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Abstract 

Developing a reliable and safe system is one of the most important features of advanced computer-based systems. The 
software is often responsible for controlling the behavior of mechanical and electrical components as well as interactions 
between components in systems. Therefore, considering software safety and fault detection are essential in software 
development. This paper introduces an approach to engineering evidence that examines the software in its lifecycle 
according to the principles of software safety and system safety engineering. This approach ensures that software risks are 
identified and documented in the software lifecycle, after which the risks are reduced to an acceptable level in terms of 
safety according to the proposed methods. The presented approach was applied to a real master case with positive results, 
namely the Data and Command Unit. 
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1. Introduction 

Safety based design with consideration of safety in 
software is an essential component in the industries related 
to modern sciences and their design processes. System 
engineers define reliability and safety requirements to 
achieve a system at a world-class level. This system should 
work in various conditions and keep its performance at an 
acceptable level. With the ever-increasing requirement of 
reliability and safety for critical and vital systems, accurate 
assessment of the pending failure of a system has become an 
active research area over the past decades [1]. The existence 
of software on systems increases complexity, and both 
hardware and software can create faults in the system. The 
faults in complex systems can cause a loss of features in the 
system. For this reason, the need for methods is felt that can 
prevent these faults and discuss software safety and 
reliability [2, 4]. 

According to studies conducted by National Institute of 
Standards and Technology, the cost of a software error in US 
economy is approximately 59.5 billion US dollars per year 
(nearly 0.6% of GDP). It is also estimated that over one-third 
of costs (i.e. 22.2 billion US dollars) can be cut with the 
improvement in infrastructure, including the use of software 
assurance and tests that detect, anticipate, and eliminate the 
fault. Considering the above statements, the application of a 
method to increase software reliability seems to be essential 
in these systems [31]. Safety addresses risk factors to 
analyze and monitor their control and mitigation strategies. 
In addition, Safety is related to the field of software 
development, which involves testing and modeling the 
ability of the software to function correctly without failures 
or software faults causing software failures5-6.In order to 
understand the importance of software safety, an example of 
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a software failure that resulted in system failures has been 
presented below. 

Demonstration of Autonomous Rendezvous Technology 
(DART) is designed to be implemented in Multiple Paths 
Beyond Line of Sight Communications (MUBLCOM) in a 
variety of maneuvers in the satellite. These operations are 
accomplished without assistance personnel engaged in the 
ground activities. The activities of the DART team show that 
software causes play a significant role in the history of 
incidents, which has not been taken into account in many 
events in the past and caused a big bug in accident 
investigations. Also, the team believes that any changes in 
the system software should be documented appropriately, 
and safety-critical software should not be hypersensitive to 
erroneous data [7]. Implementing a Software Safety 
Program is the best routine to help confirm the identification 
of potential software risks and reduce the respective risks. 
Successful implementation of the Software Safety Program 
involves the selection and application of effective analytical 
tasks and methods tailored to specific project needs, which 
meet the terms of the Software Safety Program. 

The Data and Command Unit is one of the main 
subsystems in aerospace systems, which issue the movement 
start signal as the basis of all subsequent activities of this 
type of system. The essential system operation software is 
responsible for issuing commands such as sending and 
receiving signals between internal parts of the system, 
setting the micro timer, and so forth. Unexpected 
interactions between hardware, software, and operating 
environment can provide potentially dangerous and/or 
hazardous conditions. Unlike electrical or mechanical 
hardware, the software is not eroded over time, and it can be 
said that the software does not experience the failure. 
However, hardware performance requires proper software 
running, and the desired function of the system, which is 
determined by software, may not be executed by the 
embedded system software. Failures in software can cause 
downtime (out of service/and or out of operation time) and 
poor performance of asystem [8]. The poor performance or 
at worst case the downtime of a system can be listed in any 
of the following ways: partial or entire system unavailability, 
system imperfections and lack of accessibility, wrong 
results, loss of or unusable data, and slow system 
performance.  

The main reasons for common software failures are the 
inability to upgrade, a logic error in software code, a bug in a 
core network device, resource exhaustion, data corruption, 
hardware failures [9].  Also, common sources for the failure 
of hardware, which can internally or externally control 

software execution, are as follows: memory failures either in 
the space of code or variables, CPU failures (ALU and 
registers), external failures (ports, watchdog, timer, interrupt 
manager, and so on). Errors of software logic may occur due 
to defective or incompatible requirements as well as software 
design errors or implementation of the code. Failure 
conditions due to software logic errors may include endless 
loops, false calculations, longer time to complete the 
executive routines, and the like. Moreover, the software stored 
on an embedded system may not be correct if the tools 
necessary to configure and compile the software as expected 
are lacking. For example, memory cell defects can lead to 
conditions where the software jumps inadvertently to the end 
of a routine or middle of another routine. Failure scenarios 
such as returning the wrong priority or inability to return (and 
thereby blocking interruptions of less importance) can also be 
a function of memory failure. Embedded system designers can 
use engineering procedures of system safety to deal with 
software defects. However, the unique scenarios of possible 
failure and general complexity of software will ensure that 
other software-specific tasks and processes are included in the 
overall system safety plan. To address this requirement, an 
effective implementation program of safety techniques for the 
command system should also involve software safety 
practices. The Software Safety Program involves the 
implementation of a number of software-related tasks aimed 
at identifying and minimizing potential software failures [10]. 
While software safety requirements can be taken from 
software guides and other published sources, there is a deficit 
in research presenting all the approaches leading to software 
safety of computer systems in all phases of the software 
lifecycle. Therefore, in this paper, we have presented 
approaches to establish software safety to be implemented on 
a real case study (Data and Command Unit) in a path to safety 
from the first phase of software to the end. The results showed 
improvement in safety of this software system. 

In Section II, we will review the research background. In 
Section III, the status of the problem is reviewed. In Section 
IV, the methods of safety in the software lifecycle will be 
discussed, and in the final section, we will use these 
approaches for DCU evaluation of a Data and Command Unit.  

