Analysis for High-
Reliable and Safety Design", IEEE Transactions on Reliability, vol.
65, no. 2, pp. 687 – 703 (2016).

[23] Farsi, M. A., Principles of Reliability Engineering (2016).
[24] NASA-STD-8719.13A, NASA Software Safety Standard;1997.
[25] NASA Software Management Guidebook, NASA-GB-001-96,

November, 1996.
[26] Mastrangelo, C., "Effective FMEAs: Achieving Safe, Reliable, and

Economical Products and Processes Using Failure Mode and Effects
Analysis", Journal of Quality Technology, 44.4: 395 (2012).

[27] Wu, F. J.; Kao, Y. F.; Tseng, Y. C., "From wireless sensor networks
towards cyber physical systems", Pervasive and Mobile computing,
vol. 7, no. 4, pp. 397-413(2011).

[28] Murali, D. V., "Verification of Cyber Physical Systems", Unpublished
Master of Science Thesis. Virginia Polytechnic Institute and State
University, Blacksburg (2013).

[29] Oveisi, SH.; Ravanmehr, R., "Analysis of software safety and
reliability methods in cyber physical systems", International journal
of critical infrastructures, vol. 13, no. 1, pp. 1-15 (2017).

[30] NASA Program and Project Management Processes and
Requirements, NPG 7120.5A, (1998).

[31] Czerny, B. J.; D'Ambrosio, J. G.; Murray, B. T.; Sundaram, P.,
"Effective application of software safety techniques for automotive
embedded control systems", SAE transactions, pp. 194-204 (2005).

[32] Oveisi, SH.; Ravanmehr, R., "Safety and reliability of software",
Sanagostar (2017).

[33] Czerny, B. J.; D'Ambrosio, J. G.; Jacob, P. O.; Murray, B. T.;
Sundaram, P., "An Adaptable Software Safety Process for
Automotive Safety-Critical Systems", SAE Technical Paper (2004).

[34] Oveisi, SH.; Ravanmehr, R., SFTA-Based Approach for
Safety/Reliability Analysis of Operational Use-Cases in Cyber-
Physical Systems", Journal of Computing and Information Science in
Engineering, vol. 17, no. 3 (2017).

[35] Li, S.; Duo, S., "Safety analysis of software requirements: model and
process", Procedia Engineering, vol. 80, pp. 153-164 (2014).

[36] Johansson, C., "On System Safety and Reliability in Early Design
Phases: Cost Focused Optimization Applied on Aircraft Systems",
Doctoral dissertation, Linköping University Electronic Press (2013).

[37] Jet Propulsion Laboratory, Software Systems Safety Handbook.
[38] Lawrence, J. D., "Software safety hazard analysis (No. NUREG/CR--

6430)", Nuclear Regulatory Commission (1996).
[39] Oveisi, SH; Farsi, M. A, "Software Assurance for aerospace systems",

Technical Report, Aerospace Research Institute (Ministry of Science,
Research and Technology (2018).

[40] Plattsmier, G.; Stetson, H., "Autonomous real time requirements
tracing", In IEEE Aerospace Conference, PP. 1-9 (2014).

[41] Department of Defense, Software System Safety Handbook, A
Technical & Managerial Team Approach, Dec. 1999, by Joint
Software System Safety Committee.

[42] Pham, H., "System Software Reliability", in Springer series in
Reliability Engineering, vol. 79, London, Springer, pp. 45-52 (2006).

[43] Cinque, M.; Cotroneo, D.; Pecchia, A., "Event logs for the analysis of
software failures: A rule-based approach", IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 806-821 (2013).

[44] Garrett, C. J.; Guarro, S. B; Apostolakis, G. E., "The dynamic
flowgraph methodology for assessing the dependability of embedded
software systems", IEEE Transactions on Systems, Man, and
Cybernetics, vol. 25, no. 5, pp. 824-840 (1995).