2. Research Background 

Several methods, guidelines, and standards have been 
developed to provide information in the field of software 
safety and software safety processes. The requirements for 
implementing a systematic technique/approach to software 
safety have been standardized as essential and inseparable in 
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the NASA-STD-8719.13A standard provided by the JSSC 
committee. This standard is applied in software issues that 
may contribute to reaching-detecting or taking corrective 
action for a system in a specific dangerous state, which is 
intended to mitigate the damage if a mishap occurs. During 
the safety analyses of the subsystem/system, safety-critical 
software is identified and the software safety level 
determined based on the category of the system and the 
severity of the hazard [11]. Moreover, the JSSC handbook 
provides guidelines and technical approaches to 
management and control of the risk issues associated with an 
acceptable safety level with high assurance levels in order to 
execute the software inside the system [12]. Accordingly, 
MIL-STD-882C has provided system safety in detail and 
covered the software safety process in part. Primarily, MIL-
STD-882C provides a process for the assessment of software 
hazard risk in which the degree of control and potential 
hazard severity are considered as the exercises of software 
over the hardware [13]. Also, in the field of airborne systems 
performance, required safety equipment according to 
airworthiness requirements with high confidence intervals is 
provided by Radio Technical Commission for Aeronautics 
(RTCA): RTCA/DO-178B. In this guideline, the safety tasks 
on software categories are discussed in detail [14]. The 
MOD DEF STAN 00-55 standard emphasizes the necessary 
procedures for design, production, specification, coding, and 
maintenance activities in-service, as well as software 
modification of safety-critical issues. Two categories related 
to software are provided in the standard: safety-critical and 
safety-related software. The former has discussed the 
functions of systems that are imposed on critical conditions 
related to the safety of the system. The latter is related to a 
system safety function encompassing all Safety Integrity 
Levels (SILs) and covering the high risked human-life to 
recommend requirements for mitigating the causes from a 
software point of view [15]. With respect to software 
requirements and activities for safety phases of the lifecycle, 
the IEC 61508 part 3 standard is should be used to develop 
a safety-related system during the design and development 
of safety-related software, as well as requirements for 
software safety validation [16]. Furthermore, in the field of 
automotive software, Motor Industry Software Reliability 
Association (MISRA) has provided specific issues related to 
the information on guidelines. While MISRA does not 
directly address safety software, it presents a general 
approach to software development with recommendations 
[17]. As a final research background, APT Research Inc. 
provided a process for verification and definition of 
software’s critical safety functions in 15 steps. The process 
involves identifying hazards of the system, detecting 

requirements for software safety function, and safety efforts 
tailored to critical situations [18]. 

As mentioned, software safety considerations have been 
discussed in many papers, but the life cycle of the software 
along with an actual case study has been relatively ignored. 
Because of the importance of safety in a software process, in 
this paper, methods have been developed to provide safety 
and to apply a Data and Command Unit. 

3. Statement of the Problem 

As can be seen in Figure 1, if hardware or software faults 
in the system are not detected by fault detection 
methods/systems, they can lead to system errors, the 
propagation of which can result in safety failure or hazard 
that can ultimately cause an unfavorable event. According to 
the above statements, a fault in the system can lead to the 
occurrence of unfavorable events; therefore, the methods 
capable of preventing these faults are vital to the system. 
Considering the importance of this matter as well as the 
crucial role of software in computer-based systems, this 
paper discusses software production methods based on 
safety in the life cycle. 

 

Fig. 1. A view from fault to mishap. 

3.1. Software Safety Methods in Risk Management Process 

The success of a software development project depends 
quite heavily on the amount of risk that corresponds to the 
level of risk associated with each project activity. As a 
project manager, it is not just sufficient to be aware of the 
risks. To achieve a successful outcome, project leadership 
must identify, analyze and evaluate all the major risks. 
Then, the identified risks are reduced to an acceptable 
level. Software assurance procedures are used to identify 
the risks. In software, assurance must be considered safety, 
reliability, quality, verification, and validation in the 
software life cycle. To maintain these disciplines, a variety 
of risk identification methods are used. We focus on safety 
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and its approaches, including FTA, FMEA, PHA, etc. As 
shown in Figure2, software assurance methods generally 
play a major role in the software risk management process. 

 

Fig. 2. The software assurance methods in risk management process. 

4. Safety in Software Lifecycle 

In Figure 3, the safety tasks are shown in the software life 
cycle. In this paper, we focus on safety in software 
development, and in the rest of the paper, a number of 
important tasks are explained and applied to a real case. 

4.1. The Proposed Approach 

Figure 4 shows the proposed approach to increase 
software safety in engineering systems. The workflow of the 
proposed method is shown in the following Figure. 
Strategies are considered to reduce the risk severity of the 
whole approach. In the conceptual design phase of the 
approach, Preliminary Hazard Analysis (PHA) &Systems 
Theoretic Process Analysis (STPA) are performed. During 
the analysis phase, the requirements of Software Hazard 
Analysis are usually performed by Fault Tree Analysis 
(FTA), Failure Mode and Effects Analysis (FMEA) and 
Preliminary Hazard Analysis (PHA). The output of these 
methods is then applied to hazard testing. Critical Time is 
considered in hazard testing, and finally, review of software 
safety requirements is performed using one of the several 
methods. These methods are classified into (a)Top-down 
analysis of software safety requirements; (b) Analysis of 
critical requirements; (c) Specifications analysis and (d) 
Formal methods (B-method, Circle, KIV, Binary Decision 
diagram, etc.) 

Subsequently, in the design phase of software 
architecture, SFTA, and SFMEA, the system level is 
designed with the help of software architecture and analysis 
phase outputs of requirements. In the code phase and 
detailed design of software, SFTA and SFMEA are done 
with the help of a map of sample variables as well as 
defragmentation of results and programming. At the end, 
Verification & Validation is done using a variety of tests. 

 

Fig. 3. The Software safety tasks in the software lifecycle. 



 Journal of Computer & Robotics 12 (1), 2019 77-91 

 

 

81

 

Fig. 4. The workflow of the proposed approach. 

4.2. Operational Strategies to Reduce Risk Severity 

In a Real-World system, system elements are designed 
with high quality, and there are several strategies to diminish 
the severity of risk, including the strategies used to reduce 
the risk in designing aerospace systems as follows [19]. 
These methods are used throughout the software safety 
program approach. 

 Design for Fail-Safe: In some systems, designers 
can provide a state for the system as a safe mode. When 
hazardous events occur or an operation may lead to a 
dangerous condition, the system or operator detects a 
hazard situation that can damage the system, operator 
or environment, changes in working conditions of 
system/operator, and transfer to a safe state. This 
transfer can be performed by stopping hazardous 
operation and starting a new mode or work with less 
risk. This system is called a fail-safe system. 

 Design for Fault-Tolerance: In a system design 
process, designers can provide a situation for the 
system, so that when a failure occurs in the system, the 
system continues its operation and the failure is 
covered. This method of design is called a fault-
tolerant design. 

 Design for Redundancy: To increase the 
reliability of a system and reduce its failure likelihood, 
we should duplicate the critical items. In this case, the 
designers often use the second item as a backup for the 

failed item, which means having backup items that 
automatically “kick in” should one component fail. 
This scheme is recommended for single-point failures. 

 Providing early warning: Failures that occur 
without warning are more dangerous than those with a 
warning. Catastrophic effects can be avoided by adding 
a warning device to system design. 

 Use of Hazard barrier: A barrier is defined as a 
measure that is put in to prevent the release of a hazard 
or the occurrence of a top event once the hazard is 
released, and the barriers may be physical or non- 
physical, including correct/valid operating procedures. 
Time delays in processes decrease the speed of 
equipment, leading to maintenance when due. A 
compensating error is an accounting error that offsets 
another accounting error. These errors can be difficult 
to spot when they occur within the same account and 
in the same reporting period since the net effect is zero. 
A statistical analysis of an account may not find a 
compensating error. 

 Near-Miss Analysis: Near-miss analysis, which 
refers to the detection and subsequent analysis of near-
misses, is a technique used in the domain of risk 
analysis and safety, and near-miss analysis attempts to 
identify the root cause of the accident and prevent a 
recurrence, which has been used successfully in 
various industries for decades [9]. 
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 K-out-of-N system: In a sensitive and important 
system such as the control system of a spacecraft or a 
safety system, designer use K-out-of-N scheme to 
improve and modify the system reliability. In this case, 
Nun it's provided and the final output depends on K 
units of the system. For instance, a system determines 
a parameter, and if K of the units' output is similar, then 
the system will work based on the output. In this 
system, if a unit is failed, the system performance may 
not be reduced. Only when the number of failed units 
is more than (N-K) units is the system failed. The 
system's reliability to achieve a safe system is 
increased by this scheme. 

4.3. Safety in Conceptual Phase 

In the conceptual phase, at first, the user’s requirements 
and the features that the system should have to be checked 
for this work in the documentation and checklist of the 
similar systems are assisted. Then the PHA for the system 
should be prepared, which can be done with Hazard 
Verification Matrix. PHA detects the failures and their 
countermeasures and then provides a list of them. Of course, 
PHA does not indicate those system failure scenarios that 
occur simultaneously, which is a disadvantage that can be 
mentioned. STPA is used for better identification of unsafe 
control actions. These control hazards are used in PHA and 
SFTA for phase requirement analysis. STPA provides 
guidance and systematic process to identify the potential for 
adequate control of the system, which could lead to a 
hazardous state resulting from inadequate control or 
enforcement of the safety constraints. 

4.4. Safety in Requirements Analysis Phase 

If software assurance assessment does not start from early 
phases of software development, the cost of software failures 
and errors is exponentially increased. The goals of Software 
Safety Program are to eliminate, reduce, or control the 
possible hazards associated with potential software failures. 
Software safety requirements may include 
national/international standards, customer requirements, or 
corporate needs. A matrix for the identification of software 
safety requirements can begin tracking requirements 
throughout the development process. The methods used to 
obtain software safety goals are categorized as into (a) 
Software safety requirements review; (b) Hazard testing; (c) 
Software hazard analysis; and (d) Operational strategies to 
reduce risk severity 

Software hazard analysis identifies the possible software 
scenarios that can detect potential hazards during 
preliminary hazard analysis (PHA).Using the relationship 
created between software scenarios and potential hazards, 
prevention requirements of software hazards are developed, 
including specific software safety requirements through 
which hazard testing is identified at specific response times 
that must be provided by the operational software to help 
ensure that potential risks are avoided [20]. Finally, the 
examination of software safety requirements helps ensure 
that they are fully compliant and operational strategies for 
risk reduction, which are also considered in the design of 
software and related hardware. In the following sections, 
more detailed descriptions of software safety analysis 
methods are provided, which may be used to achieve the 
software safety objectives. 

4.4.1.  Software Hazard Analysis 

Software hazard analysis involves the identification of 
possible software hazards that may lead to potential system 
hazards [21]. For any potential system hazard, possible 
software scenarios leading to hazards are identified. 
Software hazard analysis is obtained from a variety of 
sources and is usually divided into two categories: general 
and specific. General software safety requirements are 
derived from a collection of requirements that can be used in 
different applications and environments to solve common 
software safety problems [22]. Specific software safety 
requirements are taken from system-specific functionalities 
or constraints identified by methods defined in Table 1. 

Table. 1. The methods used for identifying operating system limitations or 
functionality 

The software fault tree is the most commonly used 
method among the three addressed approaches. As stated, it 
is a top-down method that identifies a number of unwanted 
effects at a high level, a process that is repeated so that the 
causes of related events as well as their associated factors are 

Fault Tree Analysis (FTA): 
FTA takes a top-down approach to system failure, proceeding from 
the top to the intermediate and basic events, which are all events 
that are undesirable and connected through cause-and-effect 
relationships. 

Method 1 

Through Primary Hazard Analysis (PHA): 
Preliminary hazard analysis(PHA)is a semi-quantitative analysis 
that is performed to: 
1.Identify all potential hazards and accidental events that may lead 
to an accident  
2.Rank the identified accidental events according to their severity 
 3.Identify required hazard controls and follow-up actions 

Method 2 

Through bottom-up analysis of design data (for example, flow 
diagrams, failure mode, effects and criticality analysis (FMECA). 
FMECA uses an inductive approach to system design and 
reliability. It identifies each potential failure within a system or 
manufacturing process and uses severity classifications to show the 
potential hazards associated with these failures. 

Method 3 



 Journal of Computer & Robotics 12 (1), 2019 77-91 

 

 

83

investigated. This analysis continues until a group of causes 
is identified [23]. These are underlying causes for software 
scenarios to analyze software system-level hazards. The 
requirements analysis phase obtains its safety inputs from 
the conceptual design phase, which is defined for our system 
as follows. The goal of PHA is to identify all potential 
hazards and hazardous events that may cause accidents and 
to detect required hazard controls and follow-up actions. 
PHA is performed in the conceptual phase of system 
development; therefore, safety requirements to control the 
identified hazards can be decided and incorporated into the 
initial design [24].STPA provides guidance and systematic 
process to identify the potential for adequate control of the 
system, which could lead to a hazardous state resulting from 
inadequate control or enforcement of the safety constraints. 

4.4.2. Hazard Testing 

Software safety requirements have been set for each of 
the possible software failures. During the hazard test, the 
need for real testing of the system under potential risk is 
assessed. The results of this test specify the deviation of error 
response times and the level required by the system. The 
main principle to be considered at this stage is the critical 
times and safety automation, which are briefly reviewed 
below [25]. 

• Critical Time: Safety-critical systems sometimes have 
a "critical time" feature, which is the interval between the 
occurrence of an error and system’s reaching to an unsafe 
state. This interval is a period during which it is possible to 
perform automated/manual operation or protection through 
software, hardware, or a human operator. The design of 
recovery and protective measures should fully take into 
account the real-world conditions and crisis time [26]. 

• Automatic safety: The automatic safety is often needed 
if the critical time is shorter than the actual response time by 
a human operator, or if no human being is involved. This can 
be done by hardware, software, or a combination of them, 
considering the best system design to achieve safety. 

• Analyzing Software Safety Requirements: 
Verification of requirements analysis activities is left to the 
software safety requirements, which can also search for new 
hazards, software functions that may be used to control the 
hazards and ways through which the software can run 
unexpectedly. Exploring software safety requirements is a 
recognized need for software safety compromised by 
hazards to help ensure the integrity and compliance of the 
software. Delayed detection of software safety needs can 

affect expense, timing, and so on. The final product of this 
work is a collection of software safety requirements that are 
based on the early development of system-level safety, as 
well as the results of hazard analysis and hazard testing. The 
requirements may also include general guidelines for 
software safety programming, industry, government, or 
international programming standards to be reviewed by the 
software development team. The analyses commonly related 
to software requirements are: (a) Top-down analysis of 
software safety requirements; (b) Analysis of critical 
requirements; (c) Specifications analysis; (d) Formal 
methods and model checking; and (e) Model-checking.  

To explain the analysis methods in above, we Top-Down 
analysis and analysis of critical requirements have been 
described in the previous section. Formal specifications 
remove ambiguities and uncertainties, allowing for the 
detection of non-configurable errors. Elimination of defects 
is far less expensive when they are found and corrected early 
in the lifecycle. In other words, formal methods are a 
mathematical approach for determining and validating a 
software system. Specification analysis evaluates the 
completeness, correctness, consistency, and testability of 
software, and requirement specification analysis should 
evaluate requirements individually and as an integrated set. 
The important techniques used to perform specification 
analysis are: (a) Reading Analysis; (b) Traceability 
Analysis; (c) Control-flow analysis; (d) Information 
analysis; and (e) Functional simulation. 

Reading analysis examines the requirements 
specifications to uncover inconsistencies, conflicts and 
ambiguous or missing requirements. The control-flow 
analysis inspects the order in which software functions will 
be performed. It identifies missing and inconsistently 
specified functions. The information-flow analysis explores 
the relationship between functions and data. Incorrect, 
missing and inconsistent input/output specifications are 
identified. Data flow diagrams are commonly used to report 
the results of this activity. Functional simulation models 
investigate the features of the software component for 
predicting quality, checking the human understanding of 
system features and assessing feasibility. 

4.5. Software Architecture Design Phase 

The software architecture of a system is the set of 
structures needed to reason about the system, which 
comprise software elements, relations among them, and 
properties of both. As shown in Fig.3, the methods used in 
this phase are as follows (Table 2). 
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Table. 2. The Methods in software architecture design phase 

Task Method 

Formal inspection focus on the major breakdown of software components, verifying the modularity and independence of all 
safety-critical component. 

Formal Inspection design products  

Model Checking is a form of the formal methods that verifies a finite-state system. Model checking is an automatic method, and 
tools exist to provide that automation(for instance: SPIN and SMV) 

Formal Methods and model checking 

The main purpose of SFTA is to identify possible deficiencies in software requirements, design, or implementation, which may 
result in undesirable events in software. 
FMEA aims to identify, classify, and evaluate the hazards and risks associated with them. 

SW FMEA/FTA 

Each software element that is not safety-critical is examined to assure that it cannot cause or contribute to a hazard Hazard risk assessment 

Each software element examines to assure that it cannot cause or contribute to a hazard. Software element analysis 

Verify that safety-critical computer software components(CSCs) should be independent of non-critical functions independence 
analysis is a way to verify it. 

Independence Analysis 

Evaluates the description and intended use of each data item in the software design Design Data Analysis 

Verifies the proper design a software component interfaces with other components of a system Design Interface Analysis 

This analysis ensures that each safety-critical software requirement is covered and that an appropriate criticality level is assigned 
to each software element 

Design Traceability Analysis 

The dynamic flow graph methodology (DFM) is an integrated methodological approach to modeling and analyzing the behavior 
of software-driven embedded systems for the purpose of reliability/safety assessment and verification[45]. 

Dynamic Flow Graph Methodology 

Rate monotonic analysis is a mathematical method for analyzing a set of real-time tasks that applied to priority inversion, task 
interactions,and aperiodic tasks. 

Rate Monotonic Analysis(RMA) 

The requirement state machine(RSM) is sometimes called the Finite State Machine(FSM). An RSM is a computation model or 
depiction of a system or subsystem, showing states and the transitions between the states. 

The requirement state machine(RSM) 

We examine the software system FMEA/FTA to review 
software safety in this paper. In this phase of software 
development, the objectives of the software safety program 
include the identification of important components of 
software and functions, the use of appropriate high-level 
analysis methods for these components and functions that 
contribute to avoidance or reduction of potential risks. The 
software development team defines necessary software 
components and functions to create a working system 
detecting all software safety requirements. The software risk 
analysis method can estimate the accuracy or criticality level 
for each software component or function. The criticality 
level depends on potential risks that can arise from a detailed 
defect in a software component or function. A higher level 
of analysis is required if there is a high level of criticality. 
To achieve these goals, there is a need for an extended fault 
tree analysis to detect specific software components or 
functions generating software scenarios that may lead to 
probable hazards. System-level SFMEA analysis identifies a 
wide range of possible failures. The dedicated critical 
software components or functions are based on maximum 
probable risk developed in failure trees due to potential 
software problems. 

4.5.1. Fault Tree Analysis 

At this phase of development, the existing fault tree is 
revised, so that it includes specific software modules. This 
typically involves a replacement based on structural analysis 
of software architecture. 

4.5.2. System SFMEA 

As mentioned, SFMEA can be done at different design 
phases to match the system design process. The system-level 
SFMEA during software safety architecture analysis is 
meant to examine the structure and protect the underlying 
system design, and the system risk test results and PHA are 
essential to system-level SFMEA inputs. 

4.6. Software Coding and Detailed Design Phase 

As can be seen in Figure 3, the following points are 
considered in the software architecture phase. Evidently, we 
will review the detailed FMEA/FTA and defensive 
programming to examine the software safety. Software 
safety detailed analysis includes: (a) Software detailed 
FMEA/FTA; (b) Software safety code analysis; (c) 
Defensive programming; (d) Formal inspections of safety-
critical code; and (e) Code data and logic analysis. 

At this phase of software development, the objectives of 
the software safety program include a detailed analysis of 
software design and implementation to help ensure that the 
required level of safety is reached. The subsystem interfaces 
may be analyzed to identify the potential risks associated 
with subsystems, and the analysis may be checked for 
intrinsically insecure situations caused by I/O scheduling, 
out-of-order events, lateral environments, etc. Detailed 
SFTA and SFMEA are two methods that can be used to 
achieve the goals of the software safety program. The high-



 Journal of Computer & Robotics 12 (1), 2019 77-91 

 

 

85

level software risk analysis using FTA in architecture and 
requirements phases can be further developed to analyze the 
inherent risks detected in software scenarios and variables. 
Detailed FMEA can be performed for all or a majority of 
software modules at risk by tracking intrinsic failures in 
input variables and logical process. In this section, FTA and 
FMEA procedures have been described and compared in 
detailed design and code level. 

Table. 3. The Methods of software coding and detailed design phase 

Task Method 

detailed software FMEA method is a systematic review 
of real-time software of a product in order to identify the 
effects of potential faults in unique variables used in the 
software. 

Software detailed 
FMEA/FTA 

Using the detailed design of software and existing codes, 
the fault tree can be extended to the detection of low-level 
software components, which are directly allocated to high-
level software components in the previous fault tree. 

Defensive 
programming 

defensive programming is a set of methods, techniques, 
and algorithms designed to prevent errors that lead to 
failure. 

Formal Inspections 
of safety-critical 
code 

Formal inspections are one of the best methodologies 
available to evaluate the quality of code components and 
program sets. 

Code data and logic 
analysis 

4.6.1. Detailed Software FTA 

The existing fault tree links high-level components and 
functions to potential risks from software architecture phase. 
Using the detailed design of software and existing codes, the 
fault tree can be extended to the detection of low-level 
software components, which are directly allocated to high-
level software components in the previous fault tree. These 
low-level software components can be considered as the core 
safety, and any software risk avoidance requirement can then 
be detected. When the results of detailed software FMEA 
method are available, FTA and FMEA results can be 
compared for compatibility and integrity. The same goal is 
pursued when FTA is used for software. Software risk 
becomes the top event with system elements, processes, 
procedures, and so on. In this method, the templates are 
given for each large structure in a given program, and the 
fault tree for the program is then generated by combining 
these templates. Unfavorable events are detected to perform 
software FTA.SFTA, which is considered as a verification 
tool, is used to identify the defective site in software design. 

4.6.2. Detailed Software FMEA Method 

As stated above, the detailed software FMEA method is a 
systematic review of real-time software of a product in order 
to identify the effects of potential faults in unique variables 
used in the software. To help perform the FMEA, various 
maps have been developed to design all input, output, local, 

and global software variables in accordance with the 
software programs. Therefore, each variable, whether input 
or output, has its own design. Each of the input variables is 
another hardware variable or output of the program. 

4.6.3. Integration of Results 

When FMEA is implemented on each of the software 
modules, output variables are used to present a project 
between these modules. The effect of the fault on the input 
of a module is followed by its correspondent input fault 
mode in the next module. Such tracking of the mode or 
impact of variables’ faults will be repeated until the variables 
reach a high level of the program. To prove this, the tracking 
creates software sequences linking software modules and 
acquired data variables to final inputs. A fault map for risks 
is detected when a set of fault effects are followed up to high-
level programs. Detailed FMEA of software is similar to the 
hardware FMEA with the exception that the variables 
replace the signals and electronic hardware signal paths. 
Finally, when detailed FMEA is finished, a map of possible 
high-level risks for top-level key variables will be provided. 
Top-level key variables are those necessary and sufficient to 
activate the potential risk of software mode. If detailed 
FMEA detects a probable failure mode that follows potential 
risks, then the false implementation of software safety will 
be detected and corrected. Similar to system-level FMEA, 
software design defects should be detected and the required 
information updated. Safety test information is updated 
using other safety software specifiying the demands in a 
detailed design and coding step. 

4.6.4. Defensive Programming 

In addition to FTA and FMEA methods applied at this 
phase of software development, accepted or extended 
programming guidelines often indicate that the developers 
implement defensive programming techniques. The 
defensive programming of software writing style can handle 
anything that happens on it; in other words, defensive 
programming is a set of methods, techniques, and algorithms 
designed to prevent errors that lead to failure. A strategy 
should be considered at the beginning of the program to deal 
with defects, faults, and errors. To write the program, this 
paper proceeds as follows: the essential functions of the code 
are separated from unnecessary functions to reduce the 
likelihood of a possible fault leading to potential risks. The 
use of 0 and 1 logics to interpret the scenarios or decision-
making results of original safe functions is not recommended 
due to quantitative reasons. 
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4.7. Software Verification and Validation Phases 

In this phase of software development, the following 
points can be mentioned based on safety. The goal of the 
software safety program is to implement the test plans 
ensuring that the software has met all the software safety 
requirements. This typically includes unit testing and an 
integration test. Testing programs prove that fault detection 
and inhibition have been fulfilled as expected. The 
documents that are written in this phase are summarized in 
Table 4. 

Table. 4. Documentation for the verification and validation phase 

Document Software safety 

Integration Test Plan 

Testing should exercise the connections between 
safety-critical units and non-critical units or 
systems. 

System Test Plan 

Extreme, but possible, environments should be 
tested (heavy load, other stressors) to verify the 
system continues to function safely within all 
plausible environments. 

Test Reports 

Verify test was completed as planned and all safety-
critical elements were properly tested. Report 
results of testing safety-critical interfaces versus the 
requirements outlined in the Software Test Plan. 
Any safety-critical findings should be used to 
update the hazard reports. 

Configuration Management 
Audit Report 

Verify that the configuration management system is 
properly used, especially for safety-critical 
elements. 

Formal Inspections Report 
All defects related to safety-critical elements should 
be considered major (must fix). 

Analysis Reports 
Identification of any safety-related aspects or safety 
concerns. 

Problem or Failure Reports 

Problem or Failure reports should be reviewed for 
any safety implications. Any corrective action 
should be verified to not cause an additional hazard 
or to adversely impact any other safety-critical 
software or hardware. 

Traceability Matrix 

Verify that requirements are traceable all the way 
into the test cases. Verify that all safety 
requirements have been adequately tested. 

The following tests are performed at this stage. Test 
simulation, load testing, stress testing, boundary value tests, 
test coverage analysis, functional testing, performance 
monitoring, disaster testing, resistance to failure testing, red 
team testing, regression testing. 

5. Case Study 

We applied the results of our approach to part of a real 
Cyber-physical system known as Data and Command Unit. 

 

Fig. 5. The data and command unit system. 

In Figures5 and 6, part of a command system is shown; 
the most important goal of the Data and Command Unit is to 
issue commands for separation of the nose, engine, and 
parachutes based on the simulated time and flight profile. 
This section requires the detection of the movement start and 
must, in fact, receive the Start signal as a trigger. The start 
signal is produced by the simultaneous cut of cord and 
compression of mass and spring switch. It is a command 
provided to start the operations of the two system processors, 
which use data from pressure sensors and the timeline of 
their internal timers to perform their operations. The 
movement start in cord cable is detected via separation of 
male and female parts. In this way, the two bases in the 
female part of this connector, which remains on the ground 
after the launch, are connected and soldered. In the male part 
located on the rocket, one of the bases is connected to the 
ground, and the other base is considered as the movement 
start signal of cord movement in addition to its connection 
to Vcc (Maximum Power Supply Value) by a resistor. When 
the male and female parts of cord connector are connected, 
the output signal is 0; however, through the separation of 
male and female parts of cord connector, the command 
signal is connected to Vcc by a resistor and equals to1. 
Spring-mass system is, in fact, an acceleration-sensitive 
system that activates a bi-directional electrical switch by 
sensing a minimum of acceleration. If the acceleration 
exceeds a certain threshold, the mass will change form 
downward with a certain value to activate the switch located 
under the mass. The spring-mass system has been designed 
to become active in a minimum acceleration of 2g, indicating 
that if an acceleration lower than this value is applied to the 
load, the spring-mass system will not be activated. For 
example, if a minor acceleration is introduced into the 
system when transporting the system or during the tests, a 
lack of function of the spring-mass system is ensured. By 
connecting the common side of the switch to the ground and 
receiving output from the normally closed part, the output 
signal becomes 0 before the launch, which turns into1after 
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the launch by the Pull Up resistor. To achieve higher 
reliability, the outputs of these mechanisms are added to 
each other by AND via hardware arrangement, which is sent 
as the movement start signal to different parts. Schematic 
representation of connections in this part before and after the 
launch is shown in Figure 7. 

 

Fig. 6. Detection of data and command unit of the movement start. 
 

 

Fig. 7. The block diagram of the movement start detection unit. 

Using the above connections, the start signal is equal 
to1before the launch and turns0 if the umbilical cord 
connector is separated and both the mass and spring are 
compressed. The potential risk of such a system is that the 
movement start signal is not produced, which is an unwanted 
system operation. The unwanted operation of the system can 
lead to undesirable system behavior that could potentially be 
dangerous. Some causes of unwanted system operation are 
shown in Table 5. A system lacking safety strategy has a 
high potential risk because an unwanted event may occur. 
However, the potential risk decreases after incorporating 
appropriate safety features specified by the safety strategy. 

5.1. Conceptual Phase  

As mentioned, the input of the requirements analysis 
phase is taken from the conceptual design phase where the 
PHA&STPA is applied to the command system, and the 
results are presented as follows (Figure8 and Table 5). 

Motor pressure is monitored to increase system 
reliability. The safety strategy of 1.2 in table 5is described as 
follows. By detecting an average engine pressure higher than 
a bar, its relevant t1 time is recorded. If the engine pressure 
remains more than A bar for B seconds after t1, then t1 time 
is considered as the movement start time for micro (A and B 
are determined based on engine type and processing 
conditions). With this proposed strategy, the movement start 
signal can be triggered as follows. The movement start is 
detected via the activation of (spring-mass) and (cord) for 
two seconds with or without the proposed safety strategy. By 
detecting each of these two cases for movement signal, the 
next item is ignored. The movement start is detected by one 
of the logic methods: (a) Activation of spring-mass and cord 
eruption; or (b) Pressure change based on the proposed 
safety strategy. 

 

 

Fig. 8. Identification of unsafe control actions (STPA). 
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Table. 5. PHA to identify the movement start in the conceptual design phase 

Hazard Name Causes 
Hazard 

Risk 
Safety Strategy 

Revised Hazard 
Risk 

Failure in the movement start 

1. Physical damage of mass and spring. 
2. Crash and damage of pins. 
3. Improper disconnection of cord on 
the launcher. 
4. The signal sending function does not 
work correctly. 
5. The connector between the cords, 
mass, spring, and the mainboard is 
disconnected. 
6. The wire or connector is opened 
because of impact during or before 
throwing. 
7. The power supply IC is disconnected.
8. IC is out of order. 

high 

1. The integrity of mass and spring must be 
checked before final assembly/ 
1.1. Use of two spring‐mass systems 
1.2. Sending the command issue signal by 
checking the engine pressure 
2. The shipment should move in safe conditions 
and not be hit in any of its parts.  
3. There should be a safe mechanism to unplug 
the cord on the launcher. 
4. Use of fault-tolerant system approaches in the 
software (multiple versions). 
5. The connector should withstand the applied 
acceleration. 
6. The tightness of the connector at the moment 
of assembly should be ensured. 
7. Soldering of the connector should be such that 
it is not disconnected by the applied vibration 
before and after throwing off the wire. 

Low 

5.2. Software Requirement Phase  

Considering the mentioned cases in section 4.4, the 
methods in this section are shown by a real case study (a part 
of the data and command unit system). 

With respect to PHA, which was derived from the 
conceptual design phase, software hazards led to hazards 
according to Table5. Figure 9 shows the software fault tree 
analysis (SFTA). 

 

Fig. 9. The Software fault tree in the requirements analysis phase. 

For the software system of the mentioned system, the 
software fault tree in Figure 9 shows potential detected 
software faults. For each of these potential software faults, 
the high level of software safety requirement is highlighted. 

Table. 6. Software safety requirements 

Req. No. Software Safety Requirement 

SW-SAFETY-1 
The data are sent in two ways (multiple 
versions). 

SW-SAFETY-2 
If the signal is not sent by mass & spring and 
umbilical or Engine Pressure, send an alert signal. 

SW-SAFETY-3 

Using single-version programming techniques, 
multi-programming techniques (software fault 
tolerance techniques) to prevent incorrect 
calculation of micro 

SW-SAFETY-4 Sending an alert message if the ICs fail. 

For each of the possible software faults, the lowest level 
of FTA is shown in (Figure 9). The software safety 
requirements are set and during the hazard test, the 
requirements are developed for real testing of the system 
under a possible hazard. The results of this test specify the 
deviation of the error response times and the level required 
by the system. 

5.3. Analyzing Software Safety Requirements in DCU Systems  

According to the methods described in Section 3.5, 
methods 1 and 2 are used in this paper.  

 Top-down analysis of software safety requirements 

 Analysis of critical requirements 

Figure 8 (Top-down analysis) and Table 7 (Analysis of 
critical requirement) present results and requirements of the 
safety analysis in this phase. Table 4 presents the updated 
requirements. 

Table. 7. Modified Software Safety Requirements 

REQ. No Requirements 

SW-SAFETY-1 

The system sending warning signal must detect 
the signal deviation in TBD ms (mass and 
spring). 
The system should send an alert signal after ms 
if the signal is not sent by mass & spring and 
umbilical or Engine Pressure). 

SW-SAFETY-2 

The system sending warning signal must detect 
the signal deviation in TBD ms (IC).
(The system should send an alert signal after ms 
if the message is not sent from IC). 

SW-SAFETY-3 
All software must comply with MISRA C 
programming guidelines. 

SW-SAFETY-4 
The software failure management routine should 
start turning off the system controller 
immediately after detecting the failure. 

SW-SAFETY-6 
The data received by the two data transmission 
pathways should be compared. In case of a 
difference, a warning message must be sent.
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For the movement start detection system, safety results 
and requirements are reviewed for compatibility and safety 
in Tables 2 and 3, as well as Figure 6. Table 4 shows the 
updated requirements. SW-Safety-1 and SW-Safety-2 
conditions are obtained with values that are directly 
specified. The SW-Safety-3 and SW-Safety-4 conditions are 
added to determine the system behavior after identifying a 
defect. SW-Safety-5 shows that the software must follow the 
programming instructions of Motor Industry Software 
Reliability Association (MISRA) to help ensure that the best 
programming techniques are employed. 

5.4. Software Architectural Design 

To help understand the analytic methods presented in this 
section, software architecture for the movement start is shown 
in Table 8. This software architecture must comply with 
detected safety requirements specified in Table 7, and in some 
cases, it should involve specific software modules (warning 
message system). This architecture includes adjusting the 
micro timer and checking the micro pin inputs in the initial 
state, and there is also the main loop and a final mode. The 
information in this Table is written according to Table 6. 

Table. 8. The software architecture of movement start 

Init: 
Check input of micro pins 
Set the timer 

  

Main loop: 
Receive Sensor Information 
Diagnose Sensor Input 
Alert message system (sensor) 
Detect motor mode 
 
Receive m&s and umb information 
Alert message system (m&s and umbilical) 
 
Send the movement start signal 

  

Final: 
Finish (the movement start signal is sent) 

5.4.1. Fault Tree Analysis 

As discussed in the previous sections, at this phase of 
development, the revised fault tree in which the fault tree 
includes certain software modules typically involving the 
replacement of software part contained in the fault tree (a 
point that is essentially based on software knowledge but is 
not present in structural software) is substituted with a new 
subtree according to structural analysis of software 
architecture. The developed subtree is compared with the old 
one to ensure that no knowledge has disappeared. For the 
software architecture of movement start, the software part of 
the failure tree depicted in Figure 10 is replaced with a tree 
developed by identifying the immediate causes of the main 
software event. This tree is created by traversing the 

software architecture shown in the Figure to detect software 
designs of software components. The event description in 
the tree is measured based on Table requirements. Part of the 
revised tree is presented in Figure 10. 

5.5. Coding and Detailed Design Phase of Software 

As shown in Figure. 11, the main cause of system failure 

is the failure in engine turnoff detection. Accordingly, given 

the higher sensitivity level of this module, it has been 

examined in more detail. 

 
Fig. 10. Revised Fault Tree. 

 

Determine Engine Mode (Boolean Flag 1, Boolean Flag 2) 
{ 

Enumerated System State = (Normal, off); 
System state = Lookup state (Flag 1, Flag 2) 

If (Engine state = off)then 
Call off Task () 

} 

Fig. 11. The pseudo code for determination of engine mode. 

 

5.6. Detailed SFMEA Method  

As described in Section 5.2, to help the Detailed SFMEA, 

various maps are created in order to outline all input, output, 

local, and global variables in accordance with software 

programs. As stated, when an FMEA is executed in each of 

the software modules, the output variables are used to 

present a design between these modules. Finally, SFMEA is 

shown in the design phase in Tables 9-11. 
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Table. 9. Variables map 

Alert 
message 
system 

Diagnose 
sensor 
input 

Determine 
relays state 

Alert 
message 
system 

The 
movement 
start signal 

Detect 
motor 
mode 

Alert 
message 
system 

Diagnose 
sensor 
input 

Read Sensor 
Information 

Variable/Routine 

       Input Output Variable-1 

    output output Input   Variable-2 

   Input      Variable-3 

... ... ... .... ... ... ... .... … Variable... 

Output Input Output       Variable-n 

Table. 10. Detailed SFMCEA 

Table. 11. Detailed SFMCEA 

Recommendation Potential 
Severity 

System effect Local effect Software 
modules affected 

Failure Modes variables 
Replace Boolean flags with the 
enumerated data type. 
Use of fault detection and diagnostic 
methods 

8 
The system will shut 
down and thus cause 
loss of performance 

The engine state does not 
correctly detect and cause 
a false action. 

Determine engine 
mode 

Normal and off mode is not 
correctly detected Flag1 

Replace Boolean flags with the 
enumerated data type. 
Use of fault detection and diagnostic 
methods. 

10 
The system may 
provide an incorrect 
output 

System mode may be 
normal when it should be 
failed, so no call when 
there is a call to off

Determine engine 
mode 

Normal and off mode is not 
correctly detected. Flag 2 

Following the solutions presented in Tables 10 and 11, 

using the Delphi method, the investigations show the 

potential severity reduction, all failure modes, and system 

acceptability. 

5.7. Use of Operational Strategies to Reduce Risk Severity 

in the Movement Start  

According to the methods mentioned in section 4.2, the 
methods used to reduce the risk severity are explained in this 
section. As noted, data transmission pathways are doubled 
to reduce risk, improve performance, and promote the 
reliability of data transmission pathways. To prevent the 
occurrence of common cause failure, two different 
redundant mechanisms are used for sending and 
communicating. Moreover, to provide early warnings, an 
alert system was considered, and as mentioned, safety 
requirements were also considered. Multiprogramming and 
single programming techniques are the software fault 
tolerance methods used to reduce risk, which is shown in 
Table 6 as Software Safety Requirements. 

Following the methods outlined in this section to reduce 
risk severity and the Delphi method of success, it is seen that 
severity has decreased. 

6. Conclusion 

This paper presents software safety methods in the 
software lifecycle and then examines the effective 
application of these processes on one subsystem of 
aerospace systems, namely the data and command unit 
system. The successful implementation of the software 
safety program is dependent on the experience of the 
involved individuals, selection and application of safety 
analysis, and evaluation methods during the software 
development cycle. For further research, we suggest other 
methods proposed in this paper (those presented in Tables 2, 
3 and 4), as well as analysis and noise detection in software 
systems and the safety in multi-thread programming 
methods. Also, the maintenance policy based on risk and 
safety criteria can be considered in the next study. 

Recommendation Potential 
Severity 

System Effect Local Effect Failure Modes Software 
Element 

In specific time units, the specified amount of 
data is read and the average is calculated and 
compared with the average of previous times if 
the difference is greater than the specified value, 
and the processor must be given an alert. 

10 

The system uses the last read 
signal value and the processor 
will not detect the failure. If the 
output is different from the 
calculated output of the system, it 
may cause a mishap.

No Sensor signal 
read Fails to execute Sensor input 

It may be due to a problem in the analog to digital 
section, sensor failure, the computational error of 
the processor, and so on. For hardware bugs, 
regular checking of components and systems, and 
for fault detection and diagnostic methods for 
software bugs. 

10 

The processor takes the wrong 
information and if it is within 
range, it does not recognize the 
wrong inputs and may cause a 
mishap. 

Some or all of the 
sensor signals are 
incorrect 

Erroneous Sensor input 
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